• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/line_search_direction.h"
32 #include "ceres/line_search_minimizer.h"
33 #include "ceres/low_rank_inverse_hessian.h"
34 #include "ceres/internal/eigen.h"
35 #include "glog/logging.h"
36 
37 namespace ceres {
38 namespace internal {
39 
40 class SteepestDescent : public LineSearchDirection {
41  public:
~SteepestDescent()42   virtual ~SteepestDescent() {}
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)43   bool NextDirection(const LineSearchMinimizer::State& previous,
44                      const LineSearchMinimizer::State& current,
45                      Vector* search_direction) {
46     *search_direction = -current.gradient;
47     return true;
48   }
49 };
50 
51 class NonlinearConjugateGradient : public LineSearchDirection {
52  public:
NonlinearConjugateGradient(const NonlinearConjugateGradientType type,const double function_tolerance)53   NonlinearConjugateGradient(const NonlinearConjugateGradientType type,
54                              const double function_tolerance)
55       : type_(type),
56         function_tolerance_(function_tolerance) {
57   }
58 
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)59   bool NextDirection(const LineSearchMinimizer::State& previous,
60                      const LineSearchMinimizer::State& current,
61                      Vector* search_direction) {
62     double beta = 0.0;
63     Vector gradient_change;
64     switch (type_) {
65       case FLETCHER_REEVES:
66         beta = current.gradient_squared_norm / previous.gradient_squared_norm;
67         break;
68       case POLAK_RIBIERE:
69         gradient_change = current.gradient - previous.gradient;
70         beta = (current.gradient.dot(gradient_change) /
71                 previous.gradient_squared_norm);
72         break;
73       case HESTENES_STIEFEL:
74         gradient_change = current.gradient - previous.gradient;
75         beta =  (current.gradient.dot(gradient_change) /
76                  previous.search_direction.dot(gradient_change));
77         break;
78       default:
79         LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;
80     }
81 
82     *search_direction =  -current.gradient + beta * previous.search_direction;
83     const double directional_derivative =
84         current.gradient.dot(*search_direction);
85     if (directional_derivative > -function_tolerance_) {
86       LOG(WARNING) << "Restarting non-linear conjugate gradients: "
87                    << directional_derivative;
88       *search_direction = -current.gradient;
89     };
90 
91     return true;
92   }
93 
94  private:
95   const NonlinearConjugateGradientType type_;
96   const double function_tolerance_;
97 };
98 
99 class LBFGS : public LineSearchDirection {
100  public:
LBFGS(const int num_parameters,const int max_lbfgs_rank,const bool use_approximate_eigenvalue_bfgs_scaling)101   LBFGS(const int num_parameters,
102         const int max_lbfgs_rank,
103         const bool use_approximate_eigenvalue_bfgs_scaling)
104       : low_rank_inverse_hessian_(num_parameters,
105                                   max_lbfgs_rank,
106                                   use_approximate_eigenvalue_bfgs_scaling),
107         is_positive_definite_(true) {}
108 
~LBFGS()109   virtual ~LBFGS() {}
110 
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)111   bool NextDirection(const LineSearchMinimizer::State& previous,
112                      const LineSearchMinimizer::State& current,
113                      Vector* search_direction) {
114     CHECK(is_positive_definite_)
115         << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "
116         << "approximation has become indefinite, please contact the "
117         << "developers!";
118 
119     low_rank_inverse_hessian_.Update(
120         previous.search_direction * previous.step_size,
121         current.gradient - previous.gradient);
122 
123     search_direction->setZero();
124     low_rank_inverse_hessian_.RightMultiply(current.gradient.data(),
125                                             search_direction->data());
126     *search_direction *= -1.0;
127 
128     if (search_direction->dot(current.gradient) >= 0.0) {
129       LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "
130                    << "approximation is not positive definite, and thus "
131                    << "initial gradient for search direction is positive: "
132                    << search_direction->dot(current.gradient);
133       is_positive_definite_ = false;
134       return false;
135     }
136 
137     return true;
138   }
139 
140  private:
141   LowRankInverseHessian low_rank_inverse_hessian_;
142   bool is_positive_definite_;
143 };
144 
145 class BFGS : public LineSearchDirection {
146  public:
BFGS(const int num_parameters,const bool use_approximate_eigenvalue_scaling)147   BFGS(const int num_parameters,
148        const bool use_approximate_eigenvalue_scaling)
149       : num_parameters_(num_parameters),
150         use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
151         initialized_(false),
152         is_positive_definite_(true) {
153     LOG_IF(WARNING, num_parameters_ >= 1e3)
154         << "BFGS line search being created with: " << num_parameters_
155         << " parameters, this will allocate a dense approximate inverse Hessian"
156         << " of size: " << num_parameters_ << " x " << num_parameters_
157         << ", consider using the L-BFGS memory-efficient line search direction "
158         << "instead.";
159     // Construct inverse_hessian_ after logging warning about size s.t. if the
160     // allocation crashes us, the log will highlight what the issue likely was.
161     inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);
162   }
163 
~BFGS()164   virtual ~BFGS() {}
165 
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)166   bool NextDirection(const LineSearchMinimizer::State& previous,
167                      const LineSearchMinimizer::State& current,
168                      Vector* search_direction) {
169     CHECK(is_positive_definite_)
170         << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "
171         << "approximation has become indefinite, please contact the "
172         << "developers!";
173 
174     const Vector delta_x = previous.search_direction * previous.step_size;
175     const Vector delta_gradient = current.gradient - previous.gradient;
176     const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
177 
178     // The (L)BFGS algorithm explicitly requires that the secant equation:
179     //
180     //   B_{k+1} * s_k = y_k
181     //
182     // Is satisfied at each iteration, where B_{k+1} is the approximated
183     // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
184     // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
185     // positive definite, this is equivalent to the condition:
186     //
187     //   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
188     //
189     // This condition would always be satisfied if the function was strictly
190     // convex, alternatively, it is always satisfied provided that a Wolfe line
191     // search is used (even if the function is not strictly convex).  See [1]
192     // (p138) for a proof.
193     //
194     // Although Ceres will always use a Wolfe line search when using (L)BFGS,
195     // practical implementation considerations mean that the line search
196     // may return a point that satisfies only the Armijo condition, and thus
197     // could violate the Secant equation.  As such, we will only use a step
198     // to update the Hessian approximation if:
199     //
200     //   s_k^T * y_k > tolerance
201     //
202     // It is important that tolerance is very small (and >=0), as otherwise we
203     // might skip the update too often and fail to capture important curvature
204     // information in the Hessian.  For example going from 1e-10 -> 1e-14
205     // improves the NIST benchmark score from 43/54 to 53/54.
206     //
207     // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999.
208     //
209     // TODO(alexs.mac): Consider using Damped BFGS update instead of
210     // skipping update.
211     const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14;
212     if (delta_x_dot_delta_gradient <=
213         kBFGSSecantConditionHessianUpdateTolerance) {
214       VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "
215               << "small: " << delta_x_dot_delta_gradient << ", tolerance: "
216               << kBFGSSecantConditionHessianUpdateTolerance
217               << " (Secant condition).";
218     } else {
219       // Update dense inverse Hessian approximation.
220 
221       if (!initialized_ && use_approximate_eigenvalue_scaling_) {
222         // Rescale the initial inverse Hessian approximation (H_0) to be
223         // iteratively updated so that it is of similar 'size' to the true
224         // inverse Hessian at the start point.  As shown in [1]:
225         //
226         //   \gamma = (delta_gradient_{0}' * delta_x_{0}) /
227         //            (delta_gradient_{0}' * delta_gradient_{0})
228         //
229         // Satisfies:
230         //
231         //   (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)
232         //
233         // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
234         // of the true initial Hessian (not the inverse) respectively. Thus,
235         // \gamma is an approximate eigenvalue of the true inverse Hessian, and
236         // choosing: H_0 = I * \gamma will yield a starting point that has a
237         // similar scale to the true inverse Hessian.  This technique is widely
238         // reported to often improve convergence, however this is not
239         // universally true, particularly if there are errors in the initial
240         // gradients, or if there are significant differences in the sensitivity
241         // of the problem to the parameters (i.e. the range of the magnitudes of
242         // the components of the gradient is large).
243         //
244         // The original origin of this rescaling trick is somewhat unclear, the
245         // earliest reference appears to be Oren [1], however it is widely
246         // discussed without specific attributation in various texts including
247         // [2] (p143).
248         //
249         // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms
250         //     Part II: Implementation and experiments, Management Science,
251         //     20(5), 863-874, 1974.
252         // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
253         const double approximate_eigenvalue_scale =
254             delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);
255         inverse_hessian_ *= approximate_eigenvalue_scale;
256 
257         VLOG(4) << "Applying approximate_eigenvalue_scale: "
258                 << approximate_eigenvalue_scale << " to initial inverse "
259                 << "Hessian approximation.";
260       }
261       initialized_ = true;
262 
263       // Efficient O(num_parameters^2) BFGS update [2].
264       //
265       // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and
266       // using: y_k = delta_gradient, s_k = delta_x:
267       //
268       //   \rho_k = 1.0 / (s_k' * y_k)
269       //   V_k = I - \rho_k * y_k * s_k'
270       //   H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')
271       //
272       // This update involves matrix, matrix products which naively O(N^3),
273       // however we can exploit our knowledge that H_k is positive definite
274       // and thus by defn. symmetric to reduce the cost of the update:
275       //
276       // Expanding the update above yields:
277       //
278       //   H_k = H_{k-1} +
279       //         \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -
280       //                    (s_k * y_k' * H_k + H_k * y_k * s_k') )
281       //
282       // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the
283       // last term simplifies to (A + A'). Note that although A is not symmetric
284       // (A + A') is symmetric. For ease of construction we also define
285       // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn
286       // symmetric due to construction from: s_k * s_k'.
287       //
288       // Now we can write the BFGS update as:
289       //
290       //   H_k = H_{k-1} + \rho_k * (B - (A + A'))
291 
292       // For efficiency, as H_k is by defn. symmetric, we will only maintain the
293       // *lower* triangle of H_k (and all intermediary terms).
294 
295       const double rho_k = 1.0 / delta_x_dot_delta_gradient;
296 
297       // Calculate: A = s_k * y_k' * H_k
298       Matrix A = delta_x * (delta_gradient.transpose() *
299                             inverse_hessian_.selfadjointView<Eigen::Lower>());
300 
301       // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)
302       const double delta_x_times_delta_x_transpose_scale_factor =
303           (1.0 + (rho_k * delta_gradient.transpose() *
304                   inverse_hessian_.selfadjointView<Eigen::Lower>() *
305                   delta_gradient));
306       // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'
307       Matrix B = Matrix::Zero(num_parameters_, num_parameters_);
308       B.selfadjointView<Eigen::Lower>().
309           rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor);
310 
311       // Finally, update inverse Hessian approximation according to:
312       // H_k = H_{k-1} + \rho_k * (B - (A + A')).  Note that (A + A') is
313       // symmetric, even though A is not.
314       inverse_hessian_.triangularView<Eigen::Lower>() +=
315           rho_k * (B - A - A.transpose());
316     }
317 
318     *search_direction =
319         inverse_hessian_.selfadjointView<Eigen::Lower>() *
320         (-1.0 * current.gradient);
321 
322     if (search_direction->dot(current.gradient) >= 0.0) {
323       LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "
324                    << "approximation is not positive definite, and thus "
325                    << "initial gradient for search direction is positive: "
326                    << search_direction->dot(current.gradient);
327       is_positive_definite_ = false;
328       return false;
329     }
330 
331     return true;
332   }
333 
334  private:
335   const int num_parameters_;
336   const bool use_approximate_eigenvalue_scaling_;
337   Matrix inverse_hessian_;
338   bool initialized_;
339   bool is_positive_definite_;
340 };
341 
342 LineSearchDirection*
Create(const LineSearchDirection::Options & options)343 LineSearchDirection::Create(const LineSearchDirection::Options& options) {
344   if (options.type == STEEPEST_DESCENT) {
345     return new SteepestDescent;
346   }
347 
348   if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {
349     return new NonlinearConjugateGradient(
350         options.nonlinear_conjugate_gradient_type,
351         options.function_tolerance);
352   }
353 
354   if (options.type == ceres::LBFGS) {
355     return new ceres::internal::LBFGS(
356         options.num_parameters,
357         options.max_lbfgs_rank,
358         options.use_approximate_eigenvalue_bfgs_scaling);
359   }
360 
361   if (options.type == ceres::BFGS) {
362     return new ceres::internal::BFGS(
363         options.num_parameters,
364         options.use_approximate_eigenvalue_bfgs_scaling);
365   }
366 
367   LOG(ERROR) << "Unknown line search direction type: " << options.type;
368   return NULL;
369 }
370 
371 }  // namespace internal
372 }  // namespace ceres
373