1#!/usr/bin/env perl 2# 3# ==================================================================== 4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9# 10# Version 4.3. 11# 12# You might fail to appreciate this module performance from the first 13# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered 14# to be *the* best Intel C compiler without -KPIC, performance appears 15# to be virtually identical... But try to re-configure with shared 16# library support... Aha! Intel compiler "suddenly" lags behind by 30% 17# [on P4, more on others]:-) And if compared to position-independent 18# code generated by GNU C, this code performs *more* than *twice* as 19# fast! Yes, all this buzz about PIC means that unlike other hand- 20# coded implementations, this one was explicitly designed to be safe 21# to use even in shared library context... This also means that this 22# code isn't necessarily absolutely fastest "ever," because in order 23# to achieve position independence an extra register has to be 24# off-loaded to stack, which affects the benchmark result. 25# 26# Special note about instruction choice. Do you recall RC4_INT code 27# performing poorly on P4? It might be the time to figure out why. 28# RC4_INT code implies effective address calculations in base+offset*4 29# form. Trouble is that it seems that offset scaling turned to be 30# critical path... At least eliminating scaling resulted in 2.8x RC4 31# performance improvement [as you might recall]. As AES code is hungry 32# for scaling too, I [try to] avoid the latter by favoring off-by-2 33# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF. 34# 35# As was shown by Dean Gaudet <dean@arctic.org>, the above note turned 36# void. Performance improvement with off-by-2 shifts was observed on 37# intermediate implementation, which was spilling yet another register 38# to stack... Final offset*4 code below runs just a tad faster on P4, 39# but exhibits up to 10% improvement on other cores. 40# 41# Second version is "monolithic" replacement for aes_core.c, which in 42# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key. 43# This made it possible to implement little-endian variant of the 44# algorithm without modifying the base C code. Motivating factor for 45# the undertaken effort was that it appeared that in tight IA-32 46# register window little-endian flavor could achieve slightly higher 47# Instruction Level Parallelism, and it indeed resulted in up to 15% 48# better performance on most recent µ-archs... 49# 50# Third version adds AES_cbc_encrypt implementation, which resulted in 51# up to 40% performance imrovement of CBC benchmark results. 40% was 52# observed on P4 core, where "overall" imrovement coefficient, i.e. if 53# compared to PIC generated by GCC and in CBC mode, was observed to be 54# as large as 4x:-) CBC performance is virtually identical to ECB now 55# and on some platforms even better, e.g. 17.6 "small" cycles/byte on 56# Opteron, because certain function prologues and epilogues are 57# effectively taken out of the loop... 58# 59# Version 3.2 implements compressed tables and prefetch of these tables 60# in CBC[!] mode. Former means that 3/4 of table references are now 61# misaligned, which unfortunately has negative impact on elder IA-32 62# implementations, Pentium suffered 30% penalty, PIII - 10%. 63# 64# Version 3.3 avoids L1 cache aliasing between stack frame and 65# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The 66# latter is achieved by copying the key schedule to controlled place in 67# stack. This unfortunately has rather strong impact on small block CBC 68# performance, ~2x deterioration on 16-byte block if compared to 3.3. 69# 70# Version 3.5 checks if there is L1 cache aliasing between user-supplied 71# key schedule and S-boxes and abstains from copying the former if 72# there is no. This allows end-user to consciously retain small block 73# performance by aligning key schedule in specific manner. 74# 75# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB. 76# 77# Current ECB performance numbers for 128-bit key in CPU cycles per 78# processed byte [measure commonly used by AES benchmarkers] are: 79# 80# small footprint fully unrolled 81# P4 24 22 82# AMD K8 20 19 83# PIII 25 23 84# Pentium 81 78 85# 86# Version 3.7 reimplements outer rounds as "compact." Meaning that 87# first and last rounds reference compact 256 bytes S-box. This means 88# that first round consumes a lot more CPU cycles and that encrypt 89# and decrypt performance becomes asymmetric. Encrypt performance 90# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is 91# aggressively pre-fetched. 92# 93# Version 4.0 effectively rolls back to 3.6 and instead implements 94# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact, 95# which use exclusively 256 byte S-box. These functions are to be 96# called in modes not concealing plain text, such as ECB, or when 97# we're asked to process smaller amount of data [or unconditionally 98# on hyper-threading CPU]. Currently it's called unconditionally from 99# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine 100# still needs to be modified to switch between slower and faster 101# mode when appropriate... But in either case benchmark landscape 102# changes dramatically and below numbers are CPU cycles per processed 103# byte for 128-bit key. 104# 105# ECB encrypt ECB decrypt CBC large chunk 106# P4 52[54] 83[95] 23 107# AMD K8 46[41] 66[70] 18 108# PIII 41[50] 60[77] 24 109# Core 2 31[36] 45[64] 18.5 110# Atom 76[100] 96[138] 60 111# Pentium 115 150 77 112# 113# Version 4.1 switches to compact S-box even in key schedule setup. 114# 115# Version 4.2 prefetches compact S-box in every SSE round or in other 116# words every cache-line is *guaranteed* to be accessed within ~50 117# cycles window. Why just SSE? Because it's needed on hyper-threading 118# CPU! Which is also why it's prefetched with 64 byte stride. Best 119# part is that it has no negative effect on performance:-) 120# 121# Version 4.3 implements switch between compact and non-compact block 122# functions in AES_cbc_encrypt depending on how much data was asked 123# to be processed in one stroke. 124# 125###################################################################### 126# Timing attacks are classified in two classes: synchronous when 127# attacker consciously initiates cryptographic operation and collects 128# timing data of various character afterwards, and asynchronous when 129# malicious code is executed on same CPU simultaneously with AES, 130# instruments itself and performs statistical analysis of this data. 131# 132# As far as synchronous attacks go the root to the AES timing 133# vulnerability is twofold. Firstly, of 256 S-box elements at most 160 134# are referred to in single 128-bit block operation. Well, in C 135# implementation with 4 distinct tables it's actually as little as 40 136# references per 256 elements table, but anyway... Secondly, even 137# though S-box elements are clustered into smaller amount of cache- 138# lines, smaller than 160 and even 40, it turned out that for certain 139# plain-text pattern[s] or simply put chosen plain-text and given key 140# few cache-lines remain unaccessed during block operation. Now, if 141# attacker can figure out this access pattern, he can deduct the key 142# [or at least part of it]. The natural way to mitigate this kind of 143# attacks is to minimize the amount of cache-lines in S-box and/or 144# prefetch them to ensure that every one is accessed for more uniform 145# timing. But note that *if* plain-text was concealed in such way that 146# input to block function is distributed *uniformly*, then attack 147# wouldn't apply. Now note that some encryption modes, most notably 148# CBC, do mask the plain-text in this exact way [secure cipher output 149# is distributed uniformly]. Yes, one still might find input that 150# would reveal the information about given key, but if amount of 151# candidate inputs to be tried is larger than amount of possible key 152# combinations then attack becomes infeasible. This is why revised 153# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk 154# of data is to be processed in one stroke. The current size limit of 155# 512 bytes is chosen to provide same [diminishigly low] probability 156# for cache-line to remain untouched in large chunk operation with 157# large S-box as for single block operation with compact S-box and 158# surely needs more careful consideration... 159# 160# As for asynchronous attacks. There are two flavours: attacker code 161# being interleaved with AES on hyper-threading CPU at *instruction* 162# level, and two processes time sharing single core. As for latter. 163# Two vectors. 1. Given that attacker process has higher priority, 164# yield execution to process performing AES just before timer fires 165# off the scheduler, immediately regain control of CPU and analyze the 166# cache state. For this attack to be efficient attacker would have to 167# effectively slow down the operation by several *orders* of magnitute, 168# by ratio of time slice to duration of handful of AES rounds, which 169# unlikely to remain unnoticed. Not to mention that this also means 170# that he would spend correspondigly more time to collect enough 171# statistical data to mount the attack. It's probably appropriate to 172# say that if adeversary reckons that this attack is beneficial and 173# risks to be noticed, you probably have larger problems having him 174# mere opportunity. In other words suggested code design expects you 175# to preclude/mitigate this attack by overall system security design. 176# 2. Attacker manages to make his code interrupt driven. In order for 177# this kind of attack to be feasible, interrupt rate has to be high 178# enough, again comparable to duration of handful of AES rounds. But 179# is there interrupt source of such rate? Hardly, not even 1Gbps NIC 180# generates interrupts at such raging rate... 181# 182# And now back to the former, hyper-threading CPU or more specifically 183# Intel P4. Recall that asynchronous attack implies that malicious 184# code instruments itself. And naturally instrumentation granularity 185# has be noticeably lower than duration of codepath accessing S-box. 186# Given that all cache-lines are accessed during that time that is. 187# Current implementation accesses *all* cache-lines within ~50 cycles 188# window, which is actually *less* than RDTSC latency on Intel P4! 189 190$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 191push(@INC,"${dir}","${dir}../../perlasm"); 192require "x86asm.pl"; 193 194&asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386"); 195&static_label("AES_Te"); 196&static_label("AES_Td"); 197 198$s0="eax"; 199$s1="ebx"; 200$s2="ecx"; 201$s3="edx"; 202$key="edi"; 203$acc="esi"; 204$tbl="ebp"; 205 206# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated 207# by caller 208$__ra=&DWP(0,"esp"); # return address 209$__s0=&DWP(4,"esp"); # s0 backing store 210$__s1=&DWP(8,"esp"); # s1 backing store 211$__s2=&DWP(12,"esp"); # s2 backing store 212$__s3=&DWP(16,"esp"); # s3 backing store 213$__key=&DWP(20,"esp"); # pointer to key schedule 214$__end=&DWP(24,"esp"); # pointer to end of key schedule 215$__tbl=&DWP(28,"esp"); # %ebp backing store 216 217# stack frame layout in AES_[en|crypt] routines, which differs from 218# above by 4 and overlaps by %ebp backing store 219$_tbl=&DWP(24,"esp"); 220$_esp=&DWP(28,"esp"); 221 222sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } } 223 224$speed_limit=512; # chunks smaller than $speed_limit are 225 # processed with compact routine in CBC mode 226$small_footprint=1; # $small_footprint=1 code is ~5% slower [on 227 # recent µ-archs], but ~5 times smaller! 228 # I favor compact code to minimize cache 229 # contention and in hope to "collect" 5% back 230 # in real-life applications... 231 232$vertical_spin=0; # shift "verticaly" defaults to 0, because of 233 # its proof-of-concept status... 234# Note that there is no decvert(), as well as last encryption round is 235# performed with "horizontal" shifts. This is because this "vertical" 236# implementation [one which groups shifts on a given $s[i] to form a 237# "column," unlike "horizontal" one, which groups shifts on different 238# $s[i] to form a "row"] is work in progress. It was observed to run 239# few percents faster on Intel cores, but not AMD. On AMD K8 core it's 240# whole 12% slower:-( So we face a trade-off... Shall it be resolved 241# some day? Till then the code is considered experimental and by 242# default remains dormant... 243 244sub encvert() 245{ my ($te,@s) = @_; 246 my ($v0,$v1) = ($acc,$key); 247 248 &mov ($v0,$s[3]); # copy s3 249 &mov (&DWP(4,"esp"),$s[2]); # save s2 250 &mov ($v1,$s[0]); # copy s0 251 &mov (&DWP(8,"esp"),$s[1]); # save s1 252 253 &movz ($s[2],&HB($s[0])); 254 &and ($s[0],0xFF); 255 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0 256 &shr ($v1,16); 257 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8 258 &movz ($s[1],&HB($v1)); 259 &and ($v1,0xFF); 260 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16 261 &mov ($v1,$v0); 262 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24 263 264 &and ($v0,0xFF); 265 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0 266 &movz ($v0,&HB($v1)); 267 &shr ($v1,16); 268 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8 269 &movz ($v0,&HB($v1)); 270 &and ($v1,0xFF); 271 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16 272 &mov ($v1,&DWP(4,"esp")); # restore s2 273 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24 274 275 &mov ($v0,$v1); 276 &and ($v1,0xFF); 277 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0 278 &movz ($v1,&HB($v0)); 279 &shr ($v0,16); 280 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8 281 &movz ($v1,&HB($v0)); 282 &and ($v0,0xFF); 283 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16 284 &mov ($v0,&DWP(8,"esp")); # restore s1 285 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24 286 287 &mov ($v1,$v0); 288 &and ($v0,0xFF); 289 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0 290 &movz ($v0,&HB($v1)); 291 &shr ($v1,16); 292 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8 293 &movz ($v0,&HB($v1)); 294 &and ($v1,0xFF); 295 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16 296 &mov ($key,$__key); # reincarnate v1 as key 297 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24 298} 299 300# Another experimental routine, which features "horizontal spin," but 301# eliminates one reference to stack. Strangely enough runs slower... 302sub enchoriz() 303{ my ($v0,$v1) = ($key,$acc); 304 305 &movz ($v0,&LB($s0)); # 3, 2, 1, 0* 306 &rotr ($s2,8); # 8,11,10, 9 307 &mov ($v1,&DWP(0,$te,$v0,8)); # 0 308 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4 309 &rotr ($s3,16); # 13,12,15,14 310 &xor ($v1,&DWP(3,$te,$v0,8)); # 5 311 &movz ($v0,&HB($s2)); # 8,11,10*, 9 312 &rotr ($s0,16); # 1, 0, 3, 2 313 &xor ($v1,&DWP(2,$te,$v0,8)); # 10 314 &movz ($v0,&HB($s3)); # 13,12,15*,14 315 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected 316 &mov ($__s0,$v1); # t[0] saved 317 318 &movz ($v0,&LB($s1)); # 7, 6, 5, 4* 319 &shr ($s1,16); # -, -, 7, 6 320 &mov ($v1,&DWP(0,$te,$v0,8)); # 4 321 &movz ($v0,&LB($s3)); # 13,12,15,14* 322 &xor ($v1,&DWP(2,$te,$v0,8)); # 14 323 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2 324 &and ($s3,0xffff0000); # 13,12, -, - 325 &xor ($v1,&DWP(1,$te,$v0,8)); # 3 326 &movz ($v0,&LB($s2)); # 8,11,10, 9* 327 &or ($s3,$s1); # 13,12, 7, 6 328 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected 329 &mov ($s1,$v1); # s[1]=t[1] 330 331 &movz ($v0,&LB($s0)); # 1, 0, 3, 2* 332 &shr ($s2,16); # -, -, 8,11 333 &mov ($v1,&DWP(2,$te,$v0,8)); # 2 334 &movz ($v0,&HB($s3)); # 13,12, 7*, 6 335 &xor ($v1,&DWP(1,$te,$v0,8)); # 7 336 &movz ($v0,&HB($s2)); # -, -, 8*,11 337 &xor ($v1,&DWP(0,$te,$v0,8)); # 8 338 &mov ($v0,$s3); 339 &shr ($v0,24); # 13 340 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected 341 342 &movz ($v0,&LB($s2)); # -, -, 8,11* 343 &shr ($s0,24); # 1* 344 &mov ($s2,&DWP(1,$te,$v0,8)); # 11 345 &xor ($s2,&DWP(3,$te,$s0,8)); # 1 346 &mov ($s0,$__s0); # s[0]=t[0] 347 &movz ($v0,&LB($s3)); # 13,12, 7, 6* 348 &shr ($s3,16); # , ,13,12 349 &xor ($s2,&DWP(2,$te,$v0,8)); # 6 350 &mov ($key,$__key); # reincarnate v0 as key 351 &and ($s3,0xff); # , ,13,12* 352 &mov ($s3,&DWP(0,$te,$s3,8)); # 12 353 &xor ($s3,$s2); # s[2]=t[3] collected 354 &mov ($s2,$v1); # s[2]=t[2] 355} 356 357# More experimental code... SSE one... Even though this one eliminates 358# *all* references to stack, it's not faster... 359sub sse_encbody() 360{ 361 &movz ($acc,&LB("eax")); # 0 362 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0 363 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 364 &movz ("edx",&HB("eax")); # 1 365 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1 366 &shr ("eax",16); # 5, 4 367 368 &movz ($acc,&LB("ebx")); # 10 369 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10 370 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 371 &movz ($acc,&HB("ebx")); # 11 372 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11 373 &shr ("ebx",16); # 15,14 374 375 &movz ($acc,&HB("eax")); # 5 376 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5 377 &movq ("mm3",QWP(16,$key)); 378 &movz ($acc,&HB("ebx")); # 15 379 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15 380 &movd ("mm0","ecx"); # t[0] collected 381 382 &movz ($acc,&LB("eax")); # 4 383 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4 384 &movd ("eax","mm2"); # 7, 6, 3, 2 385 &movz ($acc,&LB("ebx")); # 14 386 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14 387 &movd ("ebx","mm6"); # 13,12, 9, 8 388 389 &movz ($acc,&HB("eax")); # 3 390 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3 391 &movz ($acc,&HB("ebx")); # 9 392 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9 393 &movd ("mm1","ecx"); # t[1] collected 394 395 &movz ($acc,&LB("eax")); # 2 396 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2 397 &shr ("eax",16); # 7, 6 398 &punpckldq ("mm0","mm1"); # t[0,1] collected 399 &movz ($acc,&LB("ebx")); # 8 400 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8 401 &shr ("ebx",16); # 13,12 402 403 &movz ($acc,&HB("eax")); # 7 404 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7 405 &pxor ("mm0","mm3"); 406 &movz ("eax",&LB("eax")); # 6 407 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6 408 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 409 &movz ($acc,&HB("ebx")); # 13 410 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13 411 &xor ("ecx",&DWP(24,$key)); # t[2] 412 &movd ("mm4","ecx"); # t[2] collected 413 &movz ("ebx",&LB("ebx")); # 12 414 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12 415 &shr ("ecx",16); 416 &movd ("eax","mm1"); # 5, 4, 1, 0 417 &mov ("ebx",&DWP(28,$key)); # t[3] 418 &xor ("ebx","edx"); 419 &movd ("mm5","ebx"); # t[3] collected 420 &and ("ebx",0xffff0000); 421 &or ("ebx","ecx"); 422 423 &punpckldq ("mm4","mm5"); # t[2,3] collected 424} 425 426###################################################################### 427# "Compact" block function 428###################################################################### 429 430sub enccompact() 431{ my $Fn = \&mov; 432 while ($#_>5) { pop(@_); $Fn=sub{}; } 433 my ($i,$te,@s)=@_; 434 my $tmp = $key; 435 my $out = $i==3?$s[0]:$acc; 436 437 # $Fn is used in first compact round and its purpose is to 438 # void restoration of some values from stack, so that after 439 # 4xenccompact with extra argument $key value is left there... 440 if ($i==3) { &$Fn ($key,$__key); }##%edx 441 else { &mov ($out,$s[0]); } 442 &and ($out,0xFF); 443 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 444 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 445 &movz ($out,&BP(-128,$te,$out,1)); 446 447 if ($i==3) { $tmp=$s[1]; }##%eax 448 &movz ($tmp,&HB($s[1])); 449 &movz ($tmp,&BP(-128,$te,$tmp,1)); 450 &shl ($tmp,8); 451 &xor ($out,$tmp); 452 453 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 454 else { &mov ($tmp,$s[2]); 455 &shr ($tmp,16); } 456 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 457 &and ($tmp,0xFF); 458 &movz ($tmp,&BP(-128,$te,$tmp,1)); 459 &shl ($tmp,16); 460 &xor ($out,$tmp); 461 462 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 463 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 464 else { &mov ($tmp,$s[3]); 465 &shr ($tmp,24); } 466 &movz ($tmp,&BP(-128,$te,$tmp,1)); 467 &shl ($tmp,24); 468 &xor ($out,$tmp); 469 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 470 if ($i==3) { &mov ($s[3],$acc); } 471 &comment(); 472} 473 474sub enctransform() 475{ my @s = ($s0,$s1,$s2,$s3); 476 my $i = shift; 477 my $tmp = $tbl; 478 my $r2 = $key ; 479 480 &and ($tmp,$s[$i]); 481 &lea ($r2,&DWP(0,$s[$i],$s[$i])); 482 &mov ($acc,$tmp); 483 &shr ($tmp,7); 484 &and ($r2,0xfefefefe); 485 &sub ($acc,$tmp); 486 &mov ($tmp,$s[$i]); 487 &and ($acc,0x1b1b1b1b); 488 &rotr ($tmp,16); 489 &xor ($acc,$r2); # r2 490 &mov ($r2,$s[$i]); 491 492 &xor ($s[$i],$acc); # r0 ^ r2 493 &rotr ($r2,16+8); 494 &xor ($acc,$tmp); 495 &rotl ($s[$i],24); 496 &xor ($acc,$r2); 497 &mov ($tmp,0x80808080) if ($i!=1); 498 &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2 499} 500 501&function_begin_B("_x86_AES_encrypt_compact"); 502 # note that caller is expected to allocate stack frame for me! 503 &mov ($__key,$key); # save key 504 505 &xor ($s0,&DWP(0,$key)); # xor with key 506 &xor ($s1,&DWP(4,$key)); 507 &xor ($s2,&DWP(8,$key)); 508 &xor ($s3,&DWP(12,$key)); 509 510 &mov ($acc,&DWP(240,$key)); # load key->rounds 511 &lea ($acc,&DWP(-2,$acc,$acc)); 512 &lea ($acc,&DWP(0,$key,$acc,8)); 513 &mov ($__end,$acc); # end of key schedule 514 515 # prefetch Te4 516 &mov ($key,&DWP(0-128,$tbl)); 517 &mov ($acc,&DWP(32-128,$tbl)); 518 &mov ($key,&DWP(64-128,$tbl)); 519 &mov ($acc,&DWP(96-128,$tbl)); 520 &mov ($key,&DWP(128-128,$tbl)); 521 &mov ($acc,&DWP(160-128,$tbl)); 522 &mov ($key,&DWP(192-128,$tbl)); 523 &mov ($acc,&DWP(224-128,$tbl)); 524 525 &set_label("loop",16); 526 527 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1); 528 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1); 529 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1); 530 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1); 531 &mov ($tbl,0x80808080); 532 &enctransform(2); 533 &enctransform(3); 534 &enctransform(0); 535 &enctransform(1); 536 &mov ($key,$__key); 537 &mov ($tbl,$__tbl); 538 &add ($key,16); # advance rd_key 539 &xor ($s0,&DWP(0,$key)); 540 &xor ($s1,&DWP(4,$key)); 541 &xor ($s2,&DWP(8,$key)); 542 &xor ($s3,&DWP(12,$key)); 543 544 &cmp ($key,$__end); 545 &mov ($__key,$key); 546 &jb (&label("loop")); 547 548 &enccompact(0,$tbl,$s0,$s1,$s2,$s3); 549 &enccompact(1,$tbl,$s1,$s2,$s3,$s0); 550 &enccompact(2,$tbl,$s2,$s3,$s0,$s1); 551 &enccompact(3,$tbl,$s3,$s0,$s1,$s2); 552 553 &xor ($s0,&DWP(16,$key)); 554 &xor ($s1,&DWP(20,$key)); 555 &xor ($s2,&DWP(24,$key)); 556 &xor ($s3,&DWP(28,$key)); 557 558 &ret (); 559&function_end_B("_x86_AES_encrypt_compact"); 560 561###################################################################### 562# "Compact" SSE block function. 563###################################################################### 564# 565# Performance is not actually extraordinary in comparison to pure 566# x86 code. In particular encrypt performance is virtually the same. 567# Decrypt performance on the other hand is 15-20% better on newer 568# µ-archs [but we're thankful for *any* improvement here], and ~50% 569# better on PIII:-) And additionally on the pros side this code 570# eliminates redundant references to stack and thus relieves/ 571# minimizes the pressure on the memory bus. 572# 573# MMX register layout lsb 574# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 575# | mm4 | mm0 | 576# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 577# | s3 | s2 | s1 | s0 | 578# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 579# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| 580# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 581# 582# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8. 583# In this terms encryption and decryption "compact" permutation 584# matrices can be depicted as following: 585# 586# encryption lsb # decryption lsb 587# +----++----+----+----+----+ # +----++----+----+----+----+ 588# | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 | 589# +----++----+----+----+----+ # +----++----+----+----+----+ 590# | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 | 591# +----++----+----+----+----+ # +----++----+----+----+----+ 592# | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 | 593# +----++----+----+----+----+ # +----++----+----+----+----+ 594# | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 | 595# +----++----+----+----+----+ # +----++----+----+----+----+ 596# 597###################################################################### 598# Why not xmm registers? Short answer. It was actually tested and 599# was not any faster, but *contrary*, most notably on Intel CPUs. 600# Longer answer. Main advantage of using mm registers is that movd 601# latency is lower, especially on Intel P4. While arithmetic 602# instructions are twice as many, they can be scheduled every cycle 603# and not every second one when they are operating on xmm register, 604# so that "arithmetic throughput" remains virtually the same. And 605# finally the code can be executed even on elder SSE-only CPUs:-) 606 607sub sse_enccompact() 608{ 609 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 610 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10 611 &movd ("eax","mm1"); # 5, 4, 1, 0 612 &movd ("ebx","mm5"); # 15,14,11,10 613 &mov ($__key,$key); 614 615 &movz ($acc,&LB("eax")); # 0 616 &movz ("edx",&HB("eax")); # 1 617 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 618 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 619 &movz ($key,&LB("ebx")); # 10 620 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 621 &shr ("eax",16); # 5, 4 622 &shl ("edx",8); # 1 623 624 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 625 &movz ($key,&HB("ebx")); # 11 626 &shl ($acc,16); # 10 627 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 628 &or ("ecx",$acc); # 10 629 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 630 &movz ($key,&HB("eax")); # 5 631 &shl ($acc,24); # 11 632 &shr ("ebx",16); # 15,14 633 &or ("edx",$acc); # 11 634 635 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 636 &movz ($key,&HB("ebx")); # 15 637 &shl ($acc,8); # 5 638 &or ("ecx",$acc); # 5 639 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15 640 &movz ($key,&LB("eax")); # 4 641 &shl ($acc,24); # 15 642 &or ("ecx",$acc); # 15 643 644 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 645 &movz ($key,&LB("ebx")); # 14 646 &movd ("eax","mm2"); # 7, 6, 3, 2 647 &movd ("mm0","ecx"); # t[0] collected 648 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14 649 &movz ($key,&HB("eax")); # 3 650 &shl ("ecx",16); # 14 651 &movd ("ebx","mm6"); # 13,12, 9, 8 652 &or ("ecx",$acc); # 14 653 654 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3 655 &movz ($key,&HB("ebx")); # 9 656 &shl ($acc,24); # 3 657 &or ("ecx",$acc); # 3 658 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 659 &movz ($key,&LB("ebx")); # 8 660 &shl ($acc,8); # 9 661 &shr ("ebx",16); # 13,12 662 &or ("ecx",$acc); # 9 663 664 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8 665 &movz ($key,&LB("eax")); # 2 666 &shr ("eax",16); # 7, 6 667 &movd ("mm1","ecx"); # t[1] collected 668 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2 669 &movz ($key,&HB("eax")); # 7 670 &shl ("ecx",16); # 2 671 &and ("eax",0xff); # 6 672 &or ("ecx",$acc); # 2 673 674 &punpckldq ("mm0","mm1"); # t[0,1] collected 675 676 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 677 &movz ($key,&HB("ebx")); # 13 678 &shl ($acc,24); # 7 679 &and ("ebx",0xff); # 12 680 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6 681 &or ("ecx",$acc); # 7 682 &shl ("eax",16); # 6 683 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 684 &or ("edx","eax"); # 6 685 &shl ($acc,8); # 13 686 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12 687 &or ("ecx",$acc); # 13 688 &or ("edx","ebx"); # 12 689 &mov ($key,$__key); 690 &movd ("mm4","ecx"); # t[2] collected 691 &movd ("mm5","edx"); # t[3] collected 692 693 &punpckldq ("mm4","mm5"); # t[2,3] collected 694} 695 696 if (!$x86only) { 697&function_begin_B("_sse_AES_encrypt_compact"); 698 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 699 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 700 701 # note that caller is expected to allocate stack frame for me! 702 &mov ($acc,&DWP(240,$key)); # load key->rounds 703 &lea ($acc,&DWP(-2,$acc,$acc)); 704 &lea ($acc,&DWP(0,$key,$acc,8)); 705 &mov ($__end,$acc); # end of key schedule 706 707 &mov ($s0,0x1b1b1b1b); # magic constant 708 &mov (&DWP(8,"esp"),$s0); 709 &mov (&DWP(12,"esp"),$s0); 710 711 # prefetch Te4 712 &mov ($s0,&DWP(0-128,$tbl)); 713 &mov ($s1,&DWP(32-128,$tbl)); 714 &mov ($s2,&DWP(64-128,$tbl)); 715 &mov ($s3,&DWP(96-128,$tbl)); 716 &mov ($s0,&DWP(128-128,$tbl)); 717 &mov ($s1,&DWP(160-128,$tbl)); 718 &mov ($s2,&DWP(192-128,$tbl)); 719 &mov ($s3,&DWP(224-128,$tbl)); 720 721 &set_label("loop",16); 722 &sse_enccompact(); 723 &add ($key,16); 724 &cmp ($key,$__end); 725 &ja (&label("out")); 726 727 &movq ("mm2",&QWP(8,"esp")); 728 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 729 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0 730 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4"); 731 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 732 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16) 733 &paddb ("mm0","mm0"); &paddb ("mm4","mm4"); 734 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2 735 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0 736 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2 737 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16) 738 739 &movq ("mm2","mm3"); &movq ("mm6","mm7"); 740 &pslld ("mm3",8); &pslld ("mm7",8); 741 &psrld ("mm2",24); &psrld ("mm6",24); 742 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8 743 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24 744 745 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 746 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); 747 &psrld ("mm1",8); &psrld ("mm5",8); 748 &mov ($s0,&DWP(0-128,$tbl)); 749 &pslld ("mm3",24); &pslld ("mm7",24); 750 &mov ($s1,&DWP(64-128,$tbl)); 751 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8 752 &mov ($s2,&DWP(128-128,$tbl)); 753 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24 754 &mov ($s3,&DWP(192-128,$tbl)); 755 756 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); 757 &jmp (&label("loop")); 758 759 &set_label("out",16); 760 &pxor ("mm0",&QWP(0,$key)); 761 &pxor ("mm4",&QWP(8,$key)); 762 763 &ret (); 764&function_end_B("_sse_AES_encrypt_compact"); 765 } 766 767###################################################################### 768# Vanilla block function. 769###################################################################### 770 771sub encstep() 772{ my ($i,$te,@s) = @_; 773 my $tmp = $key; 774 my $out = $i==3?$s[0]:$acc; 775 776 # lines marked with #%e?x[i] denote "reordered" instructions... 777 if ($i==3) { &mov ($key,$__key); }##%edx 778 else { &mov ($out,$s[0]); 779 &and ($out,0xFF); } 780 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 781 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 782 &mov ($out,&DWP(0,$te,$out,8)); 783 784 if ($i==3) { $tmp=$s[1]; }##%eax 785 &movz ($tmp,&HB($s[1])); 786 &xor ($out,&DWP(3,$te,$tmp,8)); 787 788 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 789 else { &mov ($tmp,$s[2]); 790 &shr ($tmp,16); } 791 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 792 &and ($tmp,0xFF); 793 &xor ($out,&DWP(2,$te,$tmp,8)); 794 795 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 796 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 797 else { &mov ($tmp,$s[3]); 798 &shr ($tmp,24) } 799 &xor ($out,&DWP(1,$te,$tmp,8)); 800 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 801 if ($i==3) { &mov ($s[3],$acc); } 802 &comment(); 803} 804 805sub enclast() 806{ my ($i,$te,@s)=@_; 807 my $tmp = $key; 808 my $out = $i==3?$s[0]:$acc; 809 810 if ($i==3) { &mov ($key,$__key); }##%edx 811 else { &mov ($out,$s[0]); } 812 &and ($out,0xFF); 813 if ($i==1) { &shr ($s[0],16); }#%ebx[1] 814 if ($i==2) { &shr ($s[0],24); }#%ecx[2] 815 &mov ($out,&DWP(2,$te,$out,8)); 816 &and ($out,0x000000ff); 817 818 if ($i==3) { $tmp=$s[1]; }##%eax 819 &movz ($tmp,&HB($s[1])); 820 &mov ($tmp,&DWP(0,$te,$tmp,8)); 821 &and ($tmp,0x0000ff00); 822 &xor ($out,$tmp); 823 824 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx 825 else { &mov ($tmp,$s[2]); 826 &shr ($tmp,16); } 827 if ($i==2) { &and ($s[1],0xFF); }#%edx[2] 828 &and ($tmp,0xFF); 829 &mov ($tmp,&DWP(0,$te,$tmp,8)); 830 &and ($tmp,0x00ff0000); 831 &xor ($out,$tmp); 832 833 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx 834 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] 835 else { &mov ($tmp,$s[3]); 836 &shr ($tmp,24); } 837 &mov ($tmp,&DWP(2,$te,$tmp,8)); 838 &and ($tmp,0xff000000); 839 &xor ($out,$tmp); 840 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 841 if ($i==3) { &mov ($s[3],$acc); } 842} 843 844&function_begin_B("_x86_AES_encrypt"); 845 if ($vertical_spin) { 846 # I need high parts of volatile registers to be accessible... 847 &exch ($s1="edi",$key="ebx"); 848 &mov ($s2="esi",$acc="ecx"); 849 } 850 851 # note that caller is expected to allocate stack frame for me! 852 &mov ($__key,$key); # save key 853 854 &xor ($s0,&DWP(0,$key)); # xor with key 855 &xor ($s1,&DWP(4,$key)); 856 &xor ($s2,&DWP(8,$key)); 857 &xor ($s3,&DWP(12,$key)); 858 859 &mov ($acc,&DWP(240,$key)); # load key->rounds 860 861 if ($small_footprint) { 862 &lea ($acc,&DWP(-2,$acc,$acc)); 863 &lea ($acc,&DWP(0,$key,$acc,8)); 864 &mov ($__end,$acc); # end of key schedule 865 866 &set_label("loop",16); 867 if ($vertical_spin) { 868 &encvert($tbl,$s0,$s1,$s2,$s3); 869 } else { 870 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 871 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 872 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 873 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 874 } 875 &add ($key,16); # advance rd_key 876 &xor ($s0,&DWP(0,$key)); 877 &xor ($s1,&DWP(4,$key)); 878 &xor ($s2,&DWP(8,$key)); 879 &xor ($s3,&DWP(12,$key)); 880 &cmp ($key,$__end); 881 &mov ($__key,$key); 882 &jb (&label("loop")); 883 } 884 else { 885 &cmp ($acc,10); 886 &jle (&label("10rounds")); 887 &cmp ($acc,12); 888 &jle (&label("12rounds")); 889 890 &set_label("14rounds",4); 891 for ($i=1;$i<3;$i++) { 892 if ($vertical_spin) { 893 &encvert($tbl,$s0,$s1,$s2,$s3); 894 } else { 895 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 896 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 897 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 898 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 899 } 900 &xor ($s0,&DWP(16*$i+0,$key)); 901 &xor ($s1,&DWP(16*$i+4,$key)); 902 &xor ($s2,&DWP(16*$i+8,$key)); 903 &xor ($s3,&DWP(16*$i+12,$key)); 904 } 905 &add ($key,32); 906 &mov ($__key,$key); # advance rd_key 907 &set_label("12rounds",4); 908 for ($i=1;$i<3;$i++) { 909 if ($vertical_spin) { 910 &encvert($tbl,$s0,$s1,$s2,$s3); 911 } else { 912 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 913 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 914 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 915 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 916 } 917 &xor ($s0,&DWP(16*$i+0,$key)); 918 &xor ($s1,&DWP(16*$i+4,$key)); 919 &xor ($s2,&DWP(16*$i+8,$key)); 920 &xor ($s3,&DWP(16*$i+12,$key)); 921 } 922 &add ($key,32); 923 &mov ($__key,$key); # advance rd_key 924 &set_label("10rounds",4); 925 for ($i=1;$i<10;$i++) { 926 if ($vertical_spin) { 927 &encvert($tbl,$s0,$s1,$s2,$s3); 928 } else { 929 &encstep(0,$tbl,$s0,$s1,$s2,$s3); 930 &encstep(1,$tbl,$s1,$s2,$s3,$s0); 931 &encstep(2,$tbl,$s2,$s3,$s0,$s1); 932 &encstep(3,$tbl,$s3,$s0,$s1,$s2); 933 } 934 &xor ($s0,&DWP(16*$i+0,$key)); 935 &xor ($s1,&DWP(16*$i+4,$key)); 936 &xor ($s2,&DWP(16*$i+8,$key)); 937 &xor ($s3,&DWP(16*$i+12,$key)); 938 } 939 } 940 941 if ($vertical_spin) { 942 # "reincarnate" some registers for "horizontal" spin... 943 &mov ($s1="ebx",$key="edi"); 944 &mov ($s2="ecx",$acc="esi"); 945 } 946 &enclast(0,$tbl,$s0,$s1,$s2,$s3); 947 &enclast(1,$tbl,$s1,$s2,$s3,$s0); 948 &enclast(2,$tbl,$s2,$s3,$s0,$s1); 949 &enclast(3,$tbl,$s3,$s0,$s1,$s2); 950 951 &add ($key,$small_footprint?16:160); 952 &xor ($s0,&DWP(0,$key)); 953 &xor ($s1,&DWP(4,$key)); 954 &xor ($s2,&DWP(8,$key)); 955 &xor ($s3,&DWP(12,$key)); 956 957 &ret (); 958 959&set_label("AES_Te",64); # Yes! I keep it in the code segment! 960 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6); 961 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591); 962 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56); 963 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec); 964 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa); 965 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb); 966 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45); 967 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b); 968 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c); 969 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83); 970 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9); 971 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a); 972 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d); 973 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f); 974 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df); 975 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea); 976 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34); 977 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b); 978 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d); 979 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413); 980 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1); 981 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6); 982 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972); 983 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85); 984 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed); 985 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511); 986 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe); 987 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b); 988 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05); 989 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1); 990 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142); 991 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf); 992 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3); 993 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e); 994 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a); 995 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6); 996 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3); 997 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b); 998 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428); 999 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad); 1000 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14); 1001 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8); 1002 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4); 1003 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2); 1004 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda); 1005 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949); 1006 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf); 1007 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810); 1008 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c); 1009 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697); 1010 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e); 1011 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f); 1012 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc); 1013 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c); 1014 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969); 1015 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27); 1016 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122); 1017 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433); 1018 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9); 1019 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5); 1020 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a); 1021 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0); 1022 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e); 1023 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c); 1024 1025#Te4 # four copies of Te4 to choose from to avoid L1 aliasing 1026 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1027 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1028 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1029 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1030 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1031 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1032 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1033 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1034 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1035 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1036 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1037 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1038 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1039 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1040 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1041 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1042 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1043 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1044 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1045 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1046 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1047 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1048 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1049 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1050 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1051 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1052 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1053 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1054 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1055 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1056 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1057 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1058 1059 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1060 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1061 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1062 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1063 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1064 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1065 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1066 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1067 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1068 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1069 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1070 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1071 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1072 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1073 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1074 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1075 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1076 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1077 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1078 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1079 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1080 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1081 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1082 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1083 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1084 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1085 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1086 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1087 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1088 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1089 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1090 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1091 1092 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1093 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1094 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1095 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1096 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1097 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1098 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1099 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1100 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1101 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1102 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1103 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1104 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1105 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1106 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1107 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1108 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1109 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1110 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1111 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1112 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1113 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1114 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1115 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1116 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1117 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1118 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1119 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1120 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1121 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1122 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1123 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1124 1125 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); 1126 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); 1127 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); 1128 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); 1129 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); 1130 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); 1131 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); 1132 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); 1133 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); 1134 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); 1135 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); 1136 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); 1137 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); 1138 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); 1139 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); 1140 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); 1141 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); 1142 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); 1143 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); 1144 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); 1145 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); 1146 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); 1147 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); 1148 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); 1149 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); 1150 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); 1151 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); 1152 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); 1153 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); 1154 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); 1155 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); 1156 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); 1157#rcon: 1158 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008); 1159 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080); 1160 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000); 1161 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000); 1162&function_end_B("_x86_AES_encrypt"); 1163 1164# void asm_AES_encrypt (const void *inp,void *out,const AES_KEY *key); 1165&function_begin("asm_AES_encrypt"); 1166 &mov ($acc,&wparam(0)); # load inp 1167 &mov ($key,&wparam(2)); # load key 1168 1169 &mov ($s0,"esp"); 1170 &sub ("esp",36); 1171 &and ("esp",-64); # align to cache-line 1172 1173 # place stack frame just "above" the key schedule 1174 &lea ($s1,&DWP(-64-63,$key)); 1175 &sub ($s1,"esp"); 1176 &neg ($s1); 1177 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 1178 &sub ("esp",$s1); 1179 &add ("esp",4); # 4 is reserved for caller's return address 1180 &mov ($_esp,$s0); # save stack pointer 1181 1182 &call (&label("pic_point")); # make it PIC! 1183 &set_label("pic_point"); 1184 &blindpop($tbl); 1185 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only); 1186 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 1187 1188 # pick Te4 copy which can't "overlap" with stack frame or key schedule 1189 &lea ($s1,&DWP(768-4,"esp")); 1190 &sub ($s1,$tbl); 1191 &and ($s1,0x300); 1192 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 1193 1194 if (!$x86only) { 1195 &bt (&DWP(0,$s0),25); # check for SSE bit 1196 &jnc (&label("x86")); 1197 1198 &movq ("mm0",&QWP(0,$acc)); 1199 &movq ("mm4",&QWP(8,$acc)); 1200 &call ("_sse_AES_encrypt_compact"); 1201 &mov ("esp",$_esp); # restore stack pointer 1202 &mov ($acc,&wparam(1)); # load out 1203 &movq (&QWP(0,$acc),"mm0"); # write output data 1204 &movq (&QWP(8,$acc),"mm4"); 1205 &emms (); 1206 &function_end_A(); 1207 } 1208 &set_label("x86",16); 1209 &mov ($_tbl,$tbl); 1210 &mov ($s0,&DWP(0,$acc)); # load input data 1211 &mov ($s1,&DWP(4,$acc)); 1212 &mov ($s2,&DWP(8,$acc)); 1213 &mov ($s3,&DWP(12,$acc)); 1214 &call ("_x86_AES_encrypt_compact"); 1215 &mov ("esp",$_esp); # restore stack pointer 1216 &mov ($acc,&wparam(1)); # load out 1217 &mov (&DWP(0,$acc),$s0); # write output data 1218 &mov (&DWP(4,$acc),$s1); 1219 &mov (&DWP(8,$acc),$s2); 1220 &mov (&DWP(12,$acc),$s3); 1221&function_end("asm_AES_encrypt"); 1222 1223#--------------------------------------------------------------------# 1224 1225###################################################################### 1226# "Compact" block function 1227###################################################################### 1228 1229sub deccompact() 1230{ my $Fn = \&mov; 1231 while ($#_>5) { pop(@_); $Fn=sub{}; } 1232 my ($i,$td,@s)=@_; 1233 my $tmp = $key; 1234 my $out = $i==3?$s[0]:$acc; 1235 1236 # $Fn is used in first compact round and its purpose is to 1237 # void restoration of some values from stack, so that after 1238 # 4xdeccompact with extra argument $key, $s0 and $s1 values 1239 # are left there... 1240 if($i==3) { &$Fn ($key,$__key); } 1241 else { &mov ($out,$s[0]); } 1242 &and ($out,0xFF); 1243 &movz ($out,&BP(-128,$td,$out,1)); 1244 1245 if ($i==3) { $tmp=$s[1]; } 1246 &movz ($tmp,&HB($s[1])); 1247 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1248 &shl ($tmp,8); 1249 &xor ($out,$tmp); 1250 1251 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1252 else { mov ($tmp,$s[2]); } 1253 &shr ($tmp,16); 1254 &and ($tmp,0xFF); 1255 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1256 &shl ($tmp,16); 1257 &xor ($out,$tmp); 1258 1259 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); } 1260 else { &mov ($tmp,$s[3]); } 1261 &shr ($tmp,24); 1262 &movz ($tmp,&BP(-128,$td,$tmp,1)); 1263 &shl ($tmp,24); 1264 &xor ($out,$tmp); 1265 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1266 if ($i==3) { &$Fn ($s[3],$__s0); } 1267} 1268 1269# must be called with 2,3,0,1 as argument sequence!!! 1270sub dectransform() 1271{ my @s = ($s0,$s1,$s2,$s3); 1272 my $i = shift; 1273 my $tmp = $key; 1274 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1); 1275 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1); 1276 my $tp8 = $tbl; 1277 1278 &mov ($tmp,0x80808080); 1279 &and ($tmp,$s[$i]); 1280 &mov ($acc,$tmp); 1281 &shr ($tmp,7); 1282 &lea ($tp2,&DWP(0,$s[$i],$s[$i])); 1283 &sub ($acc,$tmp); 1284 &and ($tp2,0xfefefefe); 1285 &and ($acc,0x1b1b1b1b); 1286 &xor ($tp2,$acc); 1287 &mov ($tmp,0x80808080); 1288 1289 &and ($tmp,$tp2); 1290 &mov ($acc,$tmp); 1291 &shr ($tmp,7); 1292 &lea ($tp4,&DWP(0,$tp2,$tp2)); 1293 &sub ($acc,$tmp); 1294 &and ($tp4,0xfefefefe); 1295 &and ($acc,0x1b1b1b1b); 1296 &xor ($tp2,$s[$i]); # tp2^tp1 1297 &xor ($tp4,$acc); 1298 &mov ($tmp,0x80808080); 1299 1300 &and ($tmp,$tp4); 1301 &mov ($acc,$tmp); 1302 &shr ($tmp,7); 1303 &lea ($tp8,&DWP(0,$tp4,$tp4)); 1304 &sub ($acc,$tmp); 1305 &and ($tp8,0xfefefefe); 1306 &and ($acc,0x1b1b1b1b); 1307 &xor ($tp4,$s[$i]); # tp4^tp1 1308 &rotl ($s[$i],8); # = ROTATE(tp1,8) 1309 &xor ($tp8,$acc); 1310 1311 &xor ($s[$i],$tp2); 1312 &xor ($tp2,$tp8); 1313 &xor ($s[$i],$tp4); 1314 &xor ($tp4,$tp8); 1315 &rotl ($tp2,24); 1316 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) 1317 &rotl ($tp4,16); 1318 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24) 1319 &rotl ($tp8,8); 1320 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16) 1321 &mov ($s[0],$__s0) if($i==2); #prefetch $s0 1322 &mov ($s[1],$__s1) if($i==3); #prefetch $s1 1323 &mov ($s[2],$__s2) if($i==1); 1324 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8) 1325 1326 &mov ($s[3],$__s3) if($i==1); 1327 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2); 1328} 1329 1330&function_begin_B("_x86_AES_decrypt_compact"); 1331 # note that caller is expected to allocate stack frame for me! 1332 &mov ($__key,$key); # save key 1333 1334 &xor ($s0,&DWP(0,$key)); # xor with key 1335 &xor ($s1,&DWP(4,$key)); 1336 &xor ($s2,&DWP(8,$key)); 1337 &xor ($s3,&DWP(12,$key)); 1338 1339 &mov ($acc,&DWP(240,$key)); # load key->rounds 1340 1341 &lea ($acc,&DWP(-2,$acc,$acc)); 1342 &lea ($acc,&DWP(0,$key,$acc,8)); 1343 &mov ($__end,$acc); # end of key schedule 1344 1345 # prefetch Td4 1346 &mov ($key,&DWP(0-128,$tbl)); 1347 &mov ($acc,&DWP(32-128,$tbl)); 1348 &mov ($key,&DWP(64-128,$tbl)); 1349 &mov ($acc,&DWP(96-128,$tbl)); 1350 &mov ($key,&DWP(128-128,$tbl)); 1351 &mov ($acc,&DWP(160-128,$tbl)); 1352 &mov ($key,&DWP(192-128,$tbl)); 1353 &mov ($acc,&DWP(224-128,$tbl)); 1354 1355 &set_label("loop",16); 1356 1357 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1); 1358 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1); 1359 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1); 1360 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1); 1361 &dectransform(2); 1362 &dectransform(3); 1363 &dectransform(0); 1364 &dectransform(1); 1365 &mov ($key,$__key); 1366 &mov ($tbl,$__tbl); 1367 &add ($key,16); # advance rd_key 1368 &xor ($s0,&DWP(0,$key)); 1369 &xor ($s1,&DWP(4,$key)); 1370 &xor ($s2,&DWP(8,$key)); 1371 &xor ($s3,&DWP(12,$key)); 1372 1373 &cmp ($key,$__end); 1374 &mov ($__key,$key); 1375 &jb (&label("loop")); 1376 1377 &deccompact(0,$tbl,$s0,$s3,$s2,$s1); 1378 &deccompact(1,$tbl,$s1,$s0,$s3,$s2); 1379 &deccompact(2,$tbl,$s2,$s1,$s0,$s3); 1380 &deccompact(3,$tbl,$s3,$s2,$s1,$s0); 1381 1382 &xor ($s0,&DWP(16,$key)); 1383 &xor ($s1,&DWP(20,$key)); 1384 &xor ($s2,&DWP(24,$key)); 1385 &xor ($s3,&DWP(28,$key)); 1386 1387 &ret (); 1388&function_end_B("_x86_AES_decrypt_compact"); 1389 1390###################################################################### 1391# "Compact" SSE block function. 1392###################################################################### 1393 1394sub sse_deccompact() 1395{ 1396 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0 1397 &pshufw ("mm5","mm4",0x09); # 13,12,11,10 1398 &movd ("eax","mm1"); # 7, 6, 1, 0 1399 &movd ("ebx","mm5"); # 13,12,11,10 1400 &mov ($__key,$key); 1401 1402 &movz ($acc,&LB("eax")); # 0 1403 &movz ("edx",&HB("eax")); # 1 1404 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4 1405 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 1406 &movz ($key,&LB("ebx")); # 10 1407 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 1408 &shr ("eax",16); # 7, 6 1409 &shl ("edx",8); # 1 1410 1411 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 1412 &movz ($key,&HB("ebx")); # 11 1413 &shl ($acc,16); # 10 1414 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14 1415 &or ("ecx",$acc); # 10 1416 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 1417 &movz ($key,&HB("eax")); # 7 1418 &shl ($acc,24); # 11 1419 &shr ("ebx",16); # 13,12 1420 &or ("edx",$acc); # 11 1421 1422 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 1423 &movz ($key,&HB("ebx")); # 13 1424 &shl ($acc,24); # 7 1425 &or ("ecx",$acc); # 7 1426 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 1427 &movz ($key,&LB("eax")); # 6 1428 &shl ($acc,8); # 13 1429 &movd ("eax","mm2"); # 3, 2, 5, 4 1430 &or ("ecx",$acc); # 13 1431 1432 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6 1433 &movz ($key,&LB("ebx")); # 12 1434 &shl ($acc,16); # 6 1435 &movd ("ebx","mm6"); # 9, 8,15,14 1436 &movd ("mm0","ecx"); # t[0] collected 1437 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12 1438 &movz ($key,&LB("eax")); # 4 1439 &or ("ecx",$acc); # 12 1440 1441 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 1442 &movz ($key,&LB("ebx")); # 14 1443 &or ("edx",$acc); # 4 1444 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14 1445 &movz ($key,&HB("eax")); # 5 1446 &shl ($acc,16); # 14 1447 &shr ("eax",16); # 3, 2 1448 &or ("edx",$acc); # 14 1449 1450 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 1451 &movz ($key,&HB("ebx")); # 15 1452 &shr ("ebx",16); # 9, 8 1453 &shl ($acc,8); # 5 1454 &movd ("mm1","edx"); # t[1] collected 1455 &movz ("edx",&BP(-128,$tbl,$key,1)); # 15 1456 &movz ($key,&HB("ebx")); # 9 1457 &shl ("edx",24); # 15 1458 &and ("ebx",0xff); # 8 1459 &or ("edx",$acc); # 15 1460 1461 &punpckldq ("mm0","mm1"); # t[0,1] collected 1462 1463 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 1464 &movz ($key,&LB("eax")); # 2 1465 &shl ($acc,8); # 9 1466 &movz ("eax",&HB("eax")); # 3 1467 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8 1468 &or ("ecx",$acc); # 9 1469 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2 1470 &or ("edx","ebx"); # 8 1471 &shl ($acc,16); # 2 1472 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3 1473 &or ("edx",$acc); # 2 1474 &shl ("eax",24); # 3 1475 &or ("ecx","eax"); # 3 1476 &mov ($key,$__key); 1477 &movd ("mm4","edx"); # t[2] collected 1478 &movd ("mm5","ecx"); # t[3] collected 1479 1480 &punpckldq ("mm4","mm5"); # t[2,3] collected 1481} 1482 1483 if (!$x86only) { 1484&function_begin_B("_sse_AES_decrypt_compact"); 1485 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 1486 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 1487 1488 # note that caller is expected to allocate stack frame for me! 1489 &mov ($acc,&DWP(240,$key)); # load key->rounds 1490 &lea ($acc,&DWP(-2,$acc,$acc)); 1491 &lea ($acc,&DWP(0,$key,$acc,8)); 1492 &mov ($__end,$acc); # end of key schedule 1493 1494 &mov ($s0,0x1b1b1b1b); # magic constant 1495 &mov (&DWP(8,"esp"),$s0); 1496 &mov (&DWP(12,"esp"),$s0); 1497 1498 # prefetch Td4 1499 &mov ($s0,&DWP(0-128,$tbl)); 1500 &mov ($s1,&DWP(32-128,$tbl)); 1501 &mov ($s2,&DWP(64-128,$tbl)); 1502 &mov ($s3,&DWP(96-128,$tbl)); 1503 &mov ($s0,&DWP(128-128,$tbl)); 1504 &mov ($s1,&DWP(160-128,$tbl)); 1505 &mov ($s2,&DWP(192-128,$tbl)); 1506 &mov ($s3,&DWP(224-128,$tbl)); 1507 1508 &set_label("loop",16); 1509 &sse_deccompact(); 1510 &add ($key,16); 1511 &cmp ($key,$__end); 1512 &ja (&label("out")); 1513 1514 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N) 1515 &movq ("mm3","mm0"); &movq ("mm7","mm4"); 1516 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1); 1517 &movq ("mm1","mm0"); &movq ("mm5","mm4"); 1518 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16) 1519 &pslld ("mm2",8); &pslld ("mm6",8); 1520 &psrld ("mm3",8); &psrld ("mm7",8); 1521 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8 1522 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8 1523 &pslld ("mm2",16); &pslld ("mm6",16); 1524 &psrld ("mm3",16); &psrld ("mm7",16); 1525 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24 1526 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24 1527 1528 &movq ("mm3",&QWP(8,"esp")); 1529 &pxor ("mm2","mm2"); &pxor ("mm6","mm6"); 1530 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5"); 1531 &pand ("mm2","mm3"); &pand ("mm6","mm3"); 1532 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1533 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2 1534 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 1535 &movq ("mm2","mm1"); &movq ("mm6","mm5"); 1536 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2 1537 &pslld ("mm3",24); &pslld ("mm7",24); 1538 &psrld ("mm2",8); &psrld ("mm6",8); 1539 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24 1540 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8 1541 1542 &movq ("mm2",&QWP(8,"esp")); 1543 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 1544 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); 1545 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 1546 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1547 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4 1548 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1); 1549 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4 1550 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16) 1551 1552 &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); 1553 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); 1554 &pand ("mm3","mm2"); &pand ("mm7","mm2"); 1555 &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); 1556 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8 1557 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 1558 &movq ("mm3","mm1"); &movq ("mm7","mm5"); 1559 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1); 1560 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16) 1561 &pslld ("mm1",8); &pslld ("mm5",8); 1562 &psrld ("mm3",8); &psrld ("mm7",8); 1563 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); 1564 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8 1565 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8 1566 &mov ($s0,&DWP(0-128,$tbl)); 1567 &pslld ("mm1",16); &pslld ("mm5",16); 1568 &mov ($s1,&DWP(64-128,$tbl)); 1569 &psrld ("mm3",16); &psrld ("mm7",16); 1570 &mov ($s2,&DWP(128-128,$tbl)); 1571 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24 1572 &mov ($s3,&DWP(192-128,$tbl)); 1573 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24 1574 1575 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); 1576 &jmp (&label("loop")); 1577 1578 &set_label("out",16); 1579 &pxor ("mm0",&QWP(0,$key)); 1580 &pxor ("mm4",&QWP(8,$key)); 1581 1582 &ret (); 1583&function_end_B("_sse_AES_decrypt_compact"); 1584 } 1585 1586###################################################################### 1587# Vanilla block function. 1588###################################################################### 1589 1590sub decstep() 1591{ my ($i,$td,@s) = @_; 1592 my $tmp = $key; 1593 my $out = $i==3?$s[0]:$acc; 1594 1595 # no instructions are reordered, as performance appears 1596 # optimal... or rather that all attempts to reorder didn't 1597 # result in better performance [which by the way is not a 1598 # bit lower than ecryption]. 1599 if($i==3) { &mov ($key,$__key); } 1600 else { &mov ($out,$s[0]); } 1601 &and ($out,0xFF); 1602 &mov ($out,&DWP(0,$td,$out,8)); 1603 1604 if ($i==3) { $tmp=$s[1]; } 1605 &movz ($tmp,&HB($s[1])); 1606 &xor ($out,&DWP(3,$td,$tmp,8)); 1607 1608 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1609 else { &mov ($tmp,$s[2]); } 1610 &shr ($tmp,16); 1611 &and ($tmp,0xFF); 1612 &xor ($out,&DWP(2,$td,$tmp,8)); 1613 1614 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } 1615 else { &mov ($tmp,$s[3]); } 1616 &shr ($tmp,24); 1617 &xor ($out,&DWP(1,$td,$tmp,8)); 1618 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1619 if ($i==3) { &mov ($s[3],$__s0); } 1620 &comment(); 1621} 1622 1623sub declast() 1624{ my ($i,$td,@s)=@_; 1625 my $tmp = $key; 1626 my $out = $i==3?$s[0]:$acc; 1627 1628 if($i==0) { &lea ($td,&DWP(2048+128,$td)); 1629 &mov ($tmp,&DWP(0-128,$td)); 1630 &mov ($acc,&DWP(32-128,$td)); 1631 &mov ($tmp,&DWP(64-128,$td)); 1632 &mov ($acc,&DWP(96-128,$td)); 1633 &mov ($tmp,&DWP(128-128,$td)); 1634 &mov ($acc,&DWP(160-128,$td)); 1635 &mov ($tmp,&DWP(192-128,$td)); 1636 &mov ($acc,&DWP(224-128,$td)); 1637 &lea ($td,&DWP(-128,$td)); } 1638 if($i==3) { &mov ($key,$__key); } 1639 else { &mov ($out,$s[0]); } 1640 &and ($out,0xFF); 1641 &movz ($out,&BP(0,$td,$out,1)); 1642 1643 if ($i==3) { $tmp=$s[1]; } 1644 &movz ($tmp,&HB($s[1])); 1645 &movz ($tmp,&BP(0,$td,$tmp,1)); 1646 &shl ($tmp,8); 1647 &xor ($out,$tmp); 1648 1649 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } 1650 else { mov ($tmp,$s[2]); } 1651 &shr ($tmp,16); 1652 &and ($tmp,0xFF); 1653 &movz ($tmp,&BP(0,$td,$tmp,1)); 1654 &shl ($tmp,16); 1655 &xor ($out,$tmp); 1656 1657 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } 1658 else { &mov ($tmp,$s[3]); } 1659 &shr ($tmp,24); 1660 &movz ($tmp,&BP(0,$td,$tmp,1)); 1661 &shl ($tmp,24); 1662 &xor ($out,$tmp); 1663 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } 1664 if ($i==3) { &mov ($s[3],$__s0); 1665 &lea ($td,&DWP(-2048,$td)); } 1666} 1667 1668&function_begin_B("_x86_AES_decrypt"); 1669 # note that caller is expected to allocate stack frame for me! 1670 &mov ($__key,$key); # save key 1671 1672 &xor ($s0,&DWP(0,$key)); # xor with key 1673 &xor ($s1,&DWP(4,$key)); 1674 &xor ($s2,&DWP(8,$key)); 1675 &xor ($s3,&DWP(12,$key)); 1676 1677 &mov ($acc,&DWP(240,$key)); # load key->rounds 1678 1679 if ($small_footprint) { 1680 &lea ($acc,&DWP(-2,$acc,$acc)); 1681 &lea ($acc,&DWP(0,$key,$acc,8)); 1682 &mov ($__end,$acc); # end of key schedule 1683 &set_label("loop",16); 1684 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1685 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1686 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1687 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1688 &add ($key,16); # advance rd_key 1689 &xor ($s0,&DWP(0,$key)); 1690 &xor ($s1,&DWP(4,$key)); 1691 &xor ($s2,&DWP(8,$key)); 1692 &xor ($s3,&DWP(12,$key)); 1693 &cmp ($key,$__end); 1694 &mov ($__key,$key); 1695 &jb (&label("loop")); 1696 } 1697 else { 1698 &cmp ($acc,10); 1699 &jle (&label("10rounds")); 1700 &cmp ($acc,12); 1701 &jle (&label("12rounds")); 1702 1703 &set_label("14rounds",4); 1704 for ($i=1;$i<3;$i++) { 1705 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1706 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1707 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1708 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1709 &xor ($s0,&DWP(16*$i+0,$key)); 1710 &xor ($s1,&DWP(16*$i+4,$key)); 1711 &xor ($s2,&DWP(16*$i+8,$key)); 1712 &xor ($s3,&DWP(16*$i+12,$key)); 1713 } 1714 &add ($key,32); 1715 &mov ($__key,$key); # advance rd_key 1716 &set_label("12rounds",4); 1717 for ($i=1;$i<3;$i++) { 1718 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1719 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1720 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1721 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1722 &xor ($s0,&DWP(16*$i+0,$key)); 1723 &xor ($s1,&DWP(16*$i+4,$key)); 1724 &xor ($s2,&DWP(16*$i+8,$key)); 1725 &xor ($s3,&DWP(16*$i+12,$key)); 1726 } 1727 &add ($key,32); 1728 &mov ($__key,$key); # advance rd_key 1729 &set_label("10rounds",4); 1730 for ($i=1;$i<10;$i++) { 1731 &decstep(0,$tbl,$s0,$s3,$s2,$s1); 1732 &decstep(1,$tbl,$s1,$s0,$s3,$s2); 1733 &decstep(2,$tbl,$s2,$s1,$s0,$s3); 1734 &decstep(3,$tbl,$s3,$s2,$s1,$s0); 1735 &xor ($s0,&DWP(16*$i+0,$key)); 1736 &xor ($s1,&DWP(16*$i+4,$key)); 1737 &xor ($s2,&DWP(16*$i+8,$key)); 1738 &xor ($s3,&DWP(16*$i+12,$key)); 1739 } 1740 } 1741 1742 &declast(0,$tbl,$s0,$s3,$s2,$s1); 1743 &declast(1,$tbl,$s1,$s0,$s3,$s2); 1744 &declast(2,$tbl,$s2,$s1,$s0,$s3); 1745 &declast(3,$tbl,$s3,$s2,$s1,$s0); 1746 1747 &add ($key,$small_footprint?16:160); 1748 &xor ($s0,&DWP(0,$key)); 1749 &xor ($s1,&DWP(4,$key)); 1750 &xor ($s2,&DWP(8,$key)); 1751 &xor ($s3,&DWP(12,$key)); 1752 1753 &ret (); 1754 1755&set_label("AES_Td",64); # Yes! I keep it in the code segment! 1756 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a); 1757 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b); 1758 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5); 1759 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5); 1760 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d); 1761 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b); 1762 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295); 1763 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e); 1764 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927); 1765 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d); 1766 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362); 1767 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9); 1768 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52); 1769 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566); 1770 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3); 1771 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed); 1772 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e); 1773 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4); 1774 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4); 1775 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd); 1776 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d); 1777 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060); 1778 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967); 1779 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879); 1780 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000); 1781 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c); 1782 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36); 1783 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624); 1784 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b); 1785 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c); 1786 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12); 1787 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14); 1788 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3); 1789 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b); 1790 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8); 1791 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684); 1792 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7); 1793 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177); 1794 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947); 1795 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322); 1796 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498); 1797 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f); 1798 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54); 1799 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382); 1800 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf); 1801 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb); 1802 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83); 1803 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef); 1804 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029); 1805 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235); 1806 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733); 1807 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117); 1808 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4); 1809 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546); 1810 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb); 1811 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d); 1812 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb); 1813 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a); 1814 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773); 1815 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478); 1816 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2); 1817 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff); 1818 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664); 1819 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0); 1820 1821#Td4: # four copies of Td4 to choose from to avoid L1 aliasing 1822 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1823 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1824 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1825 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1826 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1827 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1828 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1829 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1830 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1831 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1832 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1833 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1834 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1835 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1836 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1837 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1838 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1839 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1840 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1841 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1842 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1843 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1844 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1845 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1846 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1847 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1848 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1849 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1850 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1851 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1852 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1853 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1854 1855 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1856 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1857 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1858 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1859 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1860 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1861 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1862 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1863 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1864 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1865 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1866 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1867 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1868 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1869 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1870 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1871 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1872 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1873 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1874 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1875 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1876 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1877 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1878 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1879 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1880 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1881 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1882 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1883 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1884 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1885 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1886 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1887 1888 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1889 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1890 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1891 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1892 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1893 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1894 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1895 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1896 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1897 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1898 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1899 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1900 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1901 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1902 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1903 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1904 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1905 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1906 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1907 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1908 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1909 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1910 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1911 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1912 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1913 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1914 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1915 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1916 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1917 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1918 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1919 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1920 1921 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); 1922 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); 1923 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); 1924 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); 1925 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); 1926 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); 1927 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); 1928 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); 1929 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); 1930 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); 1931 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); 1932 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); 1933 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); 1934 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); 1935 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); 1936 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); 1937 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); 1938 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); 1939 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); 1940 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); 1941 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); 1942 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); 1943 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); 1944 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); 1945 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); 1946 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); 1947 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); 1948 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); 1949 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); 1950 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); 1951 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); 1952 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); 1953&function_end_B("_x86_AES_decrypt"); 1954 1955# void asm_AES_decrypt (const void *inp,void *out,const AES_KEY *key); 1956&function_begin("asm_AES_decrypt"); 1957 &mov ($acc,&wparam(0)); # load inp 1958 &mov ($key,&wparam(2)); # load key 1959 1960 &mov ($s0,"esp"); 1961 &sub ("esp",36); 1962 &and ("esp",-64); # align to cache-line 1963 1964 # place stack frame just "above" the key schedule 1965 &lea ($s1,&DWP(-64-63,$key)); 1966 &sub ($s1,"esp"); 1967 &neg ($s1); 1968 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 1969 &sub ("esp",$s1); 1970 &add ("esp",4); # 4 is reserved for caller's return address 1971 &mov ($_esp,$s0); # save stack pointer 1972 1973 &call (&label("pic_point")); # make it PIC! 1974 &set_label("pic_point"); 1975 &blindpop($tbl); 1976 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); 1977 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl)); 1978 1979 # pick Td4 copy which can't "overlap" with stack frame or key schedule 1980 &lea ($s1,&DWP(768-4,"esp")); 1981 &sub ($s1,$tbl); 1982 &and ($s1,0x300); 1983 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 1984 1985 if (!$x86only) { 1986 &bt (&DWP(0,$s0),25); # check for SSE bit 1987 &jnc (&label("x86")); 1988 1989 &movq ("mm0",&QWP(0,$acc)); 1990 &movq ("mm4",&QWP(8,$acc)); 1991 &call ("_sse_AES_decrypt_compact"); 1992 &mov ("esp",$_esp); # restore stack pointer 1993 &mov ($acc,&wparam(1)); # load out 1994 &movq (&QWP(0,$acc),"mm0"); # write output data 1995 &movq (&QWP(8,$acc),"mm4"); 1996 &emms (); 1997 &function_end_A(); 1998 } 1999 &set_label("x86",16); 2000 &mov ($_tbl,$tbl); 2001 &mov ($s0,&DWP(0,$acc)); # load input data 2002 &mov ($s1,&DWP(4,$acc)); 2003 &mov ($s2,&DWP(8,$acc)); 2004 &mov ($s3,&DWP(12,$acc)); 2005 &call ("_x86_AES_decrypt_compact"); 2006 &mov ("esp",$_esp); # restore stack pointer 2007 &mov ($acc,&wparam(1)); # load out 2008 &mov (&DWP(0,$acc),$s0); # write output data 2009 &mov (&DWP(4,$acc),$s1); 2010 &mov (&DWP(8,$acc),$s2); 2011 &mov (&DWP(12,$acc),$s3); 2012&function_end("asm_AES_decrypt"); 2013 2014# void asm_AES_cbc_encrypt (const void char *inp, unsigned char *out, 2015# size_t length, const AES_KEY *key, 2016# unsigned char *ivp,const int enc); 2017{ 2018# stack frame layout 2019# -4(%esp) # return address 0(%esp) 2020# 0(%esp) # s0 backing store 4(%esp) 2021# 4(%esp) # s1 backing store 8(%esp) 2022# 8(%esp) # s2 backing store 12(%esp) 2023# 12(%esp) # s3 backing store 16(%esp) 2024# 16(%esp) # key backup 20(%esp) 2025# 20(%esp) # end of key schedule 24(%esp) 2026# 24(%esp) # %ebp backup 28(%esp) 2027# 28(%esp) # %esp backup 2028my $_inp=&DWP(32,"esp"); # copy of wparam(0) 2029my $_out=&DWP(36,"esp"); # copy of wparam(1) 2030my $_len=&DWP(40,"esp"); # copy of wparam(2) 2031my $_key=&DWP(44,"esp"); # copy of wparam(3) 2032my $_ivp=&DWP(48,"esp"); # copy of wparam(4) 2033my $_tmp=&DWP(52,"esp"); # volatile variable 2034# 2035my $ivec=&DWP(60,"esp"); # ivec[16] 2036my $aes_key=&DWP(76,"esp"); # copy of aes_key 2037my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds 2038 2039&function_begin("asm_AES_cbc_encrypt"); 2040 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len 2041 &cmp ($s2,0); 2042 &je (&label("drop_out")); 2043 2044 &call (&label("pic_point")); # make it PIC! 2045 &set_label("pic_point"); 2046 &blindpop($tbl); 2047 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); 2048 2049 &cmp (&wparam(5),0); 2050 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 2051 &jne (&label("picked_te")); 2052 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl)); 2053 &set_label("picked_te"); 2054 2055 # one can argue if this is required 2056 &pushf (); 2057 &cld (); 2058 2059 &cmp ($s2,$speed_limit); 2060 &jb (&label("slow_way")); 2061 &test ($s2,15); 2062 &jnz (&label("slow_way")); 2063 if (!$x86only) { 2064 &bt (&DWP(0,$s0),28); # check for hyper-threading bit 2065 &jc (&label("slow_way")); 2066 } 2067 # pre-allocate aligned stack frame... 2068 &lea ($acc,&DWP(-80-244,"esp")); 2069 &and ($acc,-64); 2070 2071 # ... and make sure it doesn't alias with $tbl modulo 4096 2072 &mov ($s0,$tbl); 2073 &lea ($s1,&DWP(2048+256,$tbl)); 2074 &mov ($s3,$acc); 2075 &and ($s0,0xfff); # s = %ebp&0xfff 2076 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff 2077 &and ($s3,0xfff); # p = %esp&0xfff 2078 2079 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e); 2080 &jb (&label("tbl_break_out")); 2081 &sub ($s3,$s1); 2082 &sub ($acc,$s3); 2083 &jmp (&label("tbl_ok")); 2084 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz; 2085 &sub ($s3,$s0); 2086 &and ($s3,0xfff); 2087 &add ($s3,384); 2088 &sub ($acc,$s3); 2089 &set_label("tbl_ok",4); 2090 2091 &lea ($s3,&wparam(0)); # obtain pointer to parameter block 2092 &exch ("esp",$acc); # allocate stack frame 2093 &add ("esp",4); # reserve for return address! 2094 &mov ($_tbl,$tbl); # save %ebp 2095 &mov ($_esp,$acc); # save %esp 2096 2097 &mov ($s0,&DWP(0,$s3)); # load inp 2098 &mov ($s1,&DWP(4,$s3)); # load out 2099 #&mov ($s2,&DWP(8,$s3)); # load len 2100 &mov ($key,&DWP(12,$s3)); # load key 2101 &mov ($acc,&DWP(16,$s3)); # load ivp 2102 &mov ($s3,&DWP(20,$s3)); # load enc flag 2103 2104 &mov ($_inp,$s0); # save copy of inp 2105 &mov ($_out,$s1); # save copy of out 2106 &mov ($_len,$s2); # save copy of len 2107 &mov ($_key,$key); # save copy of key 2108 &mov ($_ivp,$acc); # save copy of ivp 2109 2110 &mov ($mark,0); # copy of aes_key->rounds = 0; 2111 # do we copy key schedule to stack? 2112 &mov ($s1 eq "ebx" ? $s1 : "",$key); 2113 &mov ($s2 eq "ecx" ? $s2 : "",244/4); 2114 &sub ($s1,$tbl); 2115 &mov ("esi",$key); 2116 &and ($s1,0xfff); 2117 &lea ("edi",$aes_key); 2118 &cmp ($s1,2048+256); 2119 &jb (&label("do_copy")); 2120 &cmp ($s1,4096-244); 2121 &jb (&label("skip_copy")); 2122 &set_label("do_copy",4); 2123 &mov ($_key,"edi"); 2124 &data_word(0xA5F3F689); # rep movsd 2125 &set_label("skip_copy"); 2126 2127 &mov ($key,16); 2128 &set_label("prefetch_tbl",4); 2129 &mov ($s0,&DWP(0,$tbl)); 2130 &mov ($s1,&DWP(32,$tbl)); 2131 &mov ($s2,&DWP(64,$tbl)); 2132 &mov ($acc,&DWP(96,$tbl)); 2133 &lea ($tbl,&DWP(128,$tbl)); 2134 &sub ($key,1); 2135 &jnz (&label("prefetch_tbl")); 2136 &sub ($tbl,2048); 2137 2138 &mov ($acc,$_inp); 2139 &mov ($key,$_ivp); 2140 2141 &cmp ($s3,0); 2142 &je (&label("fast_decrypt")); 2143 2144#----------------------------- ENCRYPT -----------------------------# 2145 &mov ($s0,&DWP(0,$key)); # load iv 2146 &mov ($s1,&DWP(4,$key)); 2147 2148 &set_label("fast_enc_loop",16); 2149 &mov ($s2,&DWP(8,$key)); 2150 &mov ($s3,&DWP(12,$key)); 2151 2152 &xor ($s0,&DWP(0,$acc)); # xor input data 2153 &xor ($s1,&DWP(4,$acc)); 2154 &xor ($s2,&DWP(8,$acc)); 2155 &xor ($s3,&DWP(12,$acc)); 2156 2157 &mov ($key,$_key); # load key 2158 &call ("_x86_AES_encrypt"); 2159 2160 &mov ($acc,$_inp); # load inp 2161 &mov ($key,$_out); # load out 2162 2163 &mov (&DWP(0,$key),$s0); # save output data 2164 &mov (&DWP(4,$key),$s1); 2165 &mov (&DWP(8,$key),$s2); 2166 &mov (&DWP(12,$key),$s3); 2167 2168 &lea ($acc,&DWP(16,$acc)); # advance inp 2169 &mov ($s2,$_len); # load len 2170 &mov ($_inp,$acc); # save inp 2171 &lea ($s3,&DWP(16,$key)); # advance out 2172 &mov ($_out,$s3); # save out 2173 &sub ($s2,16); # decrease len 2174 &mov ($_len,$s2); # save len 2175 &jnz (&label("fast_enc_loop")); 2176 &mov ($acc,$_ivp); # load ivp 2177 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords 2178 &mov ($s3,&DWP(12,$key)); 2179 &mov (&DWP(0,$acc),$s0); # save ivec 2180 &mov (&DWP(4,$acc),$s1); 2181 &mov (&DWP(8,$acc),$s2); 2182 &mov (&DWP(12,$acc),$s3); 2183 2184 &cmp ($mark,0); # was the key schedule copied? 2185 &mov ("edi",$_key); 2186 &je (&label("skip_ezero")); 2187 # zero copy of key schedule 2188 &mov ("ecx",240/4); 2189 &xor ("eax","eax"); 2190 &align (4); 2191 &data_word(0xABF3F689); # rep stosd 2192 &set_label("skip_ezero"); 2193 &mov ("esp",$_esp); 2194 &popf (); 2195 &set_label("drop_out"); 2196 &function_end_A(); 2197 &pushf (); # kludge, never executed 2198 2199#----------------------------- DECRYPT -----------------------------# 2200&set_label("fast_decrypt",16); 2201 2202 &cmp ($acc,$_out); 2203 &je (&label("fast_dec_in_place")); # in-place processing... 2204 2205 &mov ($_tmp,$key); 2206 2207 &align (4); 2208 &set_label("fast_dec_loop",16); 2209 &mov ($s0,&DWP(0,$acc)); # read input 2210 &mov ($s1,&DWP(4,$acc)); 2211 &mov ($s2,&DWP(8,$acc)); 2212 &mov ($s3,&DWP(12,$acc)); 2213 2214 &mov ($key,$_key); # load key 2215 &call ("_x86_AES_decrypt"); 2216 2217 &mov ($key,$_tmp); # load ivp 2218 &mov ($acc,$_len); # load len 2219 &xor ($s0,&DWP(0,$key)); # xor iv 2220 &xor ($s1,&DWP(4,$key)); 2221 &xor ($s2,&DWP(8,$key)); 2222 &xor ($s3,&DWP(12,$key)); 2223 2224 &mov ($key,$_out); # load out 2225 &mov ($acc,$_inp); # load inp 2226 2227 &mov (&DWP(0,$key),$s0); # write output 2228 &mov (&DWP(4,$key),$s1); 2229 &mov (&DWP(8,$key),$s2); 2230 &mov (&DWP(12,$key),$s3); 2231 2232 &mov ($s2,$_len); # load len 2233 &mov ($_tmp,$acc); # save ivp 2234 &lea ($acc,&DWP(16,$acc)); # advance inp 2235 &mov ($_inp,$acc); # save inp 2236 &lea ($key,&DWP(16,$key)); # advance out 2237 &mov ($_out,$key); # save out 2238 &sub ($s2,16); # decrease len 2239 &mov ($_len,$s2); # save len 2240 &jnz (&label("fast_dec_loop")); 2241 &mov ($key,$_tmp); # load temp ivp 2242 &mov ($acc,$_ivp); # load user ivp 2243 &mov ($s0,&DWP(0,$key)); # load iv 2244 &mov ($s1,&DWP(4,$key)); 2245 &mov ($s2,&DWP(8,$key)); 2246 &mov ($s3,&DWP(12,$key)); 2247 &mov (&DWP(0,$acc),$s0); # copy back to user 2248 &mov (&DWP(4,$acc),$s1); 2249 &mov (&DWP(8,$acc),$s2); 2250 &mov (&DWP(12,$acc),$s3); 2251 &jmp (&label("fast_dec_out")); 2252 2253 &set_label("fast_dec_in_place",16); 2254 &set_label("fast_dec_in_place_loop"); 2255 &mov ($s0,&DWP(0,$acc)); # read input 2256 &mov ($s1,&DWP(4,$acc)); 2257 &mov ($s2,&DWP(8,$acc)); 2258 &mov ($s3,&DWP(12,$acc)); 2259 2260 &lea ($key,$ivec); 2261 &mov (&DWP(0,$key),$s0); # copy to temp 2262 &mov (&DWP(4,$key),$s1); 2263 &mov (&DWP(8,$key),$s2); 2264 &mov (&DWP(12,$key),$s3); 2265 2266 &mov ($key,$_key); # load key 2267 &call ("_x86_AES_decrypt"); 2268 2269 &mov ($key,$_ivp); # load ivp 2270 &mov ($acc,$_out); # load out 2271 &xor ($s0,&DWP(0,$key)); # xor iv 2272 &xor ($s1,&DWP(4,$key)); 2273 &xor ($s2,&DWP(8,$key)); 2274 &xor ($s3,&DWP(12,$key)); 2275 2276 &mov (&DWP(0,$acc),$s0); # write output 2277 &mov (&DWP(4,$acc),$s1); 2278 &mov (&DWP(8,$acc),$s2); 2279 &mov (&DWP(12,$acc),$s3); 2280 2281 &lea ($acc,&DWP(16,$acc)); # advance out 2282 &mov ($_out,$acc); # save out 2283 2284 &lea ($acc,$ivec); 2285 &mov ($s0,&DWP(0,$acc)); # read temp 2286 &mov ($s1,&DWP(4,$acc)); 2287 &mov ($s2,&DWP(8,$acc)); 2288 &mov ($s3,&DWP(12,$acc)); 2289 2290 &mov (&DWP(0,$key),$s0); # copy iv 2291 &mov (&DWP(4,$key),$s1); 2292 &mov (&DWP(8,$key),$s2); 2293 &mov (&DWP(12,$key),$s3); 2294 2295 &mov ($acc,$_inp); # load inp 2296 &mov ($s2,$_len); # load len 2297 &lea ($acc,&DWP(16,$acc)); # advance inp 2298 &mov ($_inp,$acc); # save inp 2299 &sub ($s2,16); # decrease len 2300 &mov ($_len,$s2); # save len 2301 &jnz (&label("fast_dec_in_place_loop")); 2302 2303 &set_label("fast_dec_out",4); 2304 &cmp ($mark,0); # was the key schedule copied? 2305 &mov ("edi",$_key); 2306 &je (&label("skip_dzero")); 2307 # zero copy of key schedule 2308 &mov ("ecx",240/4); 2309 &xor ("eax","eax"); 2310 &align (4); 2311 &data_word(0xABF3F689); # rep stosd 2312 &set_label("skip_dzero"); 2313 &mov ("esp",$_esp); 2314 &popf (); 2315 &function_end_A(); 2316 &pushf (); # kludge, never executed 2317 2318#--------------------------- SLOW ROUTINE ---------------------------# 2319&set_label("slow_way",16); 2320 2321 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap 2322 &mov ($key,&wparam(3)); # load key 2323 2324 # pre-allocate aligned stack frame... 2325 &lea ($acc,&DWP(-80,"esp")); 2326 &and ($acc,-64); 2327 2328 # ... and make sure it doesn't alias with $key modulo 1024 2329 &lea ($s1,&DWP(-80-63,$key)); 2330 &sub ($s1,$acc); 2331 &neg ($s1); 2332 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line 2333 &sub ($acc,$s1); 2334 2335 # pick S-box copy which can't overlap with stack frame or $key 2336 &lea ($s1,&DWP(768,$acc)); 2337 &sub ($s1,$tbl); 2338 &and ($s1,0x300); 2339 &lea ($tbl,&DWP(2048+128,$tbl,$s1)); 2340 2341 &lea ($s3,&wparam(0)); # pointer to parameter block 2342 2343 &exch ("esp",$acc); 2344 &add ("esp",4); # reserve for return address! 2345 &mov ($_tbl,$tbl); # save %ebp 2346 &mov ($_esp,$acc); # save %esp 2347 &mov ($_tmp,$s0); # save OPENSSL_ia32cap 2348 2349 &mov ($s0,&DWP(0,$s3)); # load inp 2350 &mov ($s1,&DWP(4,$s3)); # load out 2351 #&mov ($s2,&DWP(8,$s3)); # load len 2352 #&mov ($key,&DWP(12,$s3)); # load key 2353 &mov ($acc,&DWP(16,$s3)); # load ivp 2354 &mov ($s3,&DWP(20,$s3)); # load enc flag 2355 2356 &mov ($_inp,$s0); # save copy of inp 2357 &mov ($_out,$s1); # save copy of out 2358 &mov ($_len,$s2); # save copy of len 2359 &mov ($_key,$key); # save copy of key 2360 &mov ($_ivp,$acc); # save copy of ivp 2361 2362 &mov ($key,$acc); 2363 &mov ($acc,$s0); 2364 2365 &cmp ($s3,0); 2366 &je (&label("slow_decrypt")); 2367 2368#--------------------------- SLOW ENCRYPT ---------------------------# 2369 &cmp ($s2,16); 2370 &mov ($s3,$s1); 2371 &jb (&label("slow_enc_tail")); 2372 2373 if (!$x86only) { 2374 &bt ($_tmp,25); # check for SSE bit 2375 &jnc (&label("slow_enc_x86")); 2376 2377 &movq ("mm0",&QWP(0,$key)); # load iv 2378 &movq ("mm4",&QWP(8,$key)); 2379 2380 &set_label("slow_enc_loop_sse",16); 2381 &pxor ("mm0",&QWP(0,$acc)); # xor input data 2382 &pxor ("mm4",&QWP(8,$acc)); 2383 2384 &mov ($key,$_key); 2385 &call ("_sse_AES_encrypt_compact"); 2386 2387 &mov ($acc,$_inp); # load inp 2388 &mov ($key,$_out); # load out 2389 &mov ($s2,$_len); # load len 2390 2391 &movq (&QWP(0,$key),"mm0"); # save output data 2392 &movq (&QWP(8,$key),"mm4"); 2393 2394 &lea ($acc,&DWP(16,$acc)); # advance inp 2395 &mov ($_inp,$acc); # save inp 2396 &lea ($s3,&DWP(16,$key)); # advance out 2397 &mov ($_out,$s3); # save out 2398 &sub ($s2,16); # decrease len 2399 &cmp ($s2,16); 2400 &mov ($_len,$s2); # save len 2401 &jae (&label("slow_enc_loop_sse")); 2402 &test ($s2,15); 2403 &jnz (&label("slow_enc_tail")); 2404 &mov ($acc,$_ivp); # load ivp 2405 &movq (&QWP(0,$acc),"mm0"); # save ivec 2406 &movq (&QWP(8,$acc),"mm4"); 2407 &emms (); 2408 &mov ("esp",$_esp); 2409 &popf (); 2410 &function_end_A(); 2411 &pushf (); # kludge, never executed 2412 } 2413 &set_label("slow_enc_x86",16); 2414 &mov ($s0,&DWP(0,$key)); # load iv 2415 &mov ($s1,&DWP(4,$key)); 2416 2417 &set_label("slow_enc_loop_x86",4); 2418 &mov ($s2,&DWP(8,$key)); 2419 &mov ($s3,&DWP(12,$key)); 2420 2421 &xor ($s0,&DWP(0,$acc)); # xor input data 2422 &xor ($s1,&DWP(4,$acc)); 2423 &xor ($s2,&DWP(8,$acc)); 2424 &xor ($s3,&DWP(12,$acc)); 2425 2426 &mov ($key,$_key); # load key 2427 &call ("_x86_AES_encrypt_compact"); 2428 2429 &mov ($acc,$_inp); # load inp 2430 &mov ($key,$_out); # load out 2431 2432 &mov (&DWP(0,$key),$s0); # save output data 2433 &mov (&DWP(4,$key),$s1); 2434 &mov (&DWP(8,$key),$s2); 2435 &mov (&DWP(12,$key),$s3); 2436 2437 &mov ($s2,$_len); # load len 2438 &lea ($acc,&DWP(16,$acc)); # advance inp 2439 &mov ($_inp,$acc); # save inp 2440 &lea ($s3,&DWP(16,$key)); # advance out 2441 &mov ($_out,$s3); # save out 2442 &sub ($s2,16); # decrease len 2443 &cmp ($s2,16); 2444 &mov ($_len,$s2); # save len 2445 &jae (&label("slow_enc_loop_x86")); 2446 &test ($s2,15); 2447 &jnz (&label("slow_enc_tail")); 2448 &mov ($acc,$_ivp); # load ivp 2449 &mov ($s2,&DWP(8,$key)); # restore last dwords 2450 &mov ($s3,&DWP(12,$key)); 2451 &mov (&DWP(0,$acc),$s0); # save ivec 2452 &mov (&DWP(4,$acc),$s1); 2453 &mov (&DWP(8,$acc),$s2); 2454 &mov (&DWP(12,$acc),$s3); 2455 2456 &mov ("esp",$_esp); 2457 &popf (); 2458 &function_end_A(); 2459 &pushf (); # kludge, never executed 2460 2461 &set_label("slow_enc_tail",16); 2462 &emms () if (!$x86only); 2463 &mov ($key eq "edi"? $key:"",$s3); # load out to edi 2464 &mov ($s1,16); 2465 &sub ($s1,$s2); 2466 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp 2467 &je (&label("enc_in_place")); 2468 &align (4); 2469 &data_word(0xA4F3F689); # rep movsb # copy input 2470 &jmp (&label("enc_skip_in_place")); 2471 &set_label("enc_in_place"); 2472 &lea ($key,&DWP(0,$key,$s2)); 2473 &set_label("enc_skip_in_place"); 2474 &mov ($s2,$s1); 2475 &xor ($s0,$s0); 2476 &align (4); 2477 &data_word(0xAAF3F689); # rep stosb # zero tail 2478 2479 &mov ($key,$_ivp); # restore ivp 2480 &mov ($acc,$s3); # output as input 2481 &mov ($s0,&DWP(0,$key)); 2482 &mov ($s1,&DWP(4,$key)); 2483 &mov ($_len,16); # len=16 2484 &jmp (&label("slow_enc_loop_x86")); # one more spin... 2485 2486#--------------------------- SLOW DECRYPT ---------------------------# 2487&set_label("slow_decrypt",16); 2488 if (!$x86only) { 2489 &bt ($_tmp,25); # check for SSE bit 2490 &jnc (&label("slow_dec_loop_x86")); 2491 2492 &set_label("slow_dec_loop_sse",4); 2493 &movq ("mm0",&QWP(0,$acc)); # read input 2494 &movq ("mm4",&QWP(8,$acc)); 2495 2496 &mov ($key,$_key); 2497 &call ("_sse_AES_decrypt_compact"); 2498 2499 &mov ($acc,$_inp); # load inp 2500 &lea ($s0,$ivec); 2501 &mov ($s1,$_out); # load out 2502 &mov ($s2,$_len); # load len 2503 &mov ($key,$_ivp); # load ivp 2504 2505 &movq ("mm1",&QWP(0,$acc)); # re-read input 2506 &movq ("mm5",&QWP(8,$acc)); 2507 2508 &pxor ("mm0",&QWP(0,$key)); # xor iv 2509 &pxor ("mm4",&QWP(8,$key)); 2510 2511 &movq (&QWP(0,$key),"mm1"); # copy input to iv 2512 &movq (&QWP(8,$key),"mm5"); 2513 2514 &sub ($s2,16); # decrease len 2515 &jc (&label("slow_dec_partial_sse")); 2516 2517 &movq (&QWP(0,$s1),"mm0"); # write output 2518 &movq (&QWP(8,$s1),"mm4"); 2519 2520 &lea ($s1,&DWP(16,$s1)); # advance out 2521 &mov ($_out,$s1); # save out 2522 &lea ($acc,&DWP(16,$acc)); # advance inp 2523 &mov ($_inp,$acc); # save inp 2524 &mov ($_len,$s2); # save len 2525 &jnz (&label("slow_dec_loop_sse")); 2526 &emms (); 2527 &mov ("esp",$_esp); 2528 &popf (); 2529 &function_end_A(); 2530 &pushf (); # kludge, never executed 2531 2532 &set_label("slow_dec_partial_sse",16); 2533 &movq (&QWP(0,$s0),"mm0"); # save output to temp 2534 &movq (&QWP(8,$s0),"mm4"); 2535 &emms (); 2536 2537 &add ($s2 eq "ecx" ? "ecx":"",16); 2538 &mov ("edi",$s1); # out 2539 &mov ("esi",$s0); # temp 2540 &align (4); 2541 &data_word(0xA4F3F689); # rep movsb # copy partial output 2542 2543 &mov ("esp",$_esp); 2544 &popf (); 2545 &function_end_A(); 2546 &pushf (); # kludge, never executed 2547 } 2548 &set_label("slow_dec_loop_x86",16); 2549 &mov ($s0,&DWP(0,$acc)); # read input 2550 &mov ($s1,&DWP(4,$acc)); 2551 &mov ($s2,&DWP(8,$acc)); 2552 &mov ($s3,&DWP(12,$acc)); 2553 2554 &lea ($key,$ivec); 2555 &mov (&DWP(0,$key),$s0); # copy to temp 2556 &mov (&DWP(4,$key),$s1); 2557 &mov (&DWP(8,$key),$s2); 2558 &mov (&DWP(12,$key),$s3); 2559 2560 &mov ($key,$_key); # load key 2561 &call ("_x86_AES_decrypt_compact"); 2562 2563 &mov ($key,$_ivp); # load ivp 2564 &mov ($acc,$_len); # load len 2565 &xor ($s0,&DWP(0,$key)); # xor iv 2566 &xor ($s1,&DWP(4,$key)); 2567 &xor ($s2,&DWP(8,$key)); 2568 &xor ($s3,&DWP(12,$key)); 2569 2570 &sub ($acc,16); 2571 &jc (&label("slow_dec_partial_x86")); 2572 2573 &mov ($_len,$acc); # save len 2574 &mov ($acc,$_out); # load out 2575 2576 &mov (&DWP(0,$acc),$s0); # write output 2577 &mov (&DWP(4,$acc),$s1); 2578 &mov (&DWP(8,$acc),$s2); 2579 &mov (&DWP(12,$acc),$s3); 2580 2581 &lea ($acc,&DWP(16,$acc)); # advance out 2582 &mov ($_out,$acc); # save out 2583 2584 &lea ($acc,$ivec); 2585 &mov ($s0,&DWP(0,$acc)); # read temp 2586 &mov ($s1,&DWP(4,$acc)); 2587 &mov ($s2,&DWP(8,$acc)); 2588 &mov ($s3,&DWP(12,$acc)); 2589 2590 &mov (&DWP(0,$key),$s0); # copy it to iv 2591 &mov (&DWP(4,$key),$s1); 2592 &mov (&DWP(8,$key),$s2); 2593 &mov (&DWP(12,$key),$s3); 2594 2595 &mov ($acc,$_inp); # load inp 2596 &lea ($acc,&DWP(16,$acc)); # advance inp 2597 &mov ($_inp,$acc); # save inp 2598 &jnz (&label("slow_dec_loop_x86")); 2599 &mov ("esp",$_esp); 2600 &popf (); 2601 &function_end_A(); 2602 &pushf (); # kludge, never executed 2603 2604 &set_label("slow_dec_partial_x86",16); 2605 &lea ($acc,$ivec); 2606 &mov (&DWP(0,$acc),$s0); # save output to temp 2607 &mov (&DWP(4,$acc),$s1); 2608 &mov (&DWP(8,$acc),$s2); 2609 &mov (&DWP(12,$acc),$s3); 2610 2611 &mov ($acc,$_inp); 2612 &mov ($s0,&DWP(0,$acc)); # re-read input 2613 &mov ($s1,&DWP(4,$acc)); 2614 &mov ($s2,&DWP(8,$acc)); 2615 &mov ($s3,&DWP(12,$acc)); 2616 2617 &mov (&DWP(0,$key),$s0); # copy it to iv 2618 &mov (&DWP(4,$key),$s1); 2619 &mov (&DWP(8,$key),$s2); 2620 &mov (&DWP(12,$key),$s3); 2621 2622 &mov ("ecx",$_len); 2623 &mov ("edi",$_out); 2624 &lea ("esi",$ivec); 2625 &align (4); 2626 &data_word(0xA4F3F689); # rep movsb # copy partial output 2627 2628 &mov ("esp",$_esp); 2629 &popf (); 2630&function_end("asm_AES_cbc_encrypt"); 2631} 2632 2633#------------------------------------------------------------------# 2634 2635sub enckey() 2636{ 2637 &movz ("esi",&LB("edx")); # rk[i]>>0 2638 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2639 &movz ("esi",&HB("edx")); # rk[i]>>8 2640 &shl ("ebx",24); 2641 &xor ("eax","ebx"); 2642 2643 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2644 &shr ("edx",16); 2645 &movz ("esi",&LB("edx")); # rk[i]>>16 2646 &xor ("eax","ebx"); 2647 2648 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2649 &movz ("esi",&HB("edx")); # rk[i]>>24 2650 &shl ("ebx",8); 2651 &xor ("eax","ebx"); 2652 2653 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2654 &shl ("ebx",16); 2655 &xor ("eax","ebx"); 2656 2657 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon 2658} 2659 2660&function_begin("_x86_AES_set_encrypt_key"); 2661 &mov ("esi",&wparam(1)); # user supplied key 2662 &mov ("edi",&wparam(3)); # private key schedule 2663 2664 &test ("esi",-1); 2665 &jz (&label("badpointer")); 2666 &test ("edi",-1); 2667 &jz (&label("badpointer")); 2668 2669 &call (&label("pic_point")); 2670 &set_label("pic_point"); 2671 &blindpop($tbl); 2672 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); 2673 &lea ($tbl,&DWP(2048+128,$tbl)); 2674 2675 # prefetch Te4 2676 &mov ("eax",&DWP(0-128,$tbl)); 2677 &mov ("ebx",&DWP(32-128,$tbl)); 2678 &mov ("ecx",&DWP(64-128,$tbl)); 2679 &mov ("edx",&DWP(96-128,$tbl)); 2680 &mov ("eax",&DWP(128-128,$tbl)); 2681 &mov ("ebx",&DWP(160-128,$tbl)); 2682 &mov ("ecx",&DWP(192-128,$tbl)); 2683 &mov ("edx",&DWP(224-128,$tbl)); 2684 2685 &mov ("ecx",&wparam(2)); # number of bits in key 2686 &cmp ("ecx",128); 2687 &je (&label("10rounds")); 2688 &cmp ("ecx",192); 2689 &je (&label("12rounds")); 2690 &cmp ("ecx",256); 2691 &je (&label("14rounds")); 2692 &mov ("eax",-2); # invalid number of bits 2693 &jmp (&label("exit")); 2694 2695 &set_label("10rounds"); 2696 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords 2697 &mov ("ebx",&DWP(4,"esi")); 2698 &mov ("ecx",&DWP(8,"esi")); 2699 &mov ("edx",&DWP(12,"esi")); 2700 &mov (&DWP(0,"edi"),"eax"); 2701 &mov (&DWP(4,"edi"),"ebx"); 2702 &mov (&DWP(8,"edi"),"ecx"); 2703 &mov (&DWP(12,"edi"),"edx"); 2704 2705 &xor ("ecx","ecx"); 2706 &jmp (&label("10shortcut")); 2707 2708 &align (4); 2709 &set_label("10loop"); 2710 &mov ("eax",&DWP(0,"edi")); # rk[0] 2711 &mov ("edx",&DWP(12,"edi")); # rk[3] 2712 &set_label("10shortcut"); 2713 &enckey (); 2714 2715 &mov (&DWP(16,"edi"),"eax"); # rk[4] 2716 &xor ("eax",&DWP(4,"edi")); 2717 &mov (&DWP(20,"edi"),"eax"); # rk[5] 2718 &xor ("eax",&DWP(8,"edi")); 2719 &mov (&DWP(24,"edi"),"eax"); # rk[6] 2720 &xor ("eax",&DWP(12,"edi")); 2721 &mov (&DWP(28,"edi"),"eax"); # rk[7] 2722 &inc ("ecx"); 2723 &add ("edi",16); 2724 &cmp ("ecx",10); 2725 &jl (&label("10loop")); 2726 2727 &mov (&DWP(80,"edi"),10); # setup number of rounds 2728 &xor ("eax","eax"); 2729 &jmp (&label("exit")); 2730 2731 &set_label("12rounds"); 2732 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords 2733 &mov ("ebx",&DWP(4,"esi")); 2734 &mov ("ecx",&DWP(8,"esi")); 2735 &mov ("edx",&DWP(12,"esi")); 2736 &mov (&DWP(0,"edi"),"eax"); 2737 &mov (&DWP(4,"edi"),"ebx"); 2738 &mov (&DWP(8,"edi"),"ecx"); 2739 &mov (&DWP(12,"edi"),"edx"); 2740 &mov ("ecx",&DWP(16,"esi")); 2741 &mov ("edx",&DWP(20,"esi")); 2742 &mov (&DWP(16,"edi"),"ecx"); 2743 &mov (&DWP(20,"edi"),"edx"); 2744 2745 &xor ("ecx","ecx"); 2746 &jmp (&label("12shortcut")); 2747 2748 &align (4); 2749 &set_label("12loop"); 2750 &mov ("eax",&DWP(0,"edi")); # rk[0] 2751 &mov ("edx",&DWP(20,"edi")); # rk[5] 2752 &set_label("12shortcut"); 2753 &enckey (); 2754 2755 &mov (&DWP(24,"edi"),"eax"); # rk[6] 2756 &xor ("eax",&DWP(4,"edi")); 2757 &mov (&DWP(28,"edi"),"eax"); # rk[7] 2758 &xor ("eax",&DWP(8,"edi")); 2759 &mov (&DWP(32,"edi"),"eax"); # rk[8] 2760 &xor ("eax",&DWP(12,"edi")); 2761 &mov (&DWP(36,"edi"),"eax"); # rk[9] 2762 2763 &cmp ("ecx",7); 2764 &je (&label("12break")); 2765 &inc ("ecx"); 2766 2767 &xor ("eax",&DWP(16,"edi")); 2768 &mov (&DWP(40,"edi"),"eax"); # rk[10] 2769 &xor ("eax",&DWP(20,"edi")); 2770 &mov (&DWP(44,"edi"),"eax"); # rk[11] 2771 2772 &add ("edi",24); 2773 &jmp (&label("12loop")); 2774 2775 &set_label("12break"); 2776 &mov (&DWP(72,"edi"),12); # setup number of rounds 2777 &xor ("eax","eax"); 2778 &jmp (&label("exit")); 2779 2780 &set_label("14rounds"); 2781 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords 2782 &mov ("ebx",&DWP(4,"esi")); 2783 &mov ("ecx",&DWP(8,"esi")); 2784 &mov ("edx",&DWP(12,"esi")); 2785 &mov (&DWP(0,"edi"),"eax"); 2786 &mov (&DWP(4,"edi"),"ebx"); 2787 &mov (&DWP(8,"edi"),"ecx"); 2788 &mov (&DWP(12,"edi"),"edx"); 2789 &mov ("eax",&DWP(16,"esi")); 2790 &mov ("ebx",&DWP(20,"esi")); 2791 &mov ("ecx",&DWP(24,"esi")); 2792 &mov ("edx",&DWP(28,"esi")); 2793 &mov (&DWP(16,"edi"),"eax"); 2794 &mov (&DWP(20,"edi"),"ebx"); 2795 &mov (&DWP(24,"edi"),"ecx"); 2796 &mov (&DWP(28,"edi"),"edx"); 2797 2798 &xor ("ecx","ecx"); 2799 &jmp (&label("14shortcut")); 2800 2801 &align (4); 2802 &set_label("14loop"); 2803 &mov ("edx",&DWP(28,"edi")); # rk[7] 2804 &set_label("14shortcut"); 2805 &mov ("eax",&DWP(0,"edi")); # rk[0] 2806 2807 &enckey (); 2808 2809 &mov (&DWP(32,"edi"),"eax"); # rk[8] 2810 &xor ("eax",&DWP(4,"edi")); 2811 &mov (&DWP(36,"edi"),"eax"); # rk[9] 2812 &xor ("eax",&DWP(8,"edi")); 2813 &mov (&DWP(40,"edi"),"eax"); # rk[10] 2814 &xor ("eax",&DWP(12,"edi")); 2815 &mov (&DWP(44,"edi"),"eax"); # rk[11] 2816 2817 &cmp ("ecx",6); 2818 &je (&label("14break")); 2819 &inc ("ecx"); 2820 2821 &mov ("edx","eax"); 2822 &mov ("eax",&DWP(16,"edi")); # rk[4] 2823 &movz ("esi",&LB("edx")); # rk[11]>>0 2824 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2825 &movz ("esi",&HB("edx")); # rk[11]>>8 2826 &xor ("eax","ebx"); 2827 2828 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2829 &shr ("edx",16); 2830 &shl ("ebx",8); 2831 &movz ("esi",&LB("edx")); # rk[11]>>16 2832 &xor ("eax","ebx"); 2833 2834 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2835 &movz ("esi",&HB("edx")); # rk[11]>>24 2836 &shl ("ebx",16); 2837 &xor ("eax","ebx"); 2838 2839 &movz ("ebx",&BP(-128,$tbl,"esi",1)); 2840 &shl ("ebx",24); 2841 &xor ("eax","ebx"); 2842 2843 &mov (&DWP(48,"edi"),"eax"); # rk[12] 2844 &xor ("eax",&DWP(20,"edi")); 2845 &mov (&DWP(52,"edi"),"eax"); # rk[13] 2846 &xor ("eax",&DWP(24,"edi")); 2847 &mov (&DWP(56,"edi"),"eax"); # rk[14] 2848 &xor ("eax",&DWP(28,"edi")); 2849 &mov (&DWP(60,"edi"),"eax"); # rk[15] 2850 2851 &add ("edi",32); 2852 &jmp (&label("14loop")); 2853 2854 &set_label("14break"); 2855 &mov (&DWP(48,"edi"),14); # setup number of rounds 2856 &xor ("eax","eax"); 2857 &jmp (&label("exit")); 2858 2859 &set_label("badpointer"); 2860 &mov ("eax",-1); 2861 &set_label("exit"); 2862&function_end("_x86_AES_set_encrypt_key"); 2863 2864# int asm_AES_set_encrypt_key(const unsigned char *userKey, const int bits, 2865# AES_KEY *key) 2866&function_begin_B("asm_AES_set_encrypt_key"); 2867 &call ("_x86_AES_set_encrypt_key"); 2868 &ret (); 2869&function_end_B("asm_AES_set_encrypt_key"); 2870 2871sub deckey() 2872{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_; 2873 my $tmp = $tbl; 2874 2875 &mov ($tmp,0x80808080); 2876 &and ($tmp,$tp1); 2877 &lea ($tp2,&DWP(0,$tp1,$tp1)); 2878 &mov ($acc,$tmp); 2879 &shr ($tmp,7); 2880 &sub ($acc,$tmp); 2881 &and ($tp2,0xfefefefe); 2882 &and ($acc,0x1b1b1b1b); 2883 &xor ($tp2,$acc); 2884 &mov ($tmp,0x80808080); 2885 2886 &and ($tmp,$tp2); 2887 &lea ($tp4,&DWP(0,$tp2,$tp2)); 2888 &mov ($acc,$tmp); 2889 &shr ($tmp,7); 2890 &sub ($acc,$tmp); 2891 &and ($tp4,0xfefefefe); 2892 &and ($acc,0x1b1b1b1b); 2893 &xor ($tp2,$tp1); # tp2^tp1 2894 &xor ($tp4,$acc); 2895 &mov ($tmp,0x80808080); 2896 2897 &and ($tmp,$tp4); 2898 &lea ($tp8,&DWP(0,$tp4,$tp4)); 2899 &mov ($acc,$tmp); 2900 &shr ($tmp,7); 2901 &xor ($tp4,$tp1); # tp4^tp1 2902 &sub ($acc,$tmp); 2903 &and ($tp8,0xfefefefe); 2904 &and ($acc,0x1b1b1b1b); 2905 &rotl ($tp1,8); # = ROTATE(tp1,8) 2906 &xor ($tp8,$acc); 2907 2908 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load 2909 2910 &xor ($tp1,$tp2); 2911 &xor ($tp2,$tp8); 2912 &xor ($tp1,$tp4); 2913 &rotl ($tp2,24); 2914 &xor ($tp4,$tp8); 2915 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) 2916 &rotl ($tp4,16); 2917 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24) 2918 &rotl ($tp8,8); 2919 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16) 2920 &mov ($tp2,$tmp); 2921 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8) 2922 2923 &mov (&DWP(4*$i,$key),$tp1); 2924} 2925 2926# int asm_AES_set_decrypt_key(const unsigned char *userKey, const int bits, 2927# AES_KEY *key) 2928&function_begin_B("asm_AES_set_decrypt_key"); 2929 &call ("_x86_AES_set_encrypt_key"); 2930 &cmp ("eax",0); 2931 &je (&label("proceed")); 2932 &ret (); 2933 2934 &set_label("proceed"); 2935 &push ("ebp"); 2936 &push ("ebx"); 2937 &push ("esi"); 2938 &push ("edi"); 2939 2940 &mov ("esi",&wparam(2)); 2941 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds 2942 &lea ("ecx",&DWP(0,"","ecx",4)); 2943 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk 2944 2945 &set_label("invert",4); # invert order of chunks 2946 &mov ("eax",&DWP(0,"esi")); 2947 &mov ("ebx",&DWP(4,"esi")); 2948 &mov ("ecx",&DWP(0,"edi")); 2949 &mov ("edx",&DWP(4,"edi")); 2950 &mov (&DWP(0,"edi"),"eax"); 2951 &mov (&DWP(4,"edi"),"ebx"); 2952 &mov (&DWP(0,"esi"),"ecx"); 2953 &mov (&DWP(4,"esi"),"edx"); 2954 &mov ("eax",&DWP(8,"esi")); 2955 &mov ("ebx",&DWP(12,"esi")); 2956 &mov ("ecx",&DWP(8,"edi")); 2957 &mov ("edx",&DWP(12,"edi")); 2958 &mov (&DWP(8,"edi"),"eax"); 2959 &mov (&DWP(12,"edi"),"ebx"); 2960 &mov (&DWP(8,"esi"),"ecx"); 2961 &mov (&DWP(12,"esi"),"edx"); 2962 &add ("esi",16); 2963 &sub ("edi",16); 2964 &cmp ("esi","edi"); 2965 &jne (&label("invert")); 2966 2967 &mov ($key,&wparam(2)); 2968 &mov ($acc,&DWP(240,$key)); # pull number of rounds 2969 &lea ($acc,&DWP(-2,$acc,$acc)); 2970 &lea ($acc,&DWP(0,$key,$acc,8)); 2971 &mov (&wparam(2),$acc); 2972 2973 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load 2974 &set_label("permute",4); # permute the key schedule 2975 &add ($key,16); 2976 &deckey (0,$key,$s0,$s1,$s2,$s3); 2977 &deckey (1,$key,$s1,$s2,$s3,$s0); 2978 &deckey (2,$key,$s2,$s3,$s0,$s1); 2979 &deckey (3,$key,$s3,$s0,$s1,$s2); 2980 &cmp ($key,&wparam(2)); 2981 &jb (&label("permute")); 2982 2983 &xor ("eax","eax"); # return success 2984&function_end("asm_AES_set_decrypt_key"); 2985&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>"); 2986 2987&asm_finish(); 2988