• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_MATRIX_FUNCTION
11 #define EIGEN_MATRIX_FUNCTION
12 
13 #include "StemFunction.h"
14 #include "MatrixFunctionAtomic.h"
15 
16 
17 namespace Eigen {
18 
19 /** \ingroup MatrixFunctions_Module
20   * \brief Class for computing matrix functions.
21   * \tparam  MatrixType  type of the argument of the matrix function,
22   *                      expected to be an instantiation of the Matrix class template.
23   * \tparam  AtomicType  type for computing matrix function of atomic blocks.
24   * \tparam  IsComplex   used internally to select correct specialization.
25   *
26   * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
27   * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
28   * computation of the matrix function on every block corresponding to these clusters to an object of type
29   * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
30   * \p AtomicType should have a \p compute() member function for computing the matrix function of a block.
31   *
32   * \sa class MatrixFunctionAtomic, class MatrixLogarithmAtomic
33   */
34 template <typename MatrixType,
35 	  typename AtomicType,
36           int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
37 class MatrixFunction
38 {
39   public:
40 
41     /** \brief Constructor.
42       *
43       * \param[in]  A       argument of matrix function, should be a square matrix.
44       * \param[in]  atomic  class for computing matrix function of atomic blocks.
45       *
46       * The class stores references to \p A and \p atomic, so they should not be
47       * changed (or destroyed) before compute() is called.
48       */
49     MatrixFunction(const MatrixType& A, AtomicType& atomic);
50 
51     /** \brief Compute the matrix function.
52       *
53       * \param[out] result  the function \p f applied to \p A, as
54       * specified in the constructor.
55       *
56       * See MatrixBase::matrixFunction() for details on how this computation
57       * is implemented.
58       */
59     template <typename ResultType>
60     void compute(ResultType &result);
61 };
62 
63 
64 /** \internal \ingroup MatrixFunctions_Module
65   * \brief Partial specialization of MatrixFunction for real matrices
66   */
67 template <typename MatrixType, typename AtomicType>
68 class MatrixFunction<MatrixType, AtomicType, 0>
69 {
70   private:
71 
72     typedef internal::traits<MatrixType> Traits;
73     typedef typename Traits::Scalar Scalar;
74     static const int Rows = Traits::RowsAtCompileTime;
75     static const int Cols = Traits::ColsAtCompileTime;
76     static const int Options = MatrixType::Options;
77     static const int MaxRows = Traits::MaxRowsAtCompileTime;
78     static const int MaxCols = Traits::MaxColsAtCompileTime;
79 
80     typedef std::complex<Scalar> ComplexScalar;
81     typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
82 
83   public:
84 
85     /** \brief Constructor.
86       *
87       * \param[in]  A       argument of matrix function, should be a square matrix.
88       * \param[in]  atomic  class for computing matrix function of atomic blocks.
89       */
MatrixFunction(const MatrixType & A,AtomicType & atomic)90     MatrixFunction(const MatrixType& A, AtomicType& atomic) : m_A(A), m_atomic(atomic) { }
91 
92     /** \brief Compute the matrix function.
93       *
94       * \param[out] result  the function \p f applied to \p A, as
95       * specified in the constructor.
96       *
97       * This function converts the real matrix \c A to a complex matrix,
98       * uses MatrixFunction<MatrixType,1> and then converts the result back to
99       * a real matrix.
100       */
101     template <typename ResultType>
compute(ResultType & result)102     void compute(ResultType& result)
103     {
104       ComplexMatrix CA = m_A.template cast<ComplexScalar>();
105       ComplexMatrix Cresult;
106       MatrixFunction<ComplexMatrix, AtomicType> mf(CA, m_atomic);
107       mf.compute(Cresult);
108       result = Cresult.real();
109     }
110 
111   private:
112     typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
113     AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
114 
115     MatrixFunction& operator=(const MatrixFunction&);
116 };
117 
118 
119 /** \internal \ingroup MatrixFunctions_Module
120   * \brief Partial specialization of MatrixFunction for complex matrices
121   */
122 template <typename MatrixType, typename AtomicType>
123 class MatrixFunction<MatrixType, AtomicType, 1>
124 {
125   private:
126 
127     typedef internal::traits<MatrixType> Traits;
128     typedef typename MatrixType::Scalar Scalar;
129     typedef typename MatrixType::Index Index;
130     static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
131     static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
132     static const int Options = MatrixType::Options;
133     typedef typename NumTraits<Scalar>::Real RealScalar;
134     typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
135     typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
136     typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
137     typedef std::list<Scalar> Cluster;
138     typedef std::list<Cluster> ListOfClusters;
139     typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
140 
141   public:
142 
143     MatrixFunction(const MatrixType& A, AtomicType& atomic);
144     template <typename ResultType> void compute(ResultType& result);
145 
146   private:
147 
148     void computeSchurDecomposition();
149     void partitionEigenvalues();
150     typename ListOfClusters::iterator findCluster(Scalar key);
151     void computeClusterSize();
152     void computeBlockStart();
153     void constructPermutation();
154     void permuteSchur();
155     void swapEntriesInSchur(Index index);
156     void computeBlockAtomic();
157     Block<MatrixType> block(MatrixType& A, Index i, Index j);
158     void computeOffDiagonal();
159     DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
160 
161     typename internal::nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
162     AtomicType& m_atomic; /**< \brief Class for computing matrix function of atomic blocks. */
163     MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
164     MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
165     MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
166     ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
167     DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
168     DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters  */
169     DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
170     IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */
171 
172     /** \brief Maximum distance allowed between eigenvalues to be considered "close".
173       *
174       * This is morally a \c static \c const \c Scalar, but only
175       * integers can be static constant class members in C++. The
176       * separation constant is set to 0.1, a value taken from the
177       * paper by Davies and Higham. */
separation()178     static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
179 
180     MatrixFunction& operator=(const MatrixFunction&);
181 };
182 
183 /** \brief Constructor.
184  *
185  * \param[in]  A       argument of matrix function, should be a square matrix.
186  * \param[in]  atomic  class for computing matrix function of atomic blocks.
187  */
188 template <typename MatrixType, typename AtomicType>
MatrixFunction(const MatrixType & A,AtomicType & atomic)189 MatrixFunction<MatrixType,AtomicType,1>::MatrixFunction(const MatrixType& A, AtomicType& atomic)
190   : m_A(A), m_atomic(atomic)
191 {
192   /* empty body */
193 }
194 
195 /** \brief Compute the matrix function.
196   *
197   * \param[out] result  the function \p f applied to \p A, as
198   * specified in the constructor.
199   */
200 template <typename MatrixType, typename AtomicType>
201 template <typename ResultType>
compute(ResultType & result)202 void MatrixFunction<MatrixType,AtomicType,1>::compute(ResultType& result)
203 {
204   computeSchurDecomposition();
205   partitionEigenvalues();
206   computeClusterSize();
207   computeBlockStart();
208   constructPermutation();
209   permuteSchur();
210   computeBlockAtomic();
211   computeOffDiagonal();
212   result = m_U * (m_fT.template triangularView<Upper>() * m_U.adjoint());
213 }
214 
215 /** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
216 template <typename MatrixType, typename AtomicType>
computeSchurDecomposition()217 void MatrixFunction<MatrixType,AtomicType,1>::computeSchurDecomposition()
218 {
219   const ComplexSchur<MatrixType> schurOfA(m_A);
220   m_T = schurOfA.matrixT();
221   m_U = schurOfA.matrixU();
222 }
223 
224 /** \brief Partition eigenvalues in clusters of ei'vals close to each other
225   *
226   * This function computes #m_clusters. This is a partition of the
227   * eigenvalues of #m_T in clusters, such that
228   * # Any eigenvalue in a certain cluster is at most separation() away
229   *   from another eigenvalue in the same cluster.
230   * # The distance between two eigenvalues in different clusters is
231   *   more than separation().
232   * The implementation follows Algorithm 4.1 in the paper of Davies
233   * and Higham.
234   */
235 template <typename MatrixType, typename AtomicType>
partitionEigenvalues()236 void MatrixFunction<MatrixType,AtomicType,1>::partitionEigenvalues()
237 {
238   using std::abs;
239   const Index rows = m_T.rows();
240   VectorType diag = m_T.diagonal(); // contains eigenvalues of A
241 
242   for (Index i=0; i<rows; ++i) {
243     // Find set containing diag(i), adding a new set if necessary
244     typename ListOfClusters::iterator qi = findCluster(diag(i));
245     if (qi == m_clusters.end()) {
246       Cluster l;
247       l.push_back(diag(i));
248       m_clusters.push_back(l);
249       qi = m_clusters.end();
250       --qi;
251     }
252 
253     // Look for other element to add to the set
254     for (Index j=i+1; j<rows; ++j) {
255       if (abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
256         typename ListOfClusters::iterator qj = findCluster(diag(j));
257         if (qj == m_clusters.end()) {
258           qi->push_back(diag(j));
259         } else {
260           qi->insert(qi->end(), qj->begin(), qj->end());
261           m_clusters.erase(qj);
262         }
263       }
264     }
265   }
266 }
267 
268 /** \brief Find cluster in #m_clusters containing some value
269   * \param[in] key Value to find
270   * \returns Iterator to cluster containing \c key, or
271   * \c m_clusters.end() if no cluster in m_clusters contains \c key.
272   */
273 template <typename MatrixType, typename AtomicType>
findCluster(Scalar key)274 typename MatrixFunction<MatrixType,AtomicType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,AtomicType,1>::findCluster(Scalar key)
275 {
276   typename Cluster::iterator j;
277   for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
278     j = std::find(i->begin(), i->end(), key);
279     if (j != i->end())
280       return i;
281   }
282   return m_clusters.end();
283 }
284 
285 /** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
286 template <typename MatrixType, typename AtomicType>
computeClusterSize()287 void MatrixFunction<MatrixType,AtomicType,1>::computeClusterSize()
288 {
289   const Index rows = m_T.rows();
290   VectorType diag = m_T.diagonal();
291   const Index numClusters = static_cast<Index>(m_clusters.size());
292 
293   m_clusterSize.setZero(numClusters);
294   m_eivalToCluster.resize(rows);
295   Index clusterIndex = 0;
296   for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
297     for (Index i = 0; i < diag.rows(); ++i) {
298       if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
299         ++m_clusterSize[clusterIndex];
300         m_eivalToCluster[i] = clusterIndex;
301       }
302     }
303     ++clusterIndex;
304   }
305 }
306 
307 /** \brief Compute #m_blockStart using #m_clusterSize */
308 template <typename MatrixType, typename AtomicType>
computeBlockStart()309 void MatrixFunction<MatrixType,AtomicType,1>::computeBlockStart()
310 {
311   m_blockStart.resize(m_clusterSize.rows());
312   m_blockStart(0) = 0;
313   for (Index i = 1; i < m_clusterSize.rows(); i++) {
314     m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
315   }
316 }
317 
318 /** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
319 template <typename MatrixType, typename AtomicType>
constructPermutation()320 void MatrixFunction<MatrixType,AtomicType,1>::constructPermutation()
321 {
322   DynamicIntVectorType indexNextEntry = m_blockStart;
323   m_permutation.resize(m_T.rows());
324   for (Index i = 0; i < m_T.rows(); i++) {
325     Index cluster = m_eivalToCluster[i];
326     m_permutation[i] = indexNextEntry[cluster];
327     ++indexNextEntry[cluster];
328   }
329 }
330 
331 /** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
332 template <typename MatrixType, typename AtomicType>
permuteSchur()333 void MatrixFunction<MatrixType,AtomicType,1>::permuteSchur()
334 {
335   IntVectorType p = m_permutation;
336   for (Index i = 0; i < p.rows() - 1; i++) {
337     Index j;
338     for (j = i; j < p.rows(); j++) {
339       if (p(j) == i) break;
340     }
341     eigen_assert(p(j) == i);
342     for (Index k = j-1; k >= i; k--) {
343       swapEntriesInSchur(k);
344       std::swap(p.coeffRef(k), p.coeffRef(k+1));
345     }
346   }
347 }
348 
349 /** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
350 template <typename MatrixType, typename AtomicType>
swapEntriesInSchur(Index index)351 void MatrixFunction<MatrixType,AtomicType,1>::swapEntriesInSchur(Index index)
352 {
353   JacobiRotation<Scalar> rotation;
354   rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
355   m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
356   m_T.applyOnTheRight(index, index+1, rotation);
357   m_U.applyOnTheRight(index, index+1, rotation);
358 }
359 
360 /** \brief Compute block diagonal part of #m_fT.
361   *
362   * This routine computes the matrix function applied to the block diagonal part of #m_T, with the blocking
363   * given by #m_blockStart. The matrix function of each diagonal block is computed by #m_atomic. The
364   * off-diagonal parts of #m_fT are set to zero.
365   */
366 template <typename MatrixType, typename AtomicType>
computeBlockAtomic()367 void MatrixFunction<MatrixType,AtomicType,1>::computeBlockAtomic()
368 {
369   m_fT.resize(m_T.rows(), m_T.cols());
370   m_fT.setZero();
371   for (Index i = 0; i < m_clusterSize.rows(); ++i) {
372     block(m_fT, i, i) = m_atomic.compute(block(m_T, i, i));
373   }
374 }
375 
376 /** \brief Return block of matrix according to blocking given by #m_blockStart */
377 template <typename MatrixType, typename AtomicType>
block(MatrixType & A,Index i,Index j)378 Block<MatrixType> MatrixFunction<MatrixType,AtomicType,1>::block(MatrixType& A, Index i, Index j)
379 {
380   return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
381 }
382 
383 /** \brief Compute part of #m_fT above block diagonal.
384   *
385   * This routine assumes that the block diagonal part of #m_fT (which
386   * equals the matrix function applied to #m_T) has already been computed and computes
387   * the part above the block diagonal. The part below the diagonal is
388   * zero, because #m_T is upper triangular.
389   */
390 template <typename MatrixType, typename AtomicType>
computeOffDiagonal()391 void MatrixFunction<MatrixType,AtomicType,1>::computeOffDiagonal()
392 {
393   for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
394     for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
395       // compute (blockIndex, blockIndex+diagIndex) block
396       DynMatrixType A = block(m_T, blockIndex, blockIndex);
397       DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
398       DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
399       C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
400       for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
401 	C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
402 	C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
403       }
404       block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
405     }
406   }
407 }
408 
409 /** \brief Solve a triangular Sylvester equation AX + XB = C
410   *
411   * \param[in]  A  the matrix A; should be square and upper triangular
412   * \param[in]  B  the matrix B; should be square and upper triangular
413   * \param[in]  C  the matrix C; should have correct size.
414   *
415   * \returns the solution X.
416   *
417   * If A is m-by-m and B is n-by-n, then both C and X are m-by-n.
418   * The (i,j)-th component of the Sylvester equation is
419   * \f[
420   *     \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}.
421   * \f]
422   * This can be re-arranged to yield:
423   * \f[
424   *     X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
425   *     - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
426   * \f]
427   * It is assumed that A and B are such that the numerator is never
428   * zero (otherwise the Sylvester equation does not have a unique
429   * solution). In that case, these equations can be evaluated in the
430   * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
431   */
432 template <typename MatrixType, typename AtomicType>
solveTriangularSylvester(const DynMatrixType & A,const DynMatrixType & B,const DynMatrixType & C)433 typename MatrixFunction<MatrixType,AtomicType,1>::DynMatrixType MatrixFunction<MatrixType,AtomicType,1>::solveTriangularSylvester(
434   const DynMatrixType& A,
435   const DynMatrixType& B,
436   const DynMatrixType& C)
437 {
438   eigen_assert(A.rows() == A.cols());
439   eigen_assert(A.isUpperTriangular());
440   eigen_assert(B.rows() == B.cols());
441   eigen_assert(B.isUpperTriangular());
442   eigen_assert(C.rows() == A.rows());
443   eigen_assert(C.cols() == B.rows());
444 
445   Index m = A.rows();
446   Index n = B.rows();
447   DynMatrixType X(m, n);
448 
449   for (Index i = m - 1; i >= 0; --i) {
450     for (Index j = 0; j < n; ++j) {
451 
452       // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
453       Scalar AX;
454       if (i == m - 1) {
455 	AX = 0;
456       } else {
457 	Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
458 	AX = AXmatrix(0,0);
459       }
460 
461       // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
462       Scalar XB;
463       if (j == 0) {
464 	XB = 0;
465       } else {
466 	Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
467 	XB = XBmatrix(0,0);
468       }
469 
470       X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
471     }
472   }
473   return X;
474 }
475 
476 /** \ingroup MatrixFunctions_Module
477   *
478   * \brief Proxy for the matrix function of some matrix (expression).
479   *
480   * \tparam Derived  Type of the argument to the matrix function.
481   *
482   * This class holds the argument to the matrix function until it is
483   * assigned or evaluated for some other reason (so the argument
484   * should not be changed in the meantime). It is the return type of
485   * matrixBase::matrixFunction() and related functions and most of the
486   * time this is the only way it is used.
487   */
488 template<typename Derived> class MatrixFunctionReturnValue
489 : public ReturnByValue<MatrixFunctionReturnValue<Derived> >
490 {
491   public:
492 
493     typedef typename Derived::Scalar Scalar;
494     typedef typename Derived::Index Index;
495     typedef typename internal::stem_function<Scalar>::type StemFunction;
496 
497    /** \brief Constructor.
498       *
499       * \param[in] A  %Matrix (expression) forming the argument of the
500       * matrix function.
501       * \param[in] f  Stem function for matrix function under consideration.
502       */
MatrixFunctionReturnValue(const Derived & A,StemFunction f)503     MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }
504 
505     /** \brief Compute the matrix function.
506       *
507       * \param[out] result \p f applied to \p A, where \p f and \p A
508       * are as in the constructor.
509       */
510     template <typename ResultType>
evalTo(ResultType & result)511     inline void evalTo(ResultType& result) const
512     {
513       typedef typename Derived::PlainObject PlainObject;
514       typedef internal::traits<PlainObject> Traits;
515       static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
516       static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
517       static const int Options = PlainObject::Options;
518       typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
519       typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
520       typedef MatrixFunctionAtomic<DynMatrixType> AtomicType;
521       AtomicType atomic(m_f);
522 
523       const PlainObject Aevaluated = m_A.eval();
524       MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
525       mf.compute(result);
526     }
527 
rows()528     Index rows() const { return m_A.rows(); }
cols()529     Index cols() const { return m_A.cols(); }
530 
531   private:
532     typename internal::nested<Derived>::type m_A;
533     StemFunction *m_f;
534 
535     MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
536 };
537 
538 namespace internal {
539 template<typename Derived>
540 struct traits<MatrixFunctionReturnValue<Derived> >
541 {
542   typedef typename Derived::PlainObject ReturnType;
543 };
544 }
545 
546 
547 /********** MatrixBase methods **********/
548 
549 
550 template <typename Derived>
551 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
552 {
553   eigen_assert(rows() == cols());
554   return MatrixFunctionReturnValue<Derived>(derived(), f);
555 }
556 
557 template <typename Derived>
558 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
559 {
560   eigen_assert(rows() == cols());
561   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
562   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
563 }
564 
565 template <typename Derived>
566 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
567 {
568   eigen_assert(rows() == cols());
569   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
570   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
571 }
572 
573 template <typename Derived>
574 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
575 {
576   eigen_assert(rows() == cols());
577   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
578   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
579 }
580 
581 template <typename Derived>
582 const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
583 {
584   eigen_assert(rows() == cols());
585   typedef typename internal::stem_function<Scalar>::ComplexScalar ComplexScalar;
586   return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
587 }
588 
589 } // end namespace Eigen
590 
591 #endif // EIGEN_MATRIX_FUNCTION
592