• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_INL_H_
18 #define ART_RUNTIME_GC_HEAP_INL_H_
19 
20 #include "heap.h"
21 
22 #include "base/time_utils.h"
23 #include "gc/accounting/card_table-inl.h"
24 #include "gc/allocation_record.h"
25 #include "gc/collector/semi_space.h"
26 #include "gc/space/bump_pointer_space-inl.h"
27 #include "gc/space/dlmalloc_space-inl.h"
28 #include "gc/space/large_object_space.h"
29 #include "gc/space/region_space-inl.h"
30 #include "gc/space/rosalloc_space-inl.h"
31 #include "runtime.h"
32 #include "handle_scope-inl.h"
33 #include "thread-inl.h"
34 #include "utils.h"
35 #include "verify_object-inl.h"
36 
37 namespace art {
38 namespace gc {
39 
40 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
AllocObjectWithAllocator(Thread * self,mirror::Class * klass,size_t byte_count,AllocatorType allocator,const PreFenceVisitor & pre_fence_visitor)41 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
42                                                       mirror::Class* klass,
43                                                       size_t byte_count,
44                                                       AllocatorType allocator,
45                                                       const PreFenceVisitor& pre_fence_visitor) {
46   if (kIsDebugBuild) {
47     CheckPreconditionsForAllocObject(klass, byte_count);
48     // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
49     // done in the runnable state where suspension is expected.
50     CHECK_EQ(self->GetState(), kRunnable);
51     self->AssertThreadSuspensionIsAllowable();
52   }
53   // Need to check that we arent the large object allocator since the large object allocation code
54   // path this function. If we didn't check we would have an infinite loop.
55   mirror::Object* obj;
56   if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
57     obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
58                                                            pre_fence_visitor);
59     if (obj != nullptr) {
60       return obj;
61     } else {
62       // There should be an OOM exception, since we are retrying, clear it.
63       self->ClearException();
64     }
65     // If the large object allocation failed, try to use the normal spaces (main space,
66     // non moving space). This can happen if there is significant virtual address space
67     // fragmentation.
68   }
69   // bytes allocated for the (individual) object.
70   size_t bytes_allocated;
71   size_t usable_size;
72   size_t new_num_bytes_allocated = 0;
73   if (allocator == kAllocatorTypeTLAB || allocator == kAllocatorTypeRegionTLAB) {
74     byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
75   }
76   // If we have a thread local allocation we don't need to update bytes allocated.
77   if ((allocator == kAllocatorTypeTLAB || allocator == kAllocatorTypeRegionTLAB) &&
78       byte_count <= self->TlabSize()) {
79     obj = self->AllocTlab(byte_count);
80     DCHECK(obj != nullptr) << "AllocTlab can't fail";
81     obj->SetClass(klass);
82     if (kUseBakerOrBrooksReadBarrier) {
83       if (kUseBrooksReadBarrier) {
84         obj->SetReadBarrierPointer(obj);
85       }
86       obj->AssertReadBarrierPointer();
87     }
88     bytes_allocated = byte_count;
89     usable_size = bytes_allocated;
90     pre_fence_visitor(obj, usable_size);
91     QuasiAtomic::ThreadFenceForConstructor();
92   } else if (!kInstrumented && allocator == kAllocatorTypeRosAlloc &&
93              (obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) &&
94              LIKELY(obj != nullptr)) {
95     DCHECK(!is_running_on_memory_tool_);
96     obj->SetClass(klass);
97     if (kUseBakerOrBrooksReadBarrier) {
98       if (kUseBrooksReadBarrier) {
99         obj->SetReadBarrierPointer(obj);
100       }
101       obj->AssertReadBarrierPointer();
102     }
103     usable_size = bytes_allocated;
104     pre_fence_visitor(obj, usable_size);
105     QuasiAtomic::ThreadFenceForConstructor();
106   } else {
107     // bytes allocated that takes bulk thread-local buffer allocations into account.
108     size_t bytes_tl_bulk_allocated = 0;
109     obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
110                                               &usable_size, &bytes_tl_bulk_allocated);
111     if (UNLIKELY(obj == nullptr)) {
112       // AllocateInternalWithGc can cause thread suspension, if someone instruments the entrypoints
113       // or changes the allocator in a suspend point here, we need to retry the allocation.
114       obj = AllocateInternalWithGc(self,
115                                    allocator,
116                                    kInstrumented,
117                                    byte_count,
118                                    &bytes_allocated,
119                                    &usable_size,
120                                    &bytes_tl_bulk_allocated, &klass);
121       if (obj == nullptr) {
122         // The only way that we can get a null return if there is no pending exception is if the
123         // allocator or instrumentation changed.
124         if (!self->IsExceptionPending()) {
125           // AllocObject will pick up the new allocator type, and instrumented as true is the safe
126           // default.
127           return AllocObject</*kInstrumented*/true>(self,
128                                                     klass,
129                                                     byte_count,
130                                                     pre_fence_visitor);
131         }
132         return nullptr;
133       }
134     }
135     DCHECK_GT(bytes_allocated, 0u);
136     DCHECK_GT(usable_size, 0u);
137     obj->SetClass(klass);
138     if (kUseBakerOrBrooksReadBarrier) {
139       if (kUseBrooksReadBarrier) {
140         obj->SetReadBarrierPointer(obj);
141       }
142       obj->AssertReadBarrierPointer();
143     }
144     if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
145       // (Note this if statement will be constant folded away for the
146       // fast-path quick entry points.) Because SetClass() has no write
147       // barrier, if a non-moving space allocation, we need a write
148       // barrier as the class pointer may point to the bump pointer
149       // space (where the class pointer is an "old-to-young" reference,
150       // though rare) under the GSS collector with the remembered set
151       // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
152       // cases because we don't directly allocate into the main alloc
153       // space (besides promotions) under the SS/GSS collector.
154       WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
155     }
156     pre_fence_visitor(obj, usable_size);
157     QuasiAtomic::ThreadFenceForConstructor();
158     new_num_bytes_allocated = static_cast<size_t>(
159         num_bytes_allocated_.FetchAndAddRelaxed(bytes_tl_bulk_allocated)) + bytes_tl_bulk_allocated;
160   }
161   if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
162     CHECK_LE(obj->SizeOf(), usable_size);
163   }
164   // TODO: Deprecate.
165   if (kInstrumented) {
166     if (Runtime::Current()->HasStatsEnabled()) {
167       RuntimeStats* thread_stats = self->GetStats();
168       ++thread_stats->allocated_objects;
169       thread_stats->allocated_bytes += bytes_allocated;
170       RuntimeStats* global_stats = Runtime::Current()->GetStats();
171       ++global_stats->allocated_objects;
172       global_stats->allocated_bytes += bytes_allocated;
173     }
174   } else {
175     DCHECK(!Runtime::Current()->HasStatsEnabled());
176   }
177   if (kInstrumented) {
178     if (IsAllocTrackingEnabled()) {
179       // allocation_records_ is not null since it never becomes null after allocation tracking is
180       // enabled.
181       DCHECK(allocation_records_ != nullptr);
182       allocation_records_->RecordAllocation(self, &obj, bytes_allocated);
183     }
184   } else {
185     DCHECK(!IsAllocTrackingEnabled());
186   }
187   if (AllocatorHasAllocationStack(allocator)) {
188     PushOnAllocationStack(self, &obj);
189   }
190   if (kInstrumented) {
191     if (gc_stress_mode_) {
192       CheckGcStressMode(self, &obj);
193     }
194   } else {
195     DCHECK(!gc_stress_mode_);
196   }
197   // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
198   // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
199   // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
200   // the allocator_type should be constant propagated.
201   if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
202     CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
203   }
204   VerifyObject(obj);
205   self->VerifyStack();
206   return obj;
207 }
208 
209 // The size of a thread-local allocation stack in the number of references.
210 static constexpr size_t kThreadLocalAllocationStackSize = 128;
211 
PushOnAllocationStack(Thread * self,mirror::Object ** obj)212 inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
213   if (kUseThreadLocalAllocationStack) {
214     if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) {
215       PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
216     }
217   } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) {
218     PushOnAllocationStackWithInternalGC(self, obj);
219   }
220 }
221 
222 template <bool kInstrumented, typename PreFenceVisitor>
AllocLargeObject(Thread * self,mirror::Class ** klass,size_t byte_count,const PreFenceVisitor & pre_fence_visitor)223 inline mirror::Object* Heap::AllocLargeObject(Thread* self,
224                                               mirror::Class** klass,
225                                               size_t byte_count,
226                                               const PreFenceVisitor& pre_fence_visitor) {
227   // Save and restore the class in case it moves.
228   StackHandleScope<1> hs(self);
229   auto klass_wrapper = hs.NewHandleWrapper(klass);
230   return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, *klass, byte_count,
231                                                                          kAllocatorTypeLOS,
232                                                                          pre_fence_visitor);
233 }
234 
235 template <const bool kInstrumented, const bool kGrow>
TryToAllocate(Thread * self,AllocatorType allocator_type,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)236 inline mirror::Object* Heap::TryToAllocate(Thread* self,
237                                            AllocatorType allocator_type,
238                                            size_t alloc_size,
239                                            size_t* bytes_allocated,
240                                            size_t* usable_size,
241                                            size_t* bytes_tl_bulk_allocated) {
242   if (allocator_type != kAllocatorTypeTLAB &&
243       allocator_type != kAllocatorTypeRegionTLAB &&
244       allocator_type != kAllocatorTypeRosAlloc &&
245       UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
246     return nullptr;
247   }
248   mirror::Object* ret;
249   switch (allocator_type) {
250     case kAllocatorTypeBumpPointer: {
251       DCHECK(bump_pointer_space_ != nullptr);
252       alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
253       ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
254       if (LIKELY(ret != nullptr)) {
255         *bytes_allocated = alloc_size;
256         *usable_size = alloc_size;
257         *bytes_tl_bulk_allocated = alloc_size;
258       }
259       break;
260     }
261     case kAllocatorTypeRosAlloc: {
262       if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
263         // If running on valgrind or asan, we should be using the instrumented path.
264         size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size);
265         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type,
266                                                       max_bytes_tl_bulk_allocated))) {
267           return nullptr;
268         }
269         ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
270                                      bytes_tl_bulk_allocated);
271       } else {
272         DCHECK(!is_running_on_memory_tool_);
273         size_t max_bytes_tl_bulk_allocated =
274             rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size);
275         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type,
276                                                       max_bytes_tl_bulk_allocated))) {
277           return nullptr;
278         }
279         if (!kInstrumented) {
280           DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size));
281         }
282         ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size,
283                                                bytes_tl_bulk_allocated);
284       }
285       break;
286     }
287     case kAllocatorTypeDlMalloc: {
288       if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
289         // If running on valgrind, we should be using the instrumented path.
290         ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
291                                      bytes_tl_bulk_allocated);
292       } else {
293         DCHECK(!is_running_on_memory_tool_);
294         ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size,
295                                                bytes_tl_bulk_allocated);
296       }
297       break;
298     }
299     case kAllocatorTypeNonMoving: {
300       ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
301                                      bytes_tl_bulk_allocated);
302       break;
303     }
304     case kAllocatorTypeLOS: {
305       ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
306                                        bytes_tl_bulk_allocated);
307       // Note that the bump pointer spaces aren't necessarily next to
308       // the other continuous spaces like the non-moving alloc space or
309       // the zygote space.
310       DCHECK(ret == nullptr || large_object_space_->Contains(ret));
311       break;
312     }
313     case kAllocatorTypeTLAB: {
314       DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
315       if (UNLIKELY(self->TlabSize() < alloc_size)) {
316         const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
317         if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) {
318           return nullptr;
319         }
320         // Try allocating a new thread local buffer, if the allocaiton fails the space must be
321         // full so return null.
322         if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
323           return nullptr;
324         }
325         *bytes_tl_bulk_allocated = new_tlab_size;
326       } else {
327         *bytes_tl_bulk_allocated = 0;
328       }
329       // The allocation can't fail.
330       ret = self->AllocTlab(alloc_size);
331       DCHECK(ret != nullptr);
332       *bytes_allocated = alloc_size;
333       *usable_size = alloc_size;
334       break;
335     }
336     case kAllocatorTypeRegion: {
337       DCHECK(region_space_ != nullptr);
338       alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment);
339       ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
340                                                   bytes_tl_bulk_allocated);
341       break;
342     }
343     case kAllocatorTypeRegionTLAB: {
344       DCHECK(region_space_ != nullptr);
345       DCHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
346       if (UNLIKELY(self->TlabSize() < alloc_size)) {
347         if (space::RegionSpace::kRegionSize >= alloc_size) {
348           // Non-large. Check OOME for a tlab.
349           if (LIKELY(!IsOutOfMemoryOnAllocation<kGrow>(allocator_type, space::RegionSpace::kRegionSize))) {
350             // Try to allocate a tlab.
351             if (!region_space_->AllocNewTlab(self)) {
352               // Failed to allocate a tlab. Try non-tlab.
353               ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
354                                                           bytes_tl_bulk_allocated);
355               return ret;
356             }
357             *bytes_tl_bulk_allocated = space::RegionSpace::kRegionSize;
358             // Fall-through.
359           } else {
360             // Check OOME for a non-tlab allocation.
361             if (!IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size)) {
362               ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
363                                                           bytes_tl_bulk_allocated);
364               return ret;
365             } else {
366               // Neither tlab or non-tlab works. Give up.
367               return nullptr;
368             }
369           }
370         } else {
371           // Large. Check OOME.
372           if (LIKELY(!IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
373             ret = region_space_->AllocNonvirtual<false>(alloc_size, bytes_allocated, usable_size,
374                                                         bytes_tl_bulk_allocated);
375             return ret;
376           } else {
377             return nullptr;
378           }
379         }
380       } else {
381         *bytes_tl_bulk_allocated = 0;  // Allocated in an existing buffer.
382       }
383       // The allocation can't fail.
384       ret = self->AllocTlab(alloc_size);
385       DCHECK(ret != nullptr);
386       *bytes_allocated = alloc_size;
387       *usable_size = alloc_size;
388       break;
389     }
390     default: {
391       LOG(FATAL) << "Invalid allocator type";
392       ret = nullptr;
393     }
394   }
395   return ret;
396 }
397 
ShouldAllocLargeObject(mirror::Class * c,size_t byte_count)398 inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
399   // We need to have a zygote space or else our newly allocated large object can end up in the
400   // Zygote resulting in it being prematurely freed.
401   // We can only do this for primitive objects since large objects will not be within the card table
402   // range. This also means that we rely on SetClass not dirtying the object's card.
403   return byte_count >= large_object_threshold_ && (c->IsPrimitiveArray() || c->IsStringClass());
404 }
405 
406 template <bool kGrow>
IsOutOfMemoryOnAllocation(AllocatorType allocator_type,size_t alloc_size)407 inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
408   size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
409   if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
410     if (UNLIKELY(new_footprint > growth_limit_)) {
411       return true;
412     }
413     if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
414       if (!kGrow) {
415         return true;
416       }
417       // TODO: Grow for allocation is racy, fix it.
418       VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
419           << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
420       max_allowed_footprint_ = new_footprint;
421     }
422   }
423   return false;
424 }
425 
CheckConcurrentGC(Thread * self,size_t new_num_bytes_allocated,mirror::Object ** obj)426 inline void Heap::CheckConcurrentGC(Thread* self,
427                                     size_t new_num_bytes_allocated,
428                                     mirror::Object** obj) {
429   if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
430     RequestConcurrentGCAndSaveObject(self, false, obj);
431   }
432 }
433 
434 }  // namespace gc
435 }  // namespace art
436 
437 #endif  // ART_RUNTIME_GC_HEAP_INL_H_
438