• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/dense_qr_solver.h"
32 
33 
34 #include <cstddef>
35 #include "Eigen/Dense"
36 #include "ceres/dense_sparse_matrix.h"
37 #include "ceres/internal/eigen.h"
38 #include "ceres/internal/scoped_ptr.h"
39 #include "ceres/lapack.h"
40 #include "ceres/linear_solver.h"
41 #include "ceres/types.h"
42 #include "ceres/wall_time.h"
43 
44 namespace ceres {
45 namespace internal {
46 
DenseQRSolver(const LinearSolver::Options & options)47 DenseQRSolver::DenseQRSolver(const LinearSolver::Options& options)
48     : options_(options) {
49   work_.resize(1);
50 }
51 
SolveImpl(DenseSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)52 LinearSolver::Summary DenseQRSolver::SolveImpl(
53     DenseSparseMatrix* A,
54     const double* b,
55     const LinearSolver::PerSolveOptions& per_solve_options,
56     double* x) {
57   if (options_.dense_linear_algebra_library_type == EIGEN) {
58     return SolveUsingEigen(A, b, per_solve_options, x);
59   } else {
60     return SolveUsingLAPACK(A, b, per_solve_options, x);
61   }
62 }
63 
SolveUsingLAPACK(DenseSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)64 LinearSolver::Summary DenseQRSolver::SolveUsingLAPACK(
65     DenseSparseMatrix* A,
66     const double* b,
67     const LinearSolver::PerSolveOptions& per_solve_options,
68     double* x) {
69   EventLogger event_logger("DenseQRSolver::Solve");
70 
71   const int num_rows = A->num_rows();
72   const int num_cols = A->num_cols();
73 
74   if (per_solve_options.D != NULL) {
75     // Temporarily append a diagonal block to the A matrix, but undo
76     // it before returning the matrix to the user.
77     A->AppendDiagonal(per_solve_options.D);
78   }
79 
80   // TODO(sameeragarwal): Since we are copying anyways, the diagonal
81   // can be appended to the matrix instead of doing it on A.
82   lhs_ =  A->matrix();
83 
84   if (per_solve_options.D != NULL) {
85     // Undo the modifications to the matrix A.
86     A->RemoveDiagonal();
87   }
88 
89   // rhs = [b;0] to account for the additional rows in the lhs.
90   if (rhs_.rows() != lhs_.rows()) {
91     rhs_.resize(lhs_.rows());
92   }
93   rhs_.setZero();
94   rhs_.head(num_rows) = ConstVectorRef(b, num_rows);
95 
96   if (work_.rows() == 1) {
97     const int work_size =
98         LAPACK::EstimateWorkSizeForQR(lhs_.rows(), lhs_.cols());
99     VLOG(3) << "Working memory for Dense QR factorization: "
100             << work_size * sizeof(double);
101     work_.resize(work_size);
102   }
103 
104   LinearSolver::Summary summary;
105   summary.num_iterations = 1;
106   summary.termination_type = LAPACK::SolveInPlaceUsingQR(lhs_.rows(),
107                                                          lhs_.cols(),
108                                                          lhs_.data(),
109                                                          work_.rows(),
110                                                          work_.data(),
111                                                          rhs_.data(),
112                                                          &summary.message);
113   event_logger.AddEvent("Solve");
114   if (summary.termination_type == LINEAR_SOLVER_SUCCESS) {
115     VectorRef(x, num_cols) = rhs_.head(num_cols);
116   }
117 
118   event_logger.AddEvent("TearDown");
119   return summary;
120 }
121 
SolveUsingEigen(DenseSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)122 LinearSolver::Summary DenseQRSolver::SolveUsingEigen(
123     DenseSparseMatrix* A,
124     const double* b,
125     const LinearSolver::PerSolveOptions& per_solve_options,
126     double* x) {
127   EventLogger event_logger("DenseQRSolver::Solve");
128 
129   const int num_rows = A->num_rows();
130   const int num_cols = A->num_cols();
131 
132   if (per_solve_options.D != NULL) {
133     // Temporarily append a diagonal block to the A matrix, but undo
134     // it before returning the matrix to the user.
135     A->AppendDiagonal(per_solve_options.D);
136   }
137 
138   // rhs = [b;0] to account for the additional rows in the lhs.
139   const int augmented_num_rows =
140       num_rows + ((per_solve_options.D != NULL) ? num_cols : 0);
141   if (rhs_.rows() != augmented_num_rows) {
142     rhs_.resize(augmented_num_rows);
143     rhs_.setZero();
144   }
145   rhs_.head(num_rows) = ConstVectorRef(b, num_rows);
146   event_logger.AddEvent("Setup");
147 
148   // Solve the system.
149   VectorRef(x, num_cols) = A->matrix().householderQr().solve(rhs_);
150   event_logger.AddEvent("Solve");
151 
152   if (per_solve_options.D != NULL) {
153     // Undo the modifications to the matrix A.
154     A->RemoveDiagonal();
155   }
156 
157   // We always succeed, since the QR solver returns the best solution
158   // it can. It is the job of the caller to determine if the solution
159   // is good enough or not.
160   LinearSolver::Summary summary;
161   summary.num_iterations = 1;
162   summary.termination_type = LINEAR_SOLVER_SUCCESS;
163   summary.message = "Success.";
164 
165   event_logger.AddEvent("TearDown");
166   return summary;
167 }
168 
169 }   // namespace internal
170 }   // namespace ceres
171