1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include "ceres/line_search_direction.h"
32 #include "ceres/line_search_minimizer.h"
33 #include "ceres/low_rank_inverse_hessian.h"
34 #include "ceres/internal/eigen.h"
35 #include "glog/logging.h"
36
37 namespace ceres {
38 namespace internal {
39
40 class SteepestDescent : public LineSearchDirection {
41 public:
~SteepestDescent()42 virtual ~SteepestDescent() {}
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)43 bool NextDirection(const LineSearchMinimizer::State& previous,
44 const LineSearchMinimizer::State& current,
45 Vector* search_direction) {
46 *search_direction = -current.gradient;
47 return true;
48 }
49 };
50
51 class NonlinearConjugateGradient : public LineSearchDirection {
52 public:
NonlinearConjugateGradient(const NonlinearConjugateGradientType type,const double function_tolerance)53 NonlinearConjugateGradient(const NonlinearConjugateGradientType type,
54 const double function_tolerance)
55 : type_(type),
56 function_tolerance_(function_tolerance) {
57 }
58
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)59 bool NextDirection(const LineSearchMinimizer::State& previous,
60 const LineSearchMinimizer::State& current,
61 Vector* search_direction) {
62 double beta = 0.0;
63 Vector gradient_change;
64 switch (type_) {
65 case FLETCHER_REEVES:
66 beta = current.gradient_squared_norm / previous.gradient_squared_norm;
67 break;
68 case POLAK_RIBIERE:
69 gradient_change = current.gradient - previous.gradient;
70 beta = (current.gradient.dot(gradient_change) /
71 previous.gradient_squared_norm);
72 break;
73 case HESTENES_STIEFEL:
74 gradient_change = current.gradient - previous.gradient;
75 beta = (current.gradient.dot(gradient_change) /
76 previous.search_direction.dot(gradient_change));
77 break;
78 default:
79 LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;
80 }
81
82 *search_direction = -current.gradient + beta * previous.search_direction;
83 const double directional_derivative =
84 current.gradient.dot(*search_direction);
85 if (directional_derivative > -function_tolerance_) {
86 LOG(WARNING) << "Restarting non-linear conjugate gradients: "
87 << directional_derivative;
88 *search_direction = -current.gradient;
89 };
90
91 return true;
92 }
93
94 private:
95 const NonlinearConjugateGradientType type_;
96 const double function_tolerance_;
97 };
98
99 class LBFGS : public LineSearchDirection {
100 public:
LBFGS(const int num_parameters,const int max_lbfgs_rank,const bool use_approximate_eigenvalue_bfgs_scaling)101 LBFGS(const int num_parameters,
102 const int max_lbfgs_rank,
103 const bool use_approximate_eigenvalue_bfgs_scaling)
104 : low_rank_inverse_hessian_(num_parameters,
105 max_lbfgs_rank,
106 use_approximate_eigenvalue_bfgs_scaling),
107 is_positive_definite_(true) {}
108
~LBFGS()109 virtual ~LBFGS() {}
110
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)111 bool NextDirection(const LineSearchMinimizer::State& previous,
112 const LineSearchMinimizer::State& current,
113 Vector* search_direction) {
114 CHECK(is_positive_definite_)
115 << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "
116 << "approximation has become indefinite, please contact the "
117 << "developers!";
118
119 low_rank_inverse_hessian_.Update(
120 previous.search_direction * previous.step_size,
121 current.gradient - previous.gradient);
122
123 search_direction->setZero();
124 low_rank_inverse_hessian_.RightMultiply(current.gradient.data(),
125 search_direction->data());
126 *search_direction *= -1.0;
127
128 if (search_direction->dot(current.gradient) >= 0.0) {
129 LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "
130 << "approximation is not positive definite, and thus "
131 << "initial gradient for search direction is positive: "
132 << search_direction->dot(current.gradient);
133 is_positive_definite_ = false;
134 return false;
135 }
136
137 return true;
138 }
139
140 private:
141 LowRankInverseHessian low_rank_inverse_hessian_;
142 bool is_positive_definite_;
143 };
144
145 class BFGS : public LineSearchDirection {
146 public:
BFGS(const int num_parameters,const bool use_approximate_eigenvalue_scaling)147 BFGS(const int num_parameters,
148 const bool use_approximate_eigenvalue_scaling)
149 : num_parameters_(num_parameters),
150 use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
151 initialized_(false),
152 is_positive_definite_(true) {
153 LOG_IF(WARNING, num_parameters_ >= 1e3)
154 << "BFGS line search being created with: " << num_parameters_
155 << " parameters, this will allocate a dense approximate inverse Hessian"
156 << " of size: " << num_parameters_ << " x " << num_parameters_
157 << ", consider using the L-BFGS memory-efficient line search direction "
158 << "instead.";
159 // Construct inverse_hessian_ after logging warning about size s.t. if the
160 // allocation crashes us, the log will highlight what the issue likely was.
161 inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);
162 }
163
~BFGS()164 virtual ~BFGS() {}
165
NextDirection(const LineSearchMinimizer::State & previous,const LineSearchMinimizer::State & current,Vector * search_direction)166 bool NextDirection(const LineSearchMinimizer::State& previous,
167 const LineSearchMinimizer::State& current,
168 Vector* search_direction) {
169 CHECK(is_positive_definite_)
170 << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "
171 << "approximation has become indefinite, please contact the "
172 << "developers!";
173
174 const Vector delta_x = previous.search_direction * previous.step_size;
175 const Vector delta_gradient = current.gradient - previous.gradient;
176 const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
177
178 // The (L)BFGS algorithm explicitly requires that the secant equation:
179 //
180 // B_{k+1} * s_k = y_k
181 //
182 // Is satisfied at each iteration, where B_{k+1} is the approximated
183 // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
184 // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
185 // positive definite, this is equivalent to the condition:
186 //
187 // s_k^T * y_k > 0 [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
188 //
189 // This condition would always be satisfied if the function was strictly
190 // convex, alternatively, it is always satisfied provided that a Wolfe line
191 // search is used (even if the function is not strictly convex). See [1]
192 // (p138) for a proof.
193 //
194 // Although Ceres will always use a Wolfe line search when using (L)BFGS,
195 // practical implementation considerations mean that the line search
196 // may return a point that satisfies only the Armijo condition, and thus
197 // could violate the Secant equation. As such, we will only use a step
198 // to update the Hessian approximation if:
199 //
200 // s_k^T * y_k > tolerance
201 //
202 // It is important that tolerance is very small (and >=0), as otherwise we
203 // might skip the update too often and fail to capture important curvature
204 // information in the Hessian. For example going from 1e-10 -> 1e-14
205 // improves the NIST benchmark score from 43/54 to 53/54.
206 //
207 // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999.
208 //
209 // TODO(alexs.mac): Consider using Damped BFGS update instead of
210 // skipping update.
211 const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14;
212 if (delta_x_dot_delta_gradient <=
213 kBFGSSecantConditionHessianUpdateTolerance) {
214 VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "
215 << "small: " << delta_x_dot_delta_gradient << ", tolerance: "
216 << kBFGSSecantConditionHessianUpdateTolerance
217 << " (Secant condition).";
218 } else {
219 // Update dense inverse Hessian approximation.
220
221 if (!initialized_ && use_approximate_eigenvalue_scaling_) {
222 // Rescale the initial inverse Hessian approximation (H_0) to be
223 // iteratively updated so that it is of similar 'size' to the true
224 // inverse Hessian at the start point. As shown in [1]:
225 //
226 // \gamma = (delta_gradient_{0}' * delta_x_{0}) /
227 // (delta_gradient_{0}' * delta_gradient_{0})
228 //
229 // Satisfies:
230 //
231 // (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)
232 //
233 // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
234 // of the true initial Hessian (not the inverse) respectively. Thus,
235 // \gamma is an approximate eigenvalue of the true inverse Hessian, and
236 // choosing: H_0 = I * \gamma will yield a starting point that has a
237 // similar scale to the true inverse Hessian. This technique is widely
238 // reported to often improve convergence, however this is not
239 // universally true, particularly if there are errors in the initial
240 // gradients, or if there are significant differences in the sensitivity
241 // of the problem to the parameters (i.e. the range of the magnitudes of
242 // the components of the gradient is large).
243 //
244 // The original origin of this rescaling trick is somewhat unclear, the
245 // earliest reference appears to be Oren [1], however it is widely
246 // discussed without specific attributation in various texts including
247 // [2] (p143).
248 //
249 // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms
250 // Part II: Implementation and experiments, Management Science,
251 // 20(5), 863-874, 1974.
252 // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
253 const double approximate_eigenvalue_scale =
254 delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);
255 inverse_hessian_ *= approximate_eigenvalue_scale;
256
257 VLOG(4) << "Applying approximate_eigenvalue_scale: "
258 << approximate_eigenvalue_scale << " to initial inverse "
259 << "Hessian approximation.";
260 }
261 initialized_ = true;
262
263 // Efficient O(num_parameters^2) BFGS update [2].
264 //
265 // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and
266 // using: y_k = delta_gradient, s_k = delta_x:
267 //
268 // \rho_k = 1.0 / (s_k' * y_k)
269 // V_k = I - \rho_k * y_k * s_k'
270 // H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')
271 //
272 // This update involves matrix, matrix products which naively O(N^3),
273 // however we can exploit our knowledge that H_k is positive definite
274 // and thus by defn. symmetric to reduce the cost of the update:
275 //
276 // Expanding the update above yields:
277 //
278 // H_k = H_{k-1} +
279 // \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -
280 // (s_k * y_k' * H_k + H_k * y_k * s_k') )
281 //
282 // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the
283 // last term simplifies to (A + A'). Note that although A is not symmetric
284 // (A + A') is symmetric. For ease of construction we also define
285 // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn
286 // symmetric due to construction from: s_k * s_k'.
287 //
288 // Now we can write the BFGS update as:
289 //
290 // H_k = H_{k-1} + \rho_k * (B - (A + A'))
291
292 // For efficiency, as H_k is by defn. symmetric, we will only maintain the
293 // *lower* triangle of H_k (and all intermediary terms).
294
295 const double rho_k = 1.0 / delta_x_dot_delta_gradient;
296
297 // Calculate: A = s_k * y_k' * H_k
298 Matrix A = delta_x * (delta_gradient.transpose() *
299 inverse_hessian_.selfadjointView<Eigen::Lower>());
300
301 // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)
302 const double delta_x_times_delta_x_transpose_scale_factor =
303 (1.0 + (rho_k * delta_gradient.transpose() *
304 inverse_hessian_.selfadjointView<Eigen::Lower>() *
305 delta_gradient));
306 // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'
307 Matrix B = Matrix::Zero(num_parameters_, num_parameters_);
308 B.selfadjointView<Eigen::Lower>().
309 rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor);
310
311 // Finally, update inverse Hessian approximation according to:
312 // H_k = H_{k-1} + \rho_k * (B - (A + A')). Note that (A + A') is
313 // symmetric, even though A is not.
314 inverse_hessian_.triangularView<Eigen::Lower>() +=
315 rho_k * (B - A - A.transpose());
316 }
317
318 *search_direction =
319 inverse_hessian_.selfadjointView<Eigen::Lower>() *
320 (-1.0 * current.gradient);
321
322 if (search_direction->dot(current.gradient) >= 0.0) {
323 LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "
324 << "approximation is not positive definite, and thus "
325 << "initial gradient for search direction is positive: "
326 << search_direction->dot(current.gradient);
327 is_positive_definite_ = false;
328 return false;
329 }
330
331 return true;
332 }
333
334 private:
335 const int num_parameters_;
336 const bool use_approximate_eigenvalue_scaling_;
337 Matrix inverse_hessian_;
338 bool initialized_;
339 bool is_positive_definite_;
340 };
341
342 LineSearchDirection*
Create(const LineSearchDirection::Options & options)343 LineSearchDirection::Create(const LineSearchDirection::Options& options) {
344 if (options.type == STEEPEST_DESCENT) {
345 return new SteepestDescent;
346 }
347
348 if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {
349 return new NonlinearConjugateGradient(
350 options.nonlinear_conjugate_gradient_type,
351 options.function_tolerance);
352 }
353
354 if (options.type == ceres::LBFGS) {
355 return new ceres::internal::LBFGS(
356 options.num_parameters,
357 options.max_lbfgs_rank,
358 options.use_approximate_eigenvalue_bfgs_scaling);
359 }
360
361 if (options.type == ceres::BFGS) {
362 return new ceres::internal::BFGS(
363 options.num_parameters,
364 options.use_approximate_eigenvalue_bfgs_scaling);
365 }
366
367 LOG(ERROR) << "Unknown line search direction type: " << options.type;
368 return NULL;
369 }
370
371 } // namespace internal
372 } // namespace ceres
373