• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2008 The Android Open Source Project
3   * All rights reserved.
4   *
5   * Redistribution and use in source and binary forms, with or without
6   * modification, are permitted provided that the following conditions
7   * are met:
8   *  * Redistributions of source code must retain the above copyright
9   *    notice, this list of conditions and the following disclaimer.
10   *  * Redistributions in binary form must reproduce the above copyright
11   *    notice, this list of conditions and the following disclaimer in
12   *    the documentation and/or other materials provided with the
13   *    distribution.
14   *
15   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16   * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17   * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18   * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19   * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20   * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21   * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22   * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23   * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25   * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26   * SUCH DAMAGE.
27   */
28  #include <ctype.h>
29  #include <errno.h>
30  #include <fcntl.h>
31  #include <poll.h>
32  #include <stdatomic.h>
33  #include <stdbool.h>
34  #include <stddef.h>
35  #include <stdint.h>
36  #include <stdio.h>
37  #include <stdlib.h>
38  #include <string.h>
39  #include <unistd.h>
40  #include <new>
41  
42  #include <linux/xattr.h>
43  #include <netinet/in.h>
44  #include <sys/mman.h>
45  #include <sys/select.h>
46  #include <sys/socket.h>
47  #include <sys/stat.h>
48  #include <sys/types.h>
49  #include <sys/un.h>
50  #include <sys/xattr.h>
51  
52  #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_
53  #include <sys/_system_properties.h>
54  #include <sys/system_properties.h>
55  
56  #include "private/bionic_futex.h"
57  #include "private/bionic_lock.h"
58  #include "private/bionic_macros.h"
59  #include "private/libc_logging.h"
60  
61  static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME;
62  
63  
64  /*
65   * Properties are stored in a hybrid trie/binary tree structure.
66   * Each property's name is delimited at '.' characters, and the tokens are put
67   * into a trie structure.  Siblings at each level of the trie are stored in a
68   * binary tree.  For instance, "ro.secure"="1" could be stored as follows:
69   *
70   * +-----+   children    +----+   children    +--------+
71   * |     |-------------->| ro |-------------->| secure |
72   * +-----+               +----+               +--------+
73   *                       /    \                /   |
74   *                 left /      \ right   left /    |  prop   +===========+
75   *                     v        v            v     +-------->| ro.secure |
76   *                  +-----+   +-----+     +-----+            +-----------+
77   *                  | net |   | sys |     | com |            |     1     |
78   *                  +-----+   +-----+     +-----+            +===========+
79   */
80  
81  // Represents a node in the trie.
82  struct prop_bt {
83      uint8_t namelen;
84      uint8_t reserved[3];
85  
86      // The property trie is updated only by the init process (single threaded) which provides
87      // property service. And it can be read by multiple threads at the same time.
88      // As the property trie is not protected by locks, we use atomic_uint_least32_t types for the
89      // left, right, children "pointers" in the trie node. To make sure readers who see the
90      // change of "pointers" can also notice the change of prop_bt structure contents pointed by
91      // the "pointers", we always use release-consume ordering pair when accessing these "pointers".
92  
93      // prop "points" to prop_info structure if there is a propery associated with the trie node.
94      // Its situation is similar to the left, right, children "pointers". So we use
95      // atomic_uint_least32_t and release-consume ordering to protect it as well.
96  
97      // We should also avoid rereading these fields redundantly, since not
98      // all processor implementations ensure that multiple loads from the
99      // same field are carried out in the right order.
100      atomic_uint_least32_t prop;
101  
102      atomic_uint_least32_t left;
103      atomic_uint_least32_t right;
104  
105      atomic_uint_least32_t children;
106  
107      char name[0];
108  
prop_btprop_bt109      prop_bt(const char *name, const uint8_t name_length) {
110          this->namelen = name_length;
111          memcpy(this->name, name, name_length);
112          this->name[name_length] = '\0';
113      }
114  
115  private:
116      DISALLOW_COPY_AND_ASSIGN(prop_bt);
117  };
118  
119  class prop_area {
120  public:
121  
prop_area(const uint32_t magic,const uint32_t version)122      prop_area(const uint32_t magic, const uint32_t version) :
123          magic_(magic), version_(version) {
124          atomic_init(&serial_, 0);
125          memset(reserved_, 0, sizeof(reserved_));
126          // Allocate enough space for the root node.
127          bytes_used_ = sizeof(prop_bt);
128      }
129  
130      const prop_info *find(const char *name);
131      bool add(const char *name, unsigned int namelen,
132               const char *value, unsigned int valuelen);
133  
134      bool foreach(void (*propfn)(const prop_info *pi, void *cookie), void *cookie);
135  
serial()136      atomic_uint_least32_t *serial() { return &serial_; }
magic() const137      uint32_t magic() const { return magic_; }
version() const138      uint32_t version() const { return version_; }
139  
140  private:
141      void *allocate_obj(const size_t size, uint_least32_t *const off);
142      prop_bt *new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off);
143      prop_info *new_prop_info(const char *name, uint8_t namelen,
144                               const char *value, uint8_t valuelen,
145                               uint_least32_t *const off);
146      void *to_prop_obj(uint_least32_t off);
147      prop_bt *to_prop_bt(atomic_uint_least32_t *off_p);
148      prop_info *to_prop_info(atomic_uint_least32_t *off_p);
149  
150      prop_bt *root_node();
151  
152      prop_bt *find_prop_bt(prop_bt *const bt, const char *name,
153                            uint8_t namelen, bool alloc_if_needed);
154  
155      const prop_info *find_property(prop_bt *const trie, const char *name,
156                                     uint8_t namelen, const char *value,
157                                     uint8_t valuelen, bool alloc_if_needed);
158  
159      bool foreach_property(prop_bt *const trie,
160                            void (*propfn)(const prop_info *pi, void *cookie),
161                            void *cookie);
162  
163      uint32_t bytes_used_;
164      atomic_uint_least32_t serial_;
165      uint32_t magic_;
166      uint32_t version_;
167      uint32_t reserved_[28];
168      char data_[0];
169  
170      DISALLOW_COPY_AND_ASSIGN(prop_area);
171  };
172  
173  struct prop_info {
174      atomic_uint_least32_t serial;
175      char value[PROP_VALUE_MAX];
176      char name[0];
177  
prop_infoprop_info178      prop_info(const char *name, const uint8_t namelen, const char *value,
179                const uint8_t valuelen) {
180          memcpy(this->name, name, namelen);
181          this->name[namelen] = '\0';
182          atomic_init(&this->serial, valuelen << 24);
183          memcpy(this->value, value, valuelen);
184          this->value[valuelen] = '\0';
185      }
186  private:
187      DISALLOW_COPY_AND_ASSIGN(prop_info);
188  };
189  
190  struct find_nth_cookie {
191      uint32_t count;
192      const uint32_t n;
193      const prop_info *pi;
194  
find_nth_cookiefind_nth_cookie195      find_nth_cookie(uint32_t n) : count(0), n(n), pi(NULL) {
196      }
197  };
198  
199  static char property_filename[PROP_FILENAME_MAX] = PROP_FILENAME;
200  static bool compat_mode = false;
201  static size_t pa_data_size;
202  static size_t pa_size;
203  static bool initialized = false;
204  
205  // NOTE: This isn't static because system_properties_compat.c
206  // requires it.
207  prop_area *__system_property_area__ = NULL;
208  
get_fd_from_env(void)209  static int get_fd_from_env(void)
210  {
211      // This environment variable consistes of two decimal integer
212      // values separated by a ",". The first value is a file descriptor
213      // and the second is the size of the system properties area. The
214      // size is currently unused.
215      char *env = getenv("ANDROID_PROPERTY_WORKSPACE");
216  
217      if (!env) {
218          return -1;
219      }
220  
221      return atoi(env);
222  }
223  
map_prop_area_rw(const char * filename,const char * context,bool * fsetxattr_failed)224  static prop_area* map_prop_area_rw(const char* filename, const char* context,
225                                     bool* fsetxattr_failed) {
226      /* dev is a tmpfs that we can use to carve a shared workspace
227       * out of, so let's do that...
228       */
229      const int fd = open(filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444);
230  
231      if (fd < 0) {
232          if (errno == EACCES) {
233              /* for consistency with the case where the process has already
234               * mapped the page in and segfaults when trying to write to it
235               */
236              abort();
237          }
238          return nullptr;
239      }
240  
241      if (context) {
242          if (fsetxattr(fd, XATTR_NAME_SELINUX, context, strlen(context) + 1, 0) != 0) {
243              __libc_format_log(ANDROID_LOG_ERROR, "libc",
244                                "fsetxattr failed to set context (%s) for \"%s\"", context, filename);
245              /*
246               * fsetxattr() will fail during system properties tests due to selinux policy.
247               * We do not want to create a custom policy for the tester, so we will continue in
248               * this function but set a flag that an error has occurred.
249               * Init, which is the only daemon that should ever call this function will abort
250               * when this error occurs.
251               * Otherwise, the tester will ignore it and continue, albeit without any selinux
252               * property separation.
253               */
254              if (fsetxattr_failed) {
255                  *fsetxattr_failed = true;
256              }
257          }
258      }
259  
260      if (ftruncate(fd, PA_SIZE) < 0) {
261          close(fd);
262          return nullptr;
263      }
264  
265      pa_size = PA_SIZE;
266      pa_data_size = pa_size - sizeof(prop_area);
267      compat_mode = false;
268  
269      void *const memory_area = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
270      if (memory_area == MAP_FAILED) {
271          close(fd);
272          return nullptr;
273      }
274  
275      prop_area *pa = new(memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION);
276  
277      close(fd);
278      return pa;
279  }
280  
map_fd_ro(const int fd)281  static prop_area* map_fd_ro(const int fd) {
282      struct stat fd_stat;
283      if (fstat(fd, &fd_stat) < 0) {
284          return nullptr;
285      }
286  
287      if ((fd_stat.st_uid != 0)
288              || (fd_stat.st_gid != 0)
289              || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0)
290              || (fd_stat.st_size < static_cast<off_t>(sizeof(prop_area))) ) {
291          return nullptr;
292      }
293  
294      pa_size = fd_stat.st_size;
295      pa_data_size = pa_size - sizeof(prop_area);
296  
297      void* const map_result = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0);
298      if (map_result == MAP_FAILED) {
299          return nullptr;
300      }
301  
302      prop_area* pa = reinterpret_cast<prop_area*>(map_result);
303      if ((pa->magic() != PROP_AREA_MAGIC) ||
304          (pa->version() != PROP_AREA_VERSION &&
305           pa->version() != PROP_AREA_VERSION_COMPAT)) {
306          munmap(pa, pa_size);
307          return nullptr;
308      }
309  
310      if (pa->version() == PROP_AREA_VERSION_COMPAT) {
311          compat_mode = true;
312      }
313  
314      return pa;
315  }
316  
map_prop_area(const char * filename,bool is_legacy)317  static prop_area* map_prop_area(const char* filename, bool is_legacy) {
318      int fd = open(filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY);
319      bool close_fd = true;
320      if (fd == -1 && errno == ENOENT && is_legacy) {
321          /*
322           * For backwards compatibility, if the file doesn't
323           * exist, we use the environment to get the file descriptor.
324           * For security reasons, we only use this backup if the kernel
325           * returns ENOENT. We don't want to use the backup if the kernel
326           * returns other errors such as ENOMEM or ENFILE, since it
327           * might be possible for an external program to trigger this
328           * condition.
329           * Only do this for the legacy prop file, secured prop files
330           * do not have a backup
331           */
332          fd = get_fd_from_env();
333          close_fd = false;
334      }
335  
336      if (fd < 0) {
337          return nullptr;
338      }
339  
340      prop_area* map_result = map_fd_ro(fd);
341      if (close_fd) {
342          close(fd);
343      }
344  
345      return map_result;
346  }
347  
allocate_obj(const size_t size,uint_least32_t * const off)348  void *prop_area::allocate_obj(const size_t size, uint_least32_t *const off)
349  {
350      const size_t aligned = BIONIC_ALIGN(size, sizeof(uint_least32_t));
351      if (bytes_used_ + aligned > pa_data_size) {
352          return NULL;
353      }
354  
355      *off = bytes_used_;
356      bytes_used_ += aligned;
357      return data_ + *off;
358  }
359  
new_prop_bt(const char * name,uint8_t namelen,uint_least32_t * const off)360  prop_bt *prop_area::new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off)
361  {
362      uint_least32_t new_offset;
363      void *const p = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset);
364      if (p != NULL) {
365          prop_bt* bt = new(p) prop_bt(name, namelen);
366          *off = new_offset;
367          return bt;
368      }
369  
370      return NULL;
371  }
372  
new_prop_info(const char * name,uint8_t namelen,const char * value,uint8_t valuelen,uint_least32_t * const off)373  prop_info *prop_area::new_prop_info(const char *name, uint8_t namelen,
374          const char *value, uint8_t valuelen, uint_least32_t *const off)
375  {
376      uint_least32_t new_offset;
377      void* const p = allocate_obj(sizeof(prop_info) + namelen + 1, &new_offset);
378      if (p != NULL) {
379          prop_info* info = new(p) prop_info(name, namelen, value, valuelen);
380          *off = new_offset;
381          return info;
382      }
383  
384      return NULL;
385  }
386  
to_prop_obj(uint_least32_t off)387  void *prop_area::to_prop_obj(uint_least32_t off)
388  {
389      if (off > pa_data_size)
390          return NULL;
391  
392      return (data_ + off);
393  }
394  
to_prop_bt(atomic_uint_least32_t * off_p)395  inline prop_bt *prop_area::to_prop_bt(atomic_uint_least32_t* off_p) {
396    uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume);
397    return reinterpret_cast<prop_bt*>(to_prop_obj(off));
398  }
399  
to_prop_info(atomic_uint_least32_t * off_p)400  inline prop_info *prop_area::to_prop_info(atomic_uint_least32_t* off_p) {
401    uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume);
402    return reinterpret_cast<prop_info*>(to_prop_obj(off));
403  }
404  
root_node()405  inline prop_bt *prop_area::root_node()
406  {
407      return reinterpret_cast<prop_bt*>(to_prop_obj(0));
408  }
409  
cmp_prop_name(const char * one,uint8_t one_len,const char * two,uint8_t two_len)410  static int cmp_prop_name(const char *one, uint8_t one_len, const char *two,
411          uint8_t two_len)
412  {
413      if (one_len < two_len)
414          return -1;
415      else if (one_len > two_len)
416          return 1;
417      else
418          return strncmp(one, two, one_len);
419  }
420  
find_prop_bt(prop_bt * const bt,const char * name,uint8_t namelen,bool alloc_if_needed)421  prop_bt *prop_area::find_prop_bt(prop_bt *const bt, const char *name,
422                                   uint8_t namelen, bool alloc_if_needed)
423  {
424  
425      prop_bt* current = bt;
426      while (true) {
427          if (!current) {
428              return NULL;
429          }
430  
431          const int ret = cmp_prop_name(name, namelen, current->name, current->namelen);
432          if (ret == 0) {
433              return current;
434          }
435  
436          if (ret < 0) {
437              uint_least32_t left_offset = atomic_load_explicit(&current->left, memory_order_relaxed);
438              if (left_offset != 0) {
439                  current = to_prop_bt(&current->left);
440              } else {
441                  if (!alloc_if_needed) {
442                     return NULL;
443                  }
444  
445                  uint_least32_t new_offset;
446                  prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset);
447                  if (new_bt) {
448                      atomic_store_explicit(&current->left, new_offset, memory_order_release);
449                  }
450                  return new_bt;
451              }
452          } else {
453              uint_least32_t right_offset = atomic_load_explicit(&current->right, memory_order_relaxed);
454              if (right_offset != 0) {
455                  current = to_prop_bt(&current->right);
456              } else {
457                  if (!alloc_if_needed) {
458                     return NULL;
459                  }
460  
461                  uint_least32_t new_offset;
462                  prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset);
463                  if (new_bt) {
464                      atomic_store_explicit(&current->right, new_offset, memory_order_release);
465                  }
466                  return new_bt;
467              }
468          }
469      }
470  }
471  
find_property(prop_bt * const trie,const char * name,uint8_t namelen,const char * value,uint8_t valuelen,bool alloc_if_needed)472  const prop_info *prop_area::find_property(prop_bt *const trie, const char *name,
473          uint8_t namelen, const char *value, uint8_t valuelen,
474          bool alloc_if_needed)
475  {
476      if (!trie) return NULL;
477  
478      const char *remaining_name = name;
479      prop_bt* current = trie;
480      while (true) {
481          const char *sep = strchr(remaining_name, '.');
482          const bool want_subtree = (sep != NULL);
483          const uint8_t substr_size = (want_subtree) ?
484              sep - remaining_name : strlen(remaining_name);
485  
486          if (!substr_size) {
487              return NULL;
488          }
489  
490          prop_bt* root = NULL;
491          uint_least32_t children_offset = atomic_load_explicit(&current->children, memory_order_relaxed);
492          if (children_offset != 0) {
493              root = to_prop_bt(&current->children);
494          } else if (alloc_if_needed) {
495              uint_least32_t new_offset;
496              root = new_prop_bt(remaining_name, substr_size, &new_offset);
497              if (root) {
498                  atomic_store_explicit(&current->children, new_offset, memory_order_release);
499              }
500          }
501  
502          if (!root) {
503              return NULL;
504          }
505  
506          current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed);
507          if (!current) {
508              return NULL;
509          }
510  
511          if (!want_subtree)
512              break;
513  
514          remaining_name = sep + 1;
515      }
516  
517      uint_least32_t prop_offset = atomic_load_explicit(&current->prop, memory_order_relaxed);
518      if (prop_offset != 0) {
519          return to_prop_info(&current->prop);
520      } else if (alloc_if_needed) {
521          uint_least32_t new_offset;
522          prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_offset);
523          if (new_info) {
524              atomic_store_explicit(&current->prop, new_offset, memory_order_release);
525          }
526  
527          return new_info;
528      } else {
529          return NULL;
530      }
531  }
532  
send_prop_msg(const prop_msg * msg)533  static int send_prop_msg(const prop_msg *msg)
534  {
535      const int fd = socket(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0);
536      if (fd == -1) {
537          return -1;
538      }
539  
540      const size_t namelen = strlen(property_service_socket);
541  
542      sockaddr_un addr;
543      memset(&addr, 0, sizeof(addr));
544      strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path));
545      addr.sun_family = AF_LOCAL;
546      socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1;
547      if (TEMP_FAILURE_RETRY(connect(fd, reinterpret_cast<sockaddr*>(&addr), alen)) < 0) {
548          close(fd);
549          return -1;
550      }
551  
552      const int num_bytes = TEMP_FAILURE_RETRY(send(fd, msg, sizeof(prop_msg), 0));
553  
554      int result = -1;
555      if (num_bytes == sizeof(prop_msg)) {
556          // We successfully wrote to the property server but now we
557          // wait for the property server to finish its work.  It
558          // acknowledges its completion by closing the socket so we
559          // poll here (on nothing), waiting for the socket to close.
560          // If you 'adb shell setprop foo bar' you'll see the POLLHUP
561          // once the socket closes.  Out of paranoia we cap our poll
562          // at 250 ms.
563          pollfd pollfds[1];
564          pollfds[0].fd = fd;
565          pollfds[0].events = 0;
566          const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));
567          if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) {
568              result = 0;
569          } else {
570              // Ignore the timeout and treat it like a success anyway.
571              // The init process is single-threaded and its property
572              // service is sometimes slow to respond (perhaps it's off
573              // starting a child process or something) and thus this
574              // times out and the caller thinks it failed, even though
575              // it's still getting around to it.  So we fake it here,
576              // mostly for ctl.* properties, but we do try and wait 250
577              // ms so callers who do read-after-write can reliably see
578              // what they've written.  Most of the time.
579              // TODO: fix the system properties design.
580              result = 0;
581          }
582      }
583  
584      close(fd);
585      return result;
586  }
587  
find_nth_fn(const prop_info * pi,void * ptr)588  static void find_nth_fn(const prop_info *pi, void *ptr)
589  {
590      find_nth_cookie *cookie = reinterpret_cast<find_nth_cookie*>(ptr);
591  
592      if (cookie->n == cookie->count)
593          cookie->pi = pi;
594  
595      cookie->count++;
596  }
597  
foreach_property(prop_bt * const trie,void (* propfn)(const prop_info * pi,void * cookie),void * cookie)598  bool prop_area::foreach_property(prop_bt *const trie,
599          void (*propfn)(const prop_info *pi, void *cookie), void *cookie)
600  {
601      if (!trie)
602          return false;
603  
604      uint_least32_t left_offset = atomic_load_explicit(&trie->left, memory_order_relaxed);
605      if (left_offset != 0) {
606          const int err = foreach_property(to_prop_bt(&trie->left), propfn, cookie);
607          if (err < 0)
608              return false;
609      }
610      uint_least32_t prop_offset = atomic_load_explicit(&trie->prop, memory_order_relaxed);
611      if (prop_offset != 0) {
612          prop_info *info = to_prop_info(&trie->prop);
613          if (!info)
614              return false;
615          propfn(info, cookie);
616      }
617      uint_least32_t children_offset = atomic_load_explicit(&trie->children, memory_order_relaxed);
618      if (children_offset != 0) {
619          const int err = foreach_property(to_prop_bt(&trie->children), propfn, cookie);
620          if (err < 0)
621              return false;
622      }
623      uint_least32_t right_offset = atomic_load_explicit(&trie->right, memory_order_relaxed);
624      if (right_offset != 0) {
625          const int err = foreach_property(to_prop_bt(&trie->right), propfn, cookie);
626          if (err < 0)
627              return false;
628      }
629  
630      return true;
631  }
632  
find(const char * name)633  const prop_info *prop_area::find(const char *name) {
634      return find_property(root_node(), name, strlen(name), nullptr, 0, false);
635  }
636  
add(const char * name,unsigned int namelen,const char * value,unsigned int valuelen)637  bool prop_area::add(const char *name, unsigned int namelen,
638                      const char *value, unsigned int valuelen) {
639      return find_property(root_node(), name, namelen, value, valuelen, true);
640  }
641  
foreach(void (* propfn)(const prop_info * pi,void * cookie),void * cookie)642  bool prop_area::foreach(void (*propfn)(const prop_info* pi, void* cookie), void* cookie) {
643      return foreach_property(root_node(), propfn, cookie);
644  }
645  
646  class context_node {
647  public:
context_node(context_node * next,const char * context,prop_area * pa)648      context_node(context_node* next, const char* context, prop_area* pa)
649          : next(next), context_(strdup(context)), pa_(pa), no_access_(false) {
650          lock_.init(false);
651      }
~context_node()652      ~context_node() {
653          unmap();
654          free(context_);
655      }
656      bool open(bool access_rw, bool* fsetxattr_failed);
657      bool check_access_and_open();
658      void reset_access();
659  
context() const660      const char* context() const { return context_; }
pa()661      prop_area* pa() { return pa_; }
662  
663      context_node* next;
664  
665  private:
666      bool check_access();
667      void unmap();
668  
669      Lock lock_;
670      char* context_;
671      prop_area* pa_;
672      bool no_access_;
673  };
674  
675  struct prefix_node {
prefix_nodeprefix_node676      prefix_node(struct prefix_node* next, const char* prefix, context_node* context)
677          : prefix(strdup(prefix)), prefix_len(strlen(prefix)), context(context), next(next) {
678      }
~prefix_nodeprefix_node679      ~prefix_node() {
680          free(prefix);
681      }
682      char* prefix;
683      const size_t prefix_len;
684      context_node* context;
685      struct prefix_node* next;
686  };
687  
688  template <typename List, typename... Args>
list_add(List ** list,Args...args)689  static inline void list_add(List** list, Args... args) {
690      *list = new List(*list, args...);
691  }
692  
list_add_after_len(prefix_node ** list,const char * prefix,context_node * context)693  static void list_add_after_len(prefix_node** list, const char* prefix, context_node* context) {
694      size_t prefix_len = strlen(prefix);
695  
696      auto next_list = list;
697  
698      while (*next_list) {
699          if ((*next_list)->prefix_len < prefix_len || (*next_list)->prefix[0] == '*') {
700              list_add(next_list, prefix, context);
701              return;
702          }
703          next_list = &(*next_list)->next;
704      }
705      list_add(next_list, prefix, context);
706  }
707  
708  template <typename List, typename Func>
list_foreach(List * list,Func func)709  static void list_foreach(List* list, Func func) {
710      while (list) {
711          func(list);
712          list = list->next;
713      }
714  }
715  
716  template <typename List, typename Func>
list_find(List * list,Func func)717  static List* list_find(List* list, Func func) {
718      while (list) {
719          if (func(list)) {
720              return list;
721          }
722          list = list->next;
723      }
724      return nullptr;
725  }
726  
727  template <typename List>
list_free(List ** list)728  static void list_free(List** list) {
729      while (*list) {
730          auto old_list = *list;
731          *list = old_list->next;
732          delete old_list;
733      }
734  }
735  
736  static prefix_node* prefixes = nullptr;
737  static context_node* contexts = nullptr;
738  
739  /*
740   * pthread_mutex_lock() calls into system_properties in the case of contention.
741   * This creates a risk of dead lock if any system_properties functions
742   * use pthread locks after system_property initialization.
743   *
744   * For this reason, the below three functions use a bionic Lock and static
745   * allocation of memory for each filename.
746   */
747  
open(bool access_rw,bool * fsetxattr_failed)748  bool context_node::open(bool access_rw, bool* fsetxattr_failed) {
749      lock_.lock();
750      if (pa_) {
751          lock_.unlock();
752          return true;
753      }
754  
755      char filename[PROP_FILENAME_MAX];
756      int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s",
757                                     property_filename, context_);
758      if (len < 0 || len > PROP_FILENAME_MAX) {
759          lock_.unlock();
760          return false;
761      }
762  
763      if (access_rw) {
764          pa_ = map_prop_area_rw(filename, context_, fsetxattr_failed);
765      } else {
766          pa_ = map_prop_area(filename, false);
767      }
768      lock_.unlock();
769      return pa_;
770  }
771  
check_access_and_open()772  bool context_node::check_access_and_open() {
773      if (!pa_ && !no_access_) {
774          if (!check_access() || !open(false, nullptr)) {
775              no_access_ = true;
776          }
777      }
778      return pa_;
779  }
780  
reset_access()781  void context_node::reset_access() {
782      if (!check_access()) {
783          unmap();
784          no_access_ = true;
785      } else {
786          no_access_ = false;
787      }
788  }
789  
check_access()790  bool context_node::check_access() {
791      char filename[PROP_FILENAME_MAX];
792      int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s",
793                                     property_filename, context_);
794      if (len < 0 || len > PROP_FILENAME_MAX) {
795          return false;
796      }
797  
798      return access(filename, R_OK) == 0;
799  }
800  
unmap()801  void context_node::unmap() {
802      if (!pa_) {
803          return;
804      }
805  
806      munmap(pa_, pa_size);
807      if (pa_ == __system_property_area__) {
808          __system_property_area__ = nullptr;
809      }
810      pa_ = nullptr;
811  }
812  
map_system_property_area(bool access_rw,bool * fsetxattr_failed)813  static bool map_system_property_area(bool access_rw, bool* fsetxattr_failed) {
814      char filename[PROP_FILENAME_MAX];
815      int len = __libc_format_buffer(filename, sizeof(filename),
816                                     "%s/properties_serial", property_filename);
817      if (len < 0 || len > PROP_FILENAME_MAX) {
818          __system_property_area__ = nullptr;
819          return false;
820      }
821  
822      if (access_rw) {
823          __system_property_area__ =
824              map_prop_area_rw(filename, "u:object_r:properties_serial:s0", fsetxattr_failed);
825      } else {
826          __system_property_area__ = map_prop_area(filename, false);
827      }
828      return __system_property_area__;
829  }
830  
get_prop_area_for_name(const char * name)831  static prop_area* get_prop_area_for_name(const char* name) {
832      auto entry = list_find(prefixes, [name](prefix_node* l) {
833          return l->prefix[0] == '*' || !strncmp(l->prefix, name, l->prefix_len);
834      });
835      if (!entry) {
836          return nullptr;
837      }
838  
839      auto cnode = entry->context;
840      if (!cnode->pa()) {
841          /*
842           * We explicitly do not check no_access_ in this case because unlike the
843           * case of foreach(), we want to generate an selinux audit for each
844           * non-permitted property access in this function.
845           */
846          cnode->open(false, nullptr);
847      }
848      return cnode->pa();
849  }
850  
851  /*
852   * The below two functions are duplicated from label_support.c in libselinux.
853   * TODO: Find a location suitable for these functions such that both libc and
854   * libselinux can share a common source file.
855   */
856  
857  /*
858   * The read_spec_entries and read_spec_entry functions may be used to
859   * replace sscanf to read entries from spec files. The file and
860   * property services now use these.
861   */
862  
863  /* Read an entry from a spec file (e.g. file_contexts) */
read_spec_entry(char ** entry,char ** ptr,int * len)864  static inline int read_spec_entry(char **entry, char **ptr, int *len)
865  {
866      *entry = NULL;
867      char *tmp_buf = NULL;
868  
869      while (isspace(**ptr) && **ptr != '\0')
870          (*ptr)++;
871  
872      tmp_buf = *ptr;
873      *len = 0;
874  
875      while (!isspace(**ptr) && **ptr != '\0') {
876          (*ptr)++;
877          (*len)++;
878      }
879  
880      if (*len) {
881          *entry = strndup(tmp_buf, *len);
882          if (!*entry)
883              return -1;
884      }
885  
886      return 0;
887  }
888  
889  /*
890   * line_buf - Buffer containing the spec entries .
891   * num_args - The number of spec parameter entries to process.
892   * ...      - A 'char **spec_entry' for each parameter.
893   * returns  - The number of items processed.
894   *
895   * This function calls read_spec_entry() to do the actual string processing.
896   */
read_spec_entries(char * line_buf,int num_args,...)897  static int read_spec_entries(char *line_buf, int num_args, ...)
898  {
899      char **spec_entry, *buf_p;
900      int len, rc, items, entry_len = 0;
901      va_list ap;
902  
903      len = strlen(line_buf);
904      if (line_buf[len - 1] == '\n')
905          line_buf[len - 1] = '\0';
906      else
907          /* Handle case if line not \n terminated by bumping
908           * the len for the check below (as the line is NUL
909           * terminated by getline(3)) */
910          len++;
911  
912      buf_p = line_buf;
913      while (isspace(*buf_p))
914          buf_p++;
915  
916      /* Skip comment lines and empty lines. */
917      if (*buf_p == '#' || *buf_p == '\0')
918          return 0;
919  
920      /* Process the spec file entries */
921      va_start(ap, num_args);
922  
923      items = 0;
924      while (items < num_args) {
925          spec_entry = va_arg(ap, char **);
926  
927          if (len - 1 == buf_p - line_buf) {
928              va_end(ap);
929              return items;
930          }
931  
932          rc = read_spec_entry(spec_entry, &buf_p, &entry_len);
933          if (rc < 0) {
934              va_end(ap);
935              return rc;
936          }
937          if (entry_len)
938              items++;
939      }
940      va_end(ap);
941      return items;
942  }
943  
initialize_properties()944  static bool initialize_properties() {
945      FILE* file = fopen("/property_contexts", "re");
946  
947      if (!file) {
948          return false;
949      }
950  
951      char* buffer = nullptr;
952      size_t line_len;
953      char* prop_prefix = nullptr;
954      char* context = nullptr;
955  
956      while (getline(&buffer, &line_len, file) > 0) {
957          int items = read_spec_entries(buffer, 2, &prop_prefix, &context);
958          if (items <= 0) {
959              continue;
960          }
961          if (items == 1) {
962              free(prop_prefix);
963              continue;
964          }
965          /*
966           * init uses ctl.* properties as an IPC mechanism and does not write them
967           * to a property file, therefore we do not need to create property files
968           * to store them.
969           */
970          if (!strncmp(prop_prefix, "ctl.", 4)) {
971              free(prop_prefix);
972              free(context);
973              continue;
974          }
975  
976          auto old_context = list_find(
977              contexts, [context](context_node* l) { return !strcmp(l->context(), context); });
978          if (old_context) {
979              list_add_after_len(&prefixes, prop_prefix, old_context);
980          } else {
981              list_add(&contexts, context, nullptr);
982              list_add_after_len(&prefixes, prop_prefix, contexts);
983          }
984          free(prop_prefix);
985          free(context);
986      }
987  
988      free(buffer);
989      fclose(file);
990      return true;
991  }
992  
is_dir(const char * pathname)993  static bool is_dir(const char* pathname) {
994      struct stat info;
995      if (stat(pathname, &info) == -1) {
996          return false;
997      }
998      return S_ISDIR(info.st_mode);
999  }
1000  
free_and_unmap_contexts()1001  static void free_and_unmap_contexts() {
1002      list_free(&prefixes);
1003      list_free(&contexts);
1004      if (__system_property_area__) {
1005          munmap(__system_property_area__, pa_size);
1006          __system_property_area__ = nullptr;
1007      }
1008  }
1009  
__system_properties_init()1010  int __system_properties_init()
1011  {
1012      if (initialized) {
1013          list_foreach(contexts, [](context_node* l) { l->reset_access(); });
1014          return 0;
1015      }
1016      if (is_dir(property_filename)) {
1017          if (!initialize_properties()) {
1018              return -1;
1019          }
1020          if (!map_system_property_area(false, nullptr)) {
1021              free_and_unmap_contexts();
1022              return -1;
1023          }
1024      } else {
1025          __system_property_area__ = map_prop_area(property_filename, true);
1026          if (!__system_property_area__) {
1027              return -1;
1028          }
1029          list_add(&contexts, "legacy_system_prop_area", __system_property_area__);
1030          list_add_after_len(&prefixes, "*", contexts);
1031      }
1032      initialized = true;
1033      return 0;
1034  }
1035  
__system_property_set_filename(const char * filename)1036  int __system_property_set_filename(const char *filename)
1037  {
1038      size_t len = strlen(filename);
1039      if (len >= sizeof(property_filename))
1040          return -1;
1041  
1042      strcpy(property_filename, filename);
1043      return 0;
1044  }
1045  
__system_property_area_init()1046  int __system_property_area_init()
1047  {
1048      free_and_unmap_contexts();
1049      mkdir(property_filename, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
1050      if (!initialize_properties()) {
1051          return -1;
1052      }
1053      bool open_failed = false;
1054      bool fsetxattr_failed = false;
1055      list_foreach(contexts, [&fsetxattr_failed, &open_failed](context_node* l) {
1056          if (!l->open(true, &fsetxattr_failed)) {
1057              open_failed = true;
1058          }
1059      });
1060      if (open_failed || !map_system_property_area(true, &fsetxattr_failed)) {
1061          free_and_unmap_contexts();
1062          return -1;
1063      }
1064      initialized = true;
1065      return fsetxattr_failed ? -2 : 0;
1066  }
1067  
__system_property_area_serial()1068  unsigned int __system_property_area_serial()
1069  {
1070      prop_area *pa = __system_property_area__;
1071      if (!pa) {
1072          return -1;
1073      }
1074      // Make sure this read fulfilled before __system_property_serial
1075      return atomic_load_explicit(pa->serial(), memory_order_acquire);
1076  }
1077  
__system_property_find(const char * name)1078  const prop_info *__system_property_find(const char *name)
1079  {
1080      if (!__system_property_area__) {
1081          return nullptr;
1082      }
1083  
1084      if (__predict_false(compat_mode)) {
1085          return __system_property_find_compat(name);
1086      }
1087  
1088      prop_area* pa = get_prop_area_for_name(name);
1089      if (!pa) {
1090          __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied finding property \"%s\"", name);
1091          return nullptr;
1092      }
1093  
1094      return pa->find(name);
1095  }
1096  
1097  // The C11 standard doesn't allow atomic loads from const fields,
1098  // though C++11 does.  Fudge it until standards get straightened out.
load_const_atomic(const atomic_uint_least32_t * s,memory_order mo)1099  static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s,
1100                                                 memory_order mo) {
1101      atomic_uint_least32_t* non_const_s = const_cast<atomic_uint_least32_t*>(s);
1102      return atomic_load_explicit(non_const_s, mo);
1103  }
1104  
__system_property_read(const prop_info * pi,char * name,char * value)1105  int __system_property_read(const prop_info *pi, char *name, char *value)
1106  {
1107      if (__predict_false(compat_mode)) {
1108          return __system_property_read_compat(pi, name, value);
1109      }
1110  
1111      while (true) {
1112          uint32_t serial = __system_property_serial(pi); // acquire semantics
1113          size_t len = SERIAL_VALUE_LEN(serial);
1114          memcpy(value, pi->value, len + 1);
1115          // TODO: Fix the synchronization scheme here.
1116          // There is no fully supported way to implement this kind
1117          // of synchronization in C++11, since the memcpy races with
1118          // updates to pi, and the data being accessed is not atomic.
1119          // The following fence is unintuitive, but would be the
1120          // correct one if memcpy used memory_order_relaxed atomic accesses.
1121          // In practice it seems unlikely that the generated code would
1122          // would be any different, so this should be OK.
1123          atomic_thread_fence(memory_order_acquire);
1124          if (serial ==
1125                  load_const_atomic(&(pi->serial), memory_order_relaxed)) {
1126              if (name != 0) {
1127                  strcpy(name, pi->name);
1128              }
1129              return len;
1130          }
1131      }
1132  }
1133  
__system_property_get(const char * name,char * value)1134  int __system_property_get(const char *name, char *value)
1135  {
1136      const prop_info *pi = __system_property_find(name);
1137  
1138      if (pi != 0) {
1139          return __system_property_read(pi, 0, value);
1140      } else {
1141          value[0] = 0;
1142          return 0;
1143      }
1144  }
1145  
__system_property_set(const char * key,const char * value)1146  int __system_property_set(const char *key, const char *value)
1147  {
1148      if (key == 0) return -1;
1149      if (value == 0) value = "";
1150      if (strlen(key) >= PROP_NAME_MAX) return -1;
1151      if (strlen(value) >= PROP_VALUE_MAX) return -1;
1152  
1153      prop_msg msg;
1154      memset(&msg, 0, sizeof msg);
1155      msg.cmd = PROP_MSG_SETPROP;
1156      strlcpy(msg.name, key, sizeof msg.name);
1157      strlcpy(msg.value, value, sizeof msg.value);
1158  
1159      const int err = send_prop_msg(&msg);
1160      if (err < 0) {
1161          return err;
1162      }
1163  
1164      return 0;
1165  }
1166  
__system_property_update(prop_info * pi,const char * value,unsigned int len)1167  int __system_property_update(prop_info *pi, const char *value, unsigned int len)
1168  {
1169      if (len >= PROP_VALUE_MAX)
1170          return -1;
1171  
1172      prop_area* pa = __system_property_area__;
1173  
1174      if (!pa) {
1175          return -1;
1176      }
1177  
1178      uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed);
1179      serial |= 1;
1180      atomic_store_explicit(&pi->serial, serial, memory_order_relaxed);
1181      // The memcpy call here also races.  Again pretend it
1182      // used memory_order_relaxed atomics, and use the analogous
1183      // counterintuitive fence.
1184      atomic_thread_fence(memory_order_release);
1185      memcpy(pi->value, value, len + 1);
1186      atomic_store_explicit(
1187          &pi->serial,
1188          (len << 24) | ((serial + 1) & 0xffffff),
1189          memory_order_release);
1190      __futex_wake(&pi->serial, INT32_MAX);
1191  
1192      atomic_store_explicit(
1193          pa->serial(),
1194          atomic_load_explicit(pa->serial(), memory_order_relaxed) + 1,
1195          memory_order_release);
1196      __futex_wake(pa->serial(), INT32_MAX);
1197  
1198      return 0;
1199  }
1200  
__system_property_add(const char * name,unsigned int namelen,const char * value,unsigned int valuelen)1201  int __system_property_add(const char *name, unsigned int namelen,
1202              const char *value, unsigned int valuelen)
1203  {
1204      if (namelen >= PROP_NAME_MAX)
1205          return -1;
1206      if (valuelen >= PROP_VALUE_MAX)
1207          return -1;
1208      if (namelen < 1)
1209          return -1;
1210  
1211      if (!__system_property_area__) {
1212          return -1;
1213      }
1214  
1215      prop_area* pa = get_prop_area_for_name(name);
1216  
1217      if (!pa) {
1218          __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied adding property \"%s\"", name);
1219          return -1;
1220      }
1221  
1222      bool ret = pa->add(name, namelen, value, valuelen);
1223      if (!ret)
1224          return -1;
1225  
1226      // There is only a single mutator, but we want to make sure that
1227      // updates are visible to a reader waiting for the update.
1228      atomic_store_explicit(
1229          __system_property_area__->serial(),
1230          atomic_load_explicit(__system_property_area__->serial(), memory_order_relaxed) + 1,
1231          memory_order_release);
1232      __futex_wake(__system_property_area__->serial(), INT32_MAX);
1233      return 0;
1234  }
1235  
1236  // Wait for non-locked serial, and retrieve it with acquire semantics.
__system_property_serial(const prop_info * pi)1237  unsigned int __system_property_serial(const prop_info *pi)
1238  {
1239      uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire);
1240      while (SERIAL_DIRTY(serial)) {
1241          __futex_wait(const_cast<volatile void *>(
1242                          reinterpret_cast<const void *>(&pi->serial)),
1243                       serial, NULL);
1244          serial = load_const_atomic(&pi->serial, memory_order_acquire);
1245      }
1246      return serial;
1247  }
1248  
__system_property_wait_any(unsigned int serial)1249  unsigned int __system_property_wait_any(unsigned int serial)
1250  {
1251      prop_area *pa = __system_property_area__;
1252      uint32_t my_serial;
1253  
1254      if (!pa) {
1255          return 0;
1256      }
1257  
1258      do {
1259          __futex_wait(pa->serial(), serial, NULL);
1260          my_serial = atomic_load_explicit(pa->serial(), memory_order_acquire);
1261      } while (my_serial == serial);
1262  
1263      return my_serial;
1264  }
1265  
__system_property_find_nth(unsigned n)1266  const prop_info *__system_property_find_nth(unsigned n)
1267  {
1268      find_nth_cookie cookie(n);
1269  
1270      const int err = __system_property_foreach(find_nth_fn, &cookie);
1271      if (err < 0) {
1272          return NULL;
1273      }
1274  
1275      return cookie.pi;
1276  }
1277  
__system_property_foreach(void (* propfn)(const prop_info * pi,void * cookie),void * cookie)1278  int __system_property_foreach(void (*propfn)(const prop_info *pi, void *cookie),
1279          void *cookie)
1280  {
1281      if (!__system_property_area__) {
1282          return -1;
1283      }
1284  
1285      if (__predict_false(compat_mode)) {
1286          return __system_property_foreach_compat(propfn, cookie);
1287      }
1288  
1289      list_foreach(contexts, [propfn, cookie](context_node* l) {
1290          if (l->check_access_and_open()) {
1291              l->pa()->foreach(propfn, cookie);
1292          }
1293      });
1294      return 0;
1295  }
1296