• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // A preconditioned conjugate gradients solver
32 // (ConjugateGradientsSolver) for positive semidefinite linear
33 // systems.
34 //
35 // We have also augmented the termination criterion used by this
36 // solver to support not just residual based termination but also
37 // termination based on decrease in the value of the quadratic model
38 // that CG optimizes.
39 
40 #include "ceres/conjugate_gradients_solver.h"
41 
42 #include <cmath>
43 #include <cstddef>
44 #include "ceres/fpclassify.h"
45 #include "ceres/internal/eigen.h"
46 #include "ceres/linear_operator.h"
47 #include "ceres/stringprintf.h"
48 #include "ceres/types.h"
49 #include "glog/logging.h"
50 
51 namespace ceres {
52 namespace internal {
53 namespace {
54 
IsZeroOrInfinity(double x)55 bool IsZeroOrInfinity(double x) {
56   return ((x == 0.0) || (IsInfinite(x)));
57 }
58 
59 }  // namespace
60 
ConjugateGradientsSolver(const LinearSolver::Options & options)61 ConjugateGradientsSolver::ConjugateGradientsSolver(
62     const LinearSolver::Options& options)
63     : options_(options) {
64 }
65 
Solve(LinearOperator * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)66 LinearSolver::Summary ConjugateGradientsSolver::Solve(
67     LinearOperator* A,
68     const double* b,
69     const LinearSolver::PerSolveOptions& per_solve_options,
70     double* x) {
71   CHECK_NOTNULL(A);
72   CHECK_NOTNULL(x);
73   CHECK_NOTNULL(b);
74   CHECK_EQ(A->num_rows(), A->num_cols());
75 
76   LinearSolver::Summary summary;
77   summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE;
78   summary.message = "Maximum number of iterations reached.";
79   summary.num_iterations = 0;
80 
81   const int num_cols = A->num_cols();
82   VectorRef xref(x, num_cols);
83   ConstVectorRef bref(b, num_cols);
84 
85   const double norm_b = bref.norm();
86   if (norm_b == 0.0) {
87     xref.setZero();
88     summary.termination_type = LINEAR_SOLVER_SUCCESS;
89     summary.message = "Convergence. |b| = 0.";
90     return summary;
91   }
92 
93   Vector r(num_cols);
94   Vector p(num_cols);
95   Vector z(num_cols);
96   Vector tmp(num_cols);
97 
98   const double tol_r = per_solve_options.r_tolerance * norm_b;
99 
100   tmp.setZero();
101   A->RightMultiply(x, tmp.data());
102   r = bref - tmp;
103   double norm_r = r.norm();
104   if (norm_r <= tol_r) {
105     summary.termination_type = LINEAR_SOLVER_SUCCESS;
106     summary.message =
107         StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r);
108     return summary;
109   }
110 
111   double rho = 1.0;
112 
113   // Initial value of the quadratic model Q = x'Ax - 2 * b'x.
114   double Q0 = -1.0 * xref.dot(bref + r);
115 
116   for (summary.num_iterations = 1;
117        summary.num_iterations < options_.max_num_iterations;
118        ++summary.num_iterations) {
119     // Apply preconditioner
120     if (per_solve_options.preconditioner != NULL) {
121       z.setZero();
122       per_solve_options.preconditioner->RightMultiply(r.data(), z.data());
123     } else {
124       z = r;
125     }
126 
127     double last_rho = rho;
128     rho = r.dot(z);
129     if (IsZeroOrInfinity(rho)) {
130       summary.termination_type = LINEAR_SOLVER_FAILURE;
131       summary.message = StringPrintf("Numerical failure. rho = r'z = %e.", rho);
132       break;
133     };
134 
135     if (summary.num_iterations == 1) {
136       p = z;
137     } else {
138       double beta = rho / last_rho;
139       if (IsZeroOrInfinity(beta)) {
140         summary.termination_type = LINEAR_SOLVER_FAILURE;
141         summary.message = StringPrintf(
142             "Numerical failure. beta = rho_n / rho_{n-1} = %e.", beta);
143         break;
144       }
145       p = z + beta * p;
146     }
147 
148     Vector& q = z;
149     q.setZero();
150     A->RightMultiply(p.data(), q.data());
151     const double pq = p.dot(q);
152     if ((pq <= 0) || IsInfinite(pq))  {
153       summary.termination_type = LINEAR_SOLVER_FAILURE;
154       summary.message = StringPrintf("Numerical failure. p'q = %e.", pq);
155       break;
156     }
157 
158     const double alpha = rho / pq;
159     if (IsInfinite(alpha)) {
160       summary.termination_type = LINEAR_SOLVER_FAILURE;
161       summary.message =
162           StringPrintf("Numerical failure. alpha = rho / pq = %e", alpha);
163       break;
164     }
165 
166     xref = xref + alpha * p;
167 
168     // Ideally we would just use the update r = r - alpha*q to keep
169     // track of the residual vector. However this estimate tends to
170     // drift over time due to round off errors. Thus every
171     // residual_reset_period iterations, we calculate the residual as
172     // r = b - Ax. We do not do this every iteration because this
173     // requires an additional matrix vector multiply which would
174     // double the complexity of the CG algorithm.
175     if (summary.num_iterations % options_.residual_reset_period == 0) {
176       tmp.setZero();
177       A->RightMultiply(x, tmp.data());
178       r = bref - tmp;
179     } else {
180       r = r - alpha * q;
181     }
182 
183     // Quadratic model based termination.
184     //   Q1 = x'Ax - 2 * b' x.
185     const double Q1 = -1.0 * xref.dot(bref + r);
186 
187     // For PSD matrices A, let
188     //
189     //   Q(x) = x'Ax - 2b'x
190     //
191     // be the cost of the quadratic function defined by A and b. Then,
192     // the solver terminates at iteration i if
193     //
194     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
195     //
196     // This termination criterion is more useful when using CG to
197     // solve the Newton step. This particular convergence test comes
198     // from Stephen Nash's work on truncated Newton
199     // methods. References:
200     //
201     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
202     //   Direction Within A Truncated Newton Method, Operation
203     //   Research Letters 9(1990) 219-221.
204     //
205     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
206     //   Journal of Computational and Applied Mathematics,
207     //   124(1-2), 45-59, 2000.
208     //
209     const double zeta = summary.num_iterations * (Q1 - Q0) / Q1;
210     if (zeta < per_solve_options.q_tolerance) {
211       summary.termination_type = LINEAR_SOLVER_SUCCESS;
212       summary.message =
213           StringPrintf("Convergence: zeta = %e < %e",
214                        zeta,
215                        per_solve_options.q_tolerance);
216       break;
217     }
218     Q0 = Q1;
219 
220     // Residual based termination.
221     norm_r = r. norm();
222     if (norm_r <= tol_r) {
223       summary.termination_type = LINEAR_SOLVER_SUCCESS;
224       summary.message =
225           StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r);
226       break;
227     }
228   }
229 
230   return summary;
231 };
232 
233 }  // namespace internal
234 }  // namespace ceres
235