1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef Sk4pxXfermode_DEFINED
9 #define Sk4pxXfermode_DEFINED
10
11 #include "Sk4px.h"
12 #include "SkMSAN.h"
13 #include "SkNx.h"
14 #include "SkXfermode_proccoeff.h"
15
16 namespace {
17
18 // Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point.
19 #define XFERMODE(Xfermode) \
20 struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \
21 inline Sk4px Xfermode::operator()(const Sk4px& d, const Sk4px& s) const
22
XFERMODE(Clear)23 XFERMODE(Clear) { return Sk4px::DupPMColor(0); }
XFERMODE(Src)24 XFERMODE(Src) { return s; }
XFERMODE(Dst)25 XFERMODE(Dst) { return d; }
XFERMODE(SrcIn)26 XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); }
XFERMODE(SrcOut)27 XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); }
XFERMODE(SrcOver)28 XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); }
XFERMODE(DstIn)29 XFERMODE(DstIn) { return SrcIn ()(s,d); }
XFERMODE(DstOut)30 XFERMODE(DstOut) { return SrcOut ()(s,d); }
XFERMODE(DstOver)31 XFERMODE(DstOver) { return SrcOver()(s,d); }
32
33 // [ S * Da + (1 - Sa) * D]
XFERMODE(SrcATop)34 XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); }
XFERMODE(DstATop)35 XFERMODE(DstATop) { return SrcATop()(s,d); }
36 //[ S * (1 - Da) + (1 - Sa) * D ]
XFERMODE(Xor)37 XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); }
38 // [S + D ]
XFERMODE(Plus)39 XFERMODE(Plus) { return s.saturatedAdd(d); }
40 // [S * D ]
XFERMODE(Modulate)41 XFERMODE(Modulate) { return s.approxMulDiv255(d); }
42 // [S + D - S * D]
XFERMODE(Screen)43 XFERMODE(Screen) {
44 // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done
45 // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap.
46 return s + d.approxMulDiv255(s.inv());
47 }
XFERMODE(Multiply)48 XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); }
49 // [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).)
XFERMODE(Difference)50 XFERMODE(Difference) {
51 auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255();
52 // There's no chance of underflow, and if we subtract m before adding s+d, no overflow.
53 return (s - m) + (d - m.zeroAlphas());
54 }
55 // [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ]
XFERMODE(Exclusion)56 XFERMODE(Exclusion) {
57 auto p = s.approxMulDiv255(d);
58 // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow.
59 return (s - p) + (d - p.zeroAlphas());
60 }
61
62 // We take care to use exact math for these next few modes where alphas
63 // and colors are calculated using significantly different math. We need
64 // to preserve premul invariants, and exact math makes this easier.
65 //
66 // TODO: Some of these implementations might be able to be sped up a bit
67 // while maintaining exact math, but let's follow up with that.
68
XFERMODE(HardLight)69 XFERMODE(HardLight) {
70 auto sa = s.alphas(),
71 da = d.alphas();
72
73 auto srcover = s + (d * sa.inv()).div255();
74
75 auto isLite = ((sa-s) < s).widenLoHi();
76
77 auto lite = sa*da - ((da-d)*(sa-s) << 1),
78 dark = s*d << 1,
79 both = s*da.inv() + d*sa.inv();
80
81 auto alphas = srcover;
82 auto colors = (both + isLite.thenElse(lite, dark)).div255();
83 return alphas.zeroColors() + colors.zeroAlphas();
84 }
XFERMODE(Overlay)85 XFERMODE(Overlay) { return HardLight()(s,d); }
86
XFERMODE(Darken)87 XFERMODE(Darken) {
88 auto sa = s.alphas(),
89 da = d.alphas();
90
91 auto sda = (s*da).div255(),
92 dsa = (d*sa).div255();
93
94 auto srcover = s + (d * sa.inv()).div255(),
95 dstover = d + (s * da.inv()).div255();
96 auto alphas = srcover,
97 colors = (sda < dsa).thenElse(srcover, dstover);
98 return alphas.zeroColors() + colors.zeroAlphas();
99 }
XFERMODE(Lighten)100 XFERMODE(Lighten) {
101 auto sa = s.alphas(),
102 da = d.alphas();
103
104 auto sda = (s*da).div255(),
105 dsa = (d*sa).div255();
106
107 auto srcover = s + (d * sa.inv()).div255(),
108 dstover = d + (s * da.inv()).div255();
109 auto alphas = srcover,
110 colors = (dsa < sda).thenElse(srcover, dstover);
111 return alphas.zeroColors() + colors.zeroAlphas();
112 }
113 #undef XFERMODE
114
115 // Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
116 #define XFERMODE(Xfermode) \
117 struct Xfermode { Sk4f operator()(const Sk4f&, const Sk4f&) const; }; \
118 inline Sk4f Xfermode::operator()(const Sk4f& d, const Sk4f& s) const
119
a_rgb(const Sk4f & a,const Sk4f & rgb)120 static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) {
121 static_assert(SK_A32_SHIFT == 24, "");
122 return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0);
123 }
alphas(const Sk4f & f)124 static inline Sk4f alphas(const Sk4f& f) {
125 return f[SK_A32_SHIFT/8];
126 }
127
XFERMODE(ColorDodge)128 XFERMODE(ColorDodge) {
129 auto sa = alphas(s),
130 da = alphas(d),
131 isa = Sk4f(1)-sa,
132 ida = Sk4f(1)-da;
133
134 auto srcover = s + d*isa,
135 dstover = d + s*ida,
136 otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa;
137
138 // Order matters here, preferring d==0 over s==sa.
139 auto colors = (d == Sk4f(0)).thenElse(dstover,
140 (s == sa).thenElse(srcover,
141 otherwise));
142 return a_rgb(srcover, colors);
143 }
XFERMODE(ColorBurn)144 XFERMODE(ColorBurn) {
145 auto sa = alphas(s),
146 da = alphas(d),
147 isa = Sk4f(1)-sa,
148 ida = Sk4f(1)-da;
149
150 auto srcover = s + d*isa,
151 dstover = d + s*ida,
152 otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa;
153
154 // Order matters here, preferring d==da over s==0.
155 auto colors = (d == da).thenElse(dstover,
156 (s == Sk4f(0)).thenElse(srcover,
157 otherwise));
158 return a_rgb(srcover, colors);
159 }
XFERMODE(SoftLight)160 XFERMODE(SoftLight) {
161 auto sa = alphas(s),
162 da = alphas(d),
163 isa = Sk4f(1)-sa,
164 ida = Sk4f(1)-da;
165
166 // Some common terms.
167 auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)),
168 s2 = Sk4f(2)*s,
169 m4 = Sk4f(4)*m;
170
171 // The logic forks three ways:
172 // 1. dark src?
173 // 2. light src, dark dst?
174 // 3. light src, light dst?
175 auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1.
176 darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2.
177 liteDst = m.sqrt() - m, // Used in case 3.
178 liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3?
179
180 auto alpha = s + d*isa;
181 auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3?
182
183 return a_rgb(alpha, colors);
184 }
185 #undef XFERMODE
186
187 // A reasonable fallback mode for doing AA is to simply apply the transfermode first,
188 // then linearly interpolate the AA.
189 template <typename Xfermode>
xfer_aa(const Sk4px & d,const Sk4px & s,const Sk4px & aa)190 static Sk4px xfer_aa(const Sk4px& d, const Sk4px& s, const Sk4px& aa) {
191 Sk4px bw = Xfermode()(d, s);
192 return (bw * aa + d * aa.inv()).div255();
193 }
194
195 // For some transfermodes we specialize AA, either for correctness or performance.
196 #define XFERMODE_AA(Xfermode) \
197 template <> Sk4px xfer_aa<Xfermode>(const Sk4px& d, const Sk4px& s, const Sk4px& aa)
198
199 // Plus' clamp needs to happen after AA. skia:3852
XFERMODE_AA(Plus)200 XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
201 return d.saturatedAdd(s.approxMulDiv255(aa));
202 }
203
204 #undef XFERMODE_AA
205
206 // Src and Clear modes are safe to use with unitialized dst buffers,
207 // even if the implementation branches based on bytes from dst (e.g. asserts in Debug mode).
208 // For those modes, just lie to MSAN that dst is always intialized.
mark_dst_initialized_if_safe(void *,void *)209 template <typename Xfermode> static void mark_dst_initialized_if_safe(void*, void*) {}
210 template <> void mark_dst_initialized_if_safe<Src>(void* dst, void* end) {
211 sk_msan_mark_initialized(dst, end, "Src doesn't read dst.");
212 }
213 template <> void mark_dst_initialized_if_safe<Clear>(void* dst, void* end) {
214 sk_msan_mark_initialized(dst, end, "Clear doesn't read dst.");
215 }
216
217 template <typename Xfermode>
218 class Sk4pxXfermode : public SkProcCoeffXfermode {
219 public:
Sk4pxXfermode(const ProcCoeff & rec,SkXfermode::Mode mode)220 Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
221 : INHERITED(rec, mode) {}
222
xfer32(SkPMColor dst[],const SkPMColor src[],int n,const SkAlpha aa[])223 void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
224 mark_dst_initialized_if_safe<Xfermode>(dst, dst+n);
225 if (nullptr == aa) {
226 Sk4px::MapDstSrc(n, dst, src, Xfermode());
227 } else {
228 Sk4px::MapDstSrcAlpha(n, dst, src, aa, xfer_aa<Xfermode>);
229 }
230 }
231
xfer16(uint16_t dst[],const SkPMColor src[],int n,const SkAlpha aa[])232 void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
233 mark_dst_initialized_if_safe<Xfermode>(dst, dst+n);
234 SkPMColor dst32[4];
235 while (n >= 4) {
236 dst32[0] = SkPixel16ToPixel32(dst[0]);
237 dst32[1] = SkPixel16ToPixel32(dst[1]);
238 dst32[2] = SkPixel16ToPixel32(dst[2]);
239 dst32[3] = SkPixel16ToPixel32(dst[3]);
240
241 this->xfer32(dst32, src, 4, aa);
242
243 dst[0] = SkPixel32ToPixel16(dst32[0]);
244 dst[1] = SkPixel32ToPixel16(dst32[1]);
245 dst[2] = SkPixel32ToPixel16(dst32[2]);
246 dst[3] = SkPixel32ToPixel16(dst32[3]);
247
248 dst += 4;
249 src += 4;
250 aa += aa ? 4 : 0;
251 n -= 4;
252 }
253 while (n) {
254 SkPMColor dst32 = SkPixel16ToPixel32(*dst);
255 this->xfer32(&dst32, src, 1, aa);
256 *dst = SkPixel32ToPixel16(dst32);
257
258 dst += 1;
259 src += 1;
260 aa += aa ? 1 : 0;
261 n -= 1;
262 }
263 }
264
265 private:
266 typedef SkProcCoeffXfermode INHERITED;
267 };
268
269 template <typename Xfermode>
270 class Sk4fXfermode : public SkProcCoeffXfermode {
271 public:
Sk4fXfermode(const ProcCoeff & rec,SkXfermode::Mode mode)272 Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
273 : INHERITED(rec, mode) {}
274
xfer32(SkPMColor dst[],const SkPMColor src[],int n,const SkAlpha aa[])275 void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
276 for (int i = 0; i < n; i++) {
277 dst[i] = Xfer32_1(dst[i], src[i], aa ? aa+i : nullptr);
278 }
279 }
280
xfer16(uint16_t dst[],const SkPMColor src[],int n,const SkAlpha aa[])281 void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
282 for (int i = 0; i < n; i++) {
283 SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
284 dst32 = Xfer32_1(dst32, src[i], aa ? aa+i : nullptr);
285 dst[i] = SkPixel32ToPixel16(dst32);
286 }
287 }
288
289 private:
Xfer32_1(SkPMColor dst,const SkPMColor src,const SkAlpha * aa)290 static SkPMColor Xfer32_1(SkPMColor dst, const SkPMColor src, const SkAlpha* aa) {
291 Sk4f d = Load(dst),
292 s = Load(src),
293 b = Xfermode()(d, s);
294 if (aa) {
295 Sk4f a = Sk4f(*aa) * Sk4f(1.0f/255);
296 b = b*a + d*(Sk4f(1)-a);
297 }
298 return Round(b);
299 }
300
Load(SkPMColor c)301 static Sk4f Load(SkPMColor c) {
302 return SkNx_cast<float>(Sk4b::Load(&c)) * Sk4f(1.0f/255);
303 }
304
Round(const Sk4f & f)305 static SkPMColor Round(const Sk4f& f) {
306 SkPMColor c;
307 SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store(&c);
308 return c;
309 }
310
311 typedef SkProcCoeffXfermode INHERITED;
312 };
313
314 } // namespace
315
316 namespace SK_OPTS_NS {
317
create_xfermode(const ProcCoeff & rec,SkXfermode::Mode mode)318 static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode) {
319 switch (mode) {
320 #define CASE(Xfermode) \
321 case SkXfermode::k##Xfermode##_Mode: return new Sk4pxXfermode<Xfermode>(rec, mode)
322 CASE(Clear);
323 CASE(Src);
324 CASE(Dst);
325 CASE(SrcOver);
326 CASE(DstOver);
327 CASE(SrcIn);
328 CASE(DstIn);
329 CASE(SrcOut);
330 CASE(DstOut);
331 CASE(SrcATop);
332 CASE(DstATop);
333 CASE(Xor);
334 CASE(Plus);
335 CASE(Modulate);
336 CASE(Screen);
337 CASE(Multiply);
338 CASE(Difference);
339 CASE(Exclusion);
340 CASE(HardLight);
341 CASE(Overlay);
342 CASE(Darken);
343 CASE(Lighten);
344 #undef CASE
345
346 #define CASE(Xfermode) \
347 case SkXfermode::k##Xfermode##_Mode: return new Sk4fXfermode<Xfermode>(rec, mode)
348 CASE(ColorDodge);
349 CASE(ColorBurn);
350 CASE(SoftLight);
351 #undef CASE
352
353 default: break;
354 }
355 return nullptr;
356 }
357
358 } // namespace SK_OPTS_NS
359
360 #endif//Sk4pxXfermode_DEFINED
361