1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for inline asm statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/AST/TypeLoc.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Initialization.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/MC/MCParser/MCAsmParser.h"
27 using namespace clang;
28 using namespace sema;
29
30 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
31 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
32 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
33 /// provide a strong guidance to not use it.
34 ///
35 /// This method checks to see if the argument is an acceptable l-value and
36 /// returns false if it is a case we can handle.
CheckAsmLValue(const Expr * E,Sema & S)37 static bool CheckAsmLValue(const Expr *E, Sema &S) {
38 // Type dependent expressions will be checked during instantiation.
39 if (E->isTypeDependent())
40 return false;
41
42 if (E->isLValue())
43 return false; // Cool, this is an lvalue.
44
45 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
46 // are supposed to allow.
47 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
48 if (E != E2 && E2->isLValue()) {
49 if (!S.getLangOpts().HeinousExtensions)
50 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
51 << E->getSourceRange();
52 else
53 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
54 << E->getSourceRange();
55 // Accept, even if we emitted an error diagnostic.
56 return false;
57 }
58
59 // None of the above, just randomly invalid non-lvalue.
60 return true;
61 }
62
63 /// isOperandMentioned - Return true if the specified operand # is mentioned
64 /// anywhere in the decomposed asm string.
isOperandMentioned(unsigned OpNo,ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces)65 static bool isOperandMentioned(unsigned OpNo,
66 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
67 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
68 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
69 if (!Piece.isOperand()) continue;
70
71 // If this is a reference to the input and if the input was the smaller
72 // one, then we have to reject this asm.
73 if (Piece.getOperandNo() == OpNo)
74 return true;
75 }
76 return false;
77 }
78
CheckNakedParmReference(Expr * E,Sema & S)79 static bool CheckNakedParmReference(Expr *E, Sema &S) {
80 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
81 if (!Func)
82 return false;
83 if (!Func->hasAttr<NakedAttr>())
84 return false;
85
86 SmallVector<Expr*, 4> WorkList;
87 WorkList.push_back(E);
88 while (WorkList.size()) {
89 Expr *E = WorkList.pop_back_val();
90 if (isa<CXXThisExpr>(E)) {
91 S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref);
92 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
93 return true;
94 }
95 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
96 if (isa<ParmVarDecl>(DRE->getDecl())) {
97 S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref);
98 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
99 return true;
100 }
101 }
102 for (Stmt *Child : E->children()) {
103 if (Expr *E = dyn_cast_or_null<Expr>(Child))
104 WorkList.push_back(E);
105 }
106 }
107 return false;
108 }
109
110 /// \brief Returns true if given expression is not compatible with inline
111 /// assembly's memory constraint; false otherwise.
checkExprMemoryConstraintCompat(Sema & S,Expr * E,TargetInfo::ConstraintInfo & Info,bool is_input_expr)112 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
113 TargetInfo::ConstraintInfo &Info,
114 bool is_input_expr) {
115 enum {
116 ExprBitfield = 0,
117 ExprVectorElt,
118 ExprGlobalRegVar,
119 ExprSafeType
120 } EType = ExprSafeType;
121
122 // Bitfields, vector elements and global register variables are not
123 // compatible.
124 if (E->refersToBitField())
125 EType = ExprBitfield;
126 else if (E->refersToVectorElement())
127 EType = ExprVectorElt;
128 else if (E->refersToGlobalRegisterVar())
129 EType = ExprGlobalRegVar;
130
131 if (EType != ExprSafeType) {
132 S.Diag(E->getLocStart(), diag::err_asm_non_addr_value_in_memory_constraint)
133 << EType << is_input_expr << Info.getConstraintStr()
134 << E->getSourceRange();
135 return true;
136 }
137
138 return false;
139 }
140
ActOnGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg constraints,MultiExprArg Exprs,Expr * asmString,MultiExprArg clobbers,SourceLocation RParenLoc)141 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
142 bool IsVolatile, unsigned NumOutputs,
143 unsigned NumInputs, IdentifierInfo **Names,
144 MultiExprArg constraints, MultiExprArg Exprs,
145 Expr *asmString, MultiExprArg clobbers,
146 SourceLocation RParenLoc) {
147 unsigned NumClobbers = clobbers.size();
148 StringLiteral **Constraints =
149 reinterpret_cast<StringLiteral**>(constraints.data());
150 StringLiteral *AsmString = cast<StringLiteral>(asmString);
151 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
152
153 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
154
155 // The parser verifies that there is a string literal here.
156 assert(AsmString->isAscii());
157
158 // If we're compiling CUDA file and function attributes indicate that it's not
159 // for this compilation side, skip all the checks.
160 if (!DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) {
161 GCCAsmStmt *NS = new (Context) GCCAsmStmt(
162 Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names,
163 Constraints, Exprs.data(), AsmString, NumClobbers, Clobbers, RParenLoc);
164 return NS;
165 }
166
167 for (unsigned i = 0; i != NumOutputs; i++) {
168 StringLiteral *Literal = Constraints[i];
169 assert(Literal->isAscii());
170
171 StringRef OutputName;
172 if (Names[i])
173 OutputName = Names[i]->getName();
174
175 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
176 if (!Context.getTargetInfo().validateOutputConstraint(Info))
177 return StmtError(Diag(Literal->getLocStart(),
178 diag::err_asm_invalid_output_constraint)
179 << Info.getConstraintStr());
180
181 ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
182 if (ER.isInvalid())
183 return StmtError();
184 Exprs[i] = ER.get();
185
186 // Check that the output exprs are valid lvalues.
187 Expr *OutputExpr = Exprs[i];
188
189 // Referring to parameters is not allowed in naked functions.
190 if (CheckNakedParmReference(OutputExpr, *this))
191 return StmtError();
192
193 // Check that the output expression is compatible with memory constraint.
194 if (Info.allowsMemory() &&
195 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
196 return StmtError();
197
198 OutputConstraintInfos.push_back(Info);
199
200 // If this is dependent, just continue.
201 if (OutputExpr->isTypeDependent())
202 continue;
203
204 Expr::isModifiableLvalueResult IsLV =
205 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
206 switch (IsLV) {
207 case Expr::MLV_Valid:
208 // Cool, this is an lvalue.
209 break;
210 case Expr::MLV_ArrayType:
211 // This is OK too.
212 break;
213 case Expr::MLV_LValueCast: {
214 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
215 if (!getLangOpts().HeinousExtensions) {
216 Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
217 << OutputExpr->getSourceRange();
218 } else {
219 Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
220 << OutputExpr->getSourceRange();
221 }
222 // Accept, even if we emitted an error diagnostic.
223 break;
224 }
225 case Expr::MLV_IncompleteType:
226 case Expr::MLV_IncompleteVoidType:
227 if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
228 diag::err_dereference_incomplete_type))
229 return StmtError();
230 default:
231 return StmtError(Diag(OutputExpr->getLocStart(),
232 diag::err_asm_invalid_lvalue_in_output)
233 << OutputExpr->getSourceRange());
234 }
235
236 unsigned Size = Context.getTypeSize(OutputExpr->getType());
237 if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
238 Size))
239 return StmtError(Diag(OutputExpr->getLocStart(),
240 diag::err_asm_invalid_output_size)
241 << Info.getConstraintStr());
242 }
243
244 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
245
246 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
247 StringLiteral *Literal = Constraints[i];
248 assert(Literal->isAscii());
249
250 StringRef InputName;
251 if (Names[i])
252 InputName = Names[i]->getName();
253
254 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
255 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
256 Info)) {
257 return StmtError(Diag(Literal->getLocStart(),
258 diag::err_asm_invalid_input_constraint)
259 << Info.getConstraintStr());
260 }
261
262 ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
263 if (ER.isInvalid())
264 return StmtError();
265 Exprs[i] = ER.get();
266
267 Expr *InputExpr = Exprs[i];
268
269 // Referring to parameters is not allowed in naked functions.
270 if (CheckNakedParmReference(InputExpr, *this))
271 return StmtError();
272
273 // Check that the input expression is compatible with memory constraint.
274 if (Info.allowsMemory() &&
275 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
276 return StmtError();
277
278 // Only allow void types for memory constraints.
279 if (Info.allowsMemory() && !Info.allowsRegister()) {
280 if (CheckAsmLValue(InputExpr, *this))
281 return StmtError(Diag(InputExpr->getLocStart(),
282 diag::err_asm_invalid_lvalue_in_input)
283 << Info.getConstraintStr()
284 << InputExpr->getSourceRange());
285 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
286 if (!InputExpr->isValueDependent()) {
287 llvm::APSInt Result;
288 if (!InputExpr->EvaluateAsInt(Result, Context))
289 return StmtError(
290 Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
291 << Info.getConstraintStr() << InputExpr->getSourceRange());
292 if (!Info.isValidAsmImmediate(Result))
293 return StmtError(Diag(InputExpr->getLocStart(),
294 diag::err_invalid_asm_value_for_constraint)
295 << Result.toString(10) << Info.getConstraintStr()
296 << InputExpr->getSourceRange());
297 }
298
299 } else {
300 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
301 if (Result.isInvalid())
302 return StmtError();
303
304 Exprs[i] = Result.get();
305 }
306
307 if (Info.allowsRegister()) {
308 if (InputExpr->getType()->isVoidType()) {
309 return StmtError(Diag(InputExpr->getLocStart(),
310 diag::err_asm_invalid_type_in_input)
311 << InputExpr->getType() << Info.getConstraintStr()
312 << InputExpr->getSourceRange());
313 }
314 }
315
316 InputConstraintInfos.push_back(Info);
317
318 const Type *Ty = Exprs[i]->getType().getTypePtr();
319 if (Ty->isDependentType())
320 continue;
321
322 if (!Ty->isVoidType() || !Info.allowsMemory())
323 if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
324 diag::err_dereference_incomplete_type))
325 return StmtError();
326
327 unsigned Size = Context.getTypeSize(Ty);
328 if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
329 Size))
330 return StmtError(Diag(InputExpr->getLocStart(),
331 diag::err_asm_invalid_input_size)
332 << Info.getConstraintStr());
333 }
334
335 // Check that the clobbers are valid.
336 for (unsigned i = 0; i != NumClobbers; i++) {
337 StringLiteral *Literal = Clobbers[i];
338 assert(Literal->isAscii());
339
340 StringRef Clobber = Literal->getString();
341
342 if (!Context.getTargetInfo().isValidClobber(Clobber))
343 return StmtError(Diag(Literal->getLocStart(),
344 diag::err_asm_unknown_register_name) << Clobber);
345 }
346
347 GCCAsmStmt *NS =
348 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
349 NumInputs, Names, Constraints, Exprs.data(),
350 AsmString, NumClobbers, Clobbers, RParenLoc);
351 // Validate the asm string, ensuring it makes sense given the operands we
352 // have.
353 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
354 unsigned DiagOffs;
355 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
356 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
357 << AsmString->getSourceRange();
358 return StmtError();
359 }
360
361 // Validate constraints and modifiers.
362 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
363 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
364 if (!Piece.isOperand()) continue;
365
366 // Look for the correct constraint index.
367 unsigned ConstraintIdx = Piece.getOperandNo();
368 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
369
370 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
371 // modifier '+'.
372 if (ConstraintIdx >= NumOperands) {
373 unsigned I = 0, E = NS->getNumOutputs();
374
375 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
376 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
377 ConstraintIdx = I;
378 break;
379 }
380
381 assert(I != E && "Invalid operand number should have been caught in "
382 " AnalyzeAsmString");
383 }
384
385 // Now that we have the right indexes go ahead and check.
386 StringLiteral *Literal = Constraints[ConstraintIdx];
387 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
388 if (Ty->isDependentType() || Ty->isIncompleteType())
389 continue;
390
391 unsigned Size = Context.getTypeSize(Ty);
392 std::string SuggestedModifier;
393 if (!Context.getTargetInfo().validateConstraintModifier(
394 Literal->getString(), Piece.getModifier(), Size,
395 SuggestedModifier)) {
396 Diag(Exprs[ConstraintIdx]->getLocStart(),
397 diag::warn_asm_mismatched_size_modifier);
398
399 if (!SuggestedModifier.empty()) {
400 auto B = Diag(Piece.getRange().getBegin(),
401 diag::note_asm_missing_constraint_modifier)
402 << SuggestedModifier;
403 SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
404 B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
405 SuggestedModifier));
406 }
407 }
408 }
409
410 // Validate tied input operands for type mismatches.
411 unsigned NumAlternatives = ~0U;
412 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
413 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
414 StringRef ConstraintStr = Info.getConstraintStr();
415 unsigned AltCount = ConstraintStr.count(',') + 1;
416 if (NumAlternatives == ~0U)
417 NumAlternatives = AltCount;
418 else if (NumAlternatives != AltCount)
419 return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
420 diag::err_asm_unexpected_constraint_alternatives)
421 << NumAlternatives << AltCount);
422 }
423 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
424 ~0U);
425 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
426 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
427 StringRef ConstraintStr = Info.getConstraintStr();
428 unsigned AltCount = ConstraintStr.count(',') + 1;
429 if (NumAlternatives == ~0U)
430 NumAlternatives = AltCount;
431 else if (NumAlternatives != AltCount)
432 return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
433 diag::err_asm_unexpected_constraint_alternatives)
434 << NumAlternatives << AltCount);
435
436 // If this is a tied constraint, verify that the output and input have
437 // either exactly the same type, or that they are int/ptr operands with the
438 // same size (int/long, int*/long, are ok etc).
439 if (!Info.hasTiedOperand()) continue;
440
441 unsigned TiedTo = Info.getTiedOperand();
442 unsigned InputOpNo = i+NumOutputs;
443 Expr *OutputExpr = Exprs[TiedTo];
444 Expr *InputExpr = Exprs[InputOpNo];
445
446 // Make sure no more than one input constraint matches each output.
447 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
448 if (InputMatchedToOutput[TiedTo] != ~0U) {
449 Diag(NS->getInputExpr(i)->getLocStart(),
450 diag::err_asm_input_duplicate_match)
451 << TiedTo;
452 Diag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getLocStart(),
453 diag::note_asm_input_duplicate_first)
454 << TiedTo;
455 return StmtError();
456 }
457 InputMatchedToOutput[TiedTo] = i;
458
459 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
460 continue;
461
462 QualType InTy = InputExpr->getType();
463 QualType OutTy = OutputExpr->getType();
464 if (Context.hasSameType(InTy, OutTy))
465 continue; // All types can be tied to themselves.
466
467 // Decide if the input and output are in the same domain (integer/ptr or
468 // floating point.
469 enum AsmDomain {
470 AD_Int, AD_FP, AD_Other
471 } InputDomain, OutputDomain;
472
473 if (InTy->isIntegerType() || InTy->isPointerType())
474 InputDomain = AD_Int;
475 else if (InTy->isRealFloatingType())
476 InputDomain = AD_FP;
477 else
478 InputDomain = AD_Other;
479
480 if (OutTy->isIntegerType() || OutTy->isPointerType())
481 OutputDomain = AD_Int;
482 else if (OutTy->isRealFloatingType())
483 OutputDomain = AD_FP;
484 else
485 OutputDomain = AD_Other;
486
487 // They are ok if they are the same size and in the same domain. This
488 // allows tying things like:
489 // void* to int*
490 // void* to int if they are the same size.
491 // double to long double if they are the same size.
492 //
493 uint64_t OutSize = Context.getTypeSize(OutTy);
494 uint64_t InSize = Context.getTypeSize(InTy);
495 if (OutSize == InSize && InputDomain == OutputDomain &&
496 InputDomain != AD_Other)
497 continue;
498
499 // If the smaller input/output operand is not mentioned in the asm string,
500 // then we can promote the smaller one to a larger input and the asm string
501 // won't notice.
502 bool SmallerValueMentioned = false;
503
504 // If this is a reference to the input and if the input was the smaller
505 // one, then we have to reject this asm.
506 if (isOperandMentioned(InputOpNo, Pieces)) {
507 // This is a use in the asm string of the smaller operand. Since we
508 // codegen this by promoting to a wider value, the asm will get printed
509 // "wrong".
510 SmallerValueMentioned |= InSize < OutSize;
511 }
512 if (isOperandMentioned(TiedTo, Pieces)) {
513 // If this is a reference to the output, and if the output is the larger
514 // value, then it's ok because we'll promote the input to the larger type.
515 SmallerValueMentioned |= OutSize < InSize;
516 }
517
518 // If the smaller value wasn't mentioned in the asm string, and if the
519 // output was a register, just extend the shorter one to the size of the
520 // larger one.
521 if (!SmallerValueMentioned && InputDomain != AD_Other &&
522 OutputConstraintInfos[TiedTo].allowsRegister())
523 continue;
524
525 // Either both of the operands were mentioned or the smaller one was
526 // mentioned. One more special case that we'll allow: if the tied input is
527 // integer, unmentioned, and is a constant, then we'll allow truncating it
528 // down to the size of the destination.
529 if (InputDomain == AD_Int && OutputDomain == AD_Int &&
530 !isOperandMentioned(InputOpNo, Pieces) &&
531 InputExpr->isEvaluatable(Context)) {
532 CastKind castKind =
533 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
534 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
535 Exprs[InputOpNo] = InputExpr;
536 NS->setInputExpr(i, InputExpr);
537 continue;
538 }
539
540 Diag(InputExpr->getLocStart(),
541 diag::err_asm_tying_incompatible_types)
542 << InTy << OutTy << OutputExpr->getSourceRange()
543 << InputExpr->getSourceRange();
544 return StmtError();
545 }
546
547 return NS;
548 }
549
fillInlineAsmTypeInfo(const ASTContext & Context,QualType T,llvm::InlineAsmIdentifierInfo & Info)550 static void fillInlineAsmTypeInfo(const ASTContext &Context, QualType T,
551 llvm::InlineAsmIdentifierInfo &Info) {
552 // Compute the type size (and array length if applicable?).
553 Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
554 if (T->isArrayType()) {
555 const ArrayType *ATy = Context.getAsArrayType(T);
556 Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
557 Info.Length = Info.Size / Info.Type;
558 }
559 }
560
LookupInlineAsmIdentifier(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,llvm::InlineAsmIdentifierInfo & Info,bool IsUnevaluatedContext)561 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
562 SourceLocation TemplateKWLoc,
563 UnqualifiedId &Id,
564 llvm::InlineAsmIdentifierInfo &Info,
565 bool IsUnevaluatedContext) {
566 Info.clear();
567
568 if (IsUnevaluatedContext)
569 PushExpressionEvaluationContext(UnevaluatedAbstract,
570 ReuseLambdaContextDecl);
571
572 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
573 /*trailing lparen*/ false,
574 /*is & operand*/ false,
575 /*CorrectionCandidateCallback=*/nullptr,
576 /*IsInlineAsmIdentifier=*/ true);
577
578 if (IsUnevaluatedContext)
579 PopExpressionEvaluationContext();
580
581 if (!Result.isUsable()) return Result;
582
583 Result = CheckPlaceholderExpr(Result.get());
584 if (!Result.isUsable()) return Result;
585
586 // Referring to parameters is not allowed in naked functions.
587 if (CheckNakedParmReference(Result.get(), *this))
588 return ExprError();
589
590 QualType T = Result.get()->getType();
591
592 // For now, reject dependent types.
593 if (T->isDependentType()) {
594 Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
595 return ExprError();
596 }
597
598 // Any sort of function type is fine.
599 if (T->isFunctionType()) {
600 return Result;
601 }
602
603 // Otherwise, it needs to be a complete type.
604 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
605 return ExprError();
606 }
607
608 fillInlineAsmTypeInfo(Context, T, Info);
609
610 // We can work with the expression as long as it's not an r-value.
611 if (!Result.get()->isRValue())
612 Info.IsVarDecl = true;
613
614 return Result;
615 }
616
LookupInlineAsmField(StringRef Base,StringRef Member,unsigned & Offset,SourceLocation AsmLoc)617 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
618 unsigned &Offset, SourceLocation AsmLoc) {
619 Offset = 0;
620 SmallVector<StringRef, 2> Members;
621 Member.split(Members, ".");
622
623 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
624 LookupOrdinaryName);
625
626 if (!LookupName(BaseResult, getCurScope()))
627 return true;
628
629 LookupResult CurrBaseResult(BaseResult);
630
631 for (StringRef NextMember : Members) {
632
633 if (!CurrBaseResult.isSingleResult())
634 return true;
635
636 const RecordType *RT = nullptr;
637 NamedDecl *FoundDecl = CurrBaseResult.getFoundDecl();
638 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
639 RT = VD->getType()->getAs<RecordType>();
640 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
641 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
642 RT = TD->getUnderlyingType()->getAs<RecordType>();
643 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
644 RT = TD->getTypeForDecl()->getAs<RecordType>();
645 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
646 RT = TD->getType()->getAs<RecordType>();
647 if (!RT)
648 return true;
649
650 if (RequireCompleteType(AsmLoc, QualType(RT, 0),
651 diag::err_asm_incomplete_type))
652 return true;
653
654 LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
655 SourceLocation(), LookupMemberName);
656
657 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
658 return true;
659
660 // FIXME: Handle IndirectFieldDecl?
661 FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
662 if (!FD)
663 return true;
664
665 CurrBaseResult = FieldResult;
666
667 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
668 unsigned i = FD->getFieldIndex();
669 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
670 Offset += (unsigned)Result.getQuantity();
671 }
672
673 return false;
674 }
675
676 ExprResult
LookupInlineAsmVarDeclField(Expr * E,StringRef Member,unsigned & Offset,llvm::InlineAsmIdentifierInfo & Info,SourceLocation AsmLoc)677 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, unsigned &Offset,
678 llvm::InlineAsmIdentifierInfo &Info,
679 SourceLocation AsmLoc) {
680 Info.clear();
681
682 const RecordType *RT = E->getType()->getAs<RecordType>();
683 // FIXME: Diagnose this as field access into a scalar type.
684 if (!RT)
685 return ExprResult();
686
687 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
688 LookupMemberName);
689
690 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
691 return ExprResult();
692
693 // Only normal and indirect field results will work.
694 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
695 if (!FD)
696 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
697 if (!FD)
698 return ExprResult();
699
700 Offset = (unsigned)Context.toCharUnitsFromBits(Context.getFieldOffset(FD))
701 .getQuantity();
702
703 // Make an Expr to thread through OpDecl.
704 ExprResult Result = BuildMemberReferenceExpr(
705 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
706 SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
707 if (Result.isInvalid())
708 return Result;
709 Info.OpDecl = Result.get();
710
711 fillInlineAsmTypeInfo(Context, Result.get()->getType(), Info);
712
713 // Fields are "variables" as far as inline assembly is concerned.
714 Info.IsVarDecl = true;
715
716 return Result;
717 }
718
ActOnMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)719 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
720 ArrayRef<Token> AsmToks,
721 StringRef AsmString,
722 unsigned NumOutputs, unsigned NumInputs,
723 ArrayRef<StringRef> Constraints,
724 ArrayRef<StringRef> Clobbers,
725 ArrayRef<Expr*> Exprs,
726 SourceLocation EndLoc) {
727 bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
728 getCurFunction()->setHasBranchProtectedScope();
729 MSAsmStmt *NS =
730 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
731 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
732 Constraints, Exprs, AsmString,
733 Clobbers, EndLoc);
734 return NS;
735 }
736
GetOrCreateMSAsmLabel(StringRef ExternalLabelName,SourceLocation Location,bool AlwaysCreate)737 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
738 SourceLocation Location,
739 bool AlwaysCreate) {
740 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
741 Location);
742
743 if (Label->isMSAsmLabel()) {
744 // If we have previously created this label implicitly, mark it as used.
745 Label->markUsed(Context);
746 } else {
747 // Otherwise, insert it, but only resolve it if we have seen the label itself.
748 std::string InternalName;
749 llvm::raw_string_ostream OS(InternalName);
750 // Create an internal name for the label. The name should not be a valid mangled
751 // name, and should be unique. We use a dot to make the name an invalid mangled
752 // name.
753 OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName;
754 Label->setMSAsmLabel(OS.str());
755 }
756 if (AlwaysCreate) {
757 // The label might have been created implicitly from a previously encountered
758 // goto statement. So, for both newly created and looked up labels, we mark
759 // them as resolved.
760 Label->setMSAsmLabelResolved();
761 }
762 // Adjust their location for being able to generate accurate diagnostics.
763 Label->setLocation(Location);
764
765 return Label;
766 }
767