• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/reorder_program.h"
32 
33 #include <algorithm>
34 #include <numeric>
35 #include <vector>
36 
37 #include "ceres/cxsparse.h"
38 #include "ceres/internal/port.h"
39 #include "ceres/ordered_groups.h"
40 #include "ceres/parameter_block.h"
41 #include "ceres/parameter_block_ordering.h"
42 #include "ceres/problem_impl.h"
43 #include "ceres/program.h"
44 #include "ceres/program.h"
45 #include "ceres/residual_block.h"
46 #include "ceres/solver.h"
47 #include "ceres/suitesparse.h"
48 #include "ceres/triplet_sparse_matrix.h"
49 #include "ceres/types.h"
50 #include "glog/logging.h"
51 
52 namespace ceres {
53 namespace internal {
54 namespace {
55 
56 // Find the minimum index of any parameter block to the given residual.
57 // Parameter blocks that have indices greater than num_eliminate_blocks are
58 // considered to have an index equal to num_eliminate_blocks.
MinParameterBlock(const ResidualBlock * residual_block,int num_eliminate_blocks)59 static int MinParameterBlock(const ResidualBlock* residual_block,
60                              int num_eliminate_blocks) {
61   int min_parameter_block_position = num_eliminate_blocks;
62   for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
63     ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
64     if (!parameter_block->IsConstant()) {
65       CHECK_NE(parameter_block->index(), -1)
66           << "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
67           << "This is a Ceres bug; please contact the developers!";
68       min_parameter_block_position = std::min(parameter_block->index(),
69                                               min_parameter_block_position);
70     }
71   }
72   return min_parameter_block_position;
73 }
74 
OrderingForSparseNormalCholeskyUsingSuiteSparse(const TripletSparseMatrix & tsm_block_jacobian_transpose,const vector<ParameterBlock * > & parameter_blocks,const ParameterBlockOrdering & parameter_block_ordering,int * ordering)75 void OrderingForSparseNormalCholeskyUsingSuiteSparse(
76     const TripletSparseMatrix& tsm_block_jacobian_transpose,
77     const vector<ParameterBlock*>& parameter_blocks,
78     const ParameterBlockOrdering& parameter_block_ordering,
79     int* ordering) {
80 #ifdef CERES_NO_SUITESPARSE
81   LOG(FATAL) << "Congratulations, you found a Ceres bug! "
82              << "Please report this error to the developers.";
83 #else
84   SuiteSparse ss;
85   cholmod_sparse* block_jacobian_transpose =
86       ss.CreateSparseMatrix(
87           const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
88 
89   // No CAMD or the user did not supply a useful ordering, then just
90   // use regular AMD.
91   if (parameter_block_ordering.NumGroups() <= 1 ||
92       !SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) {
93     ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]);
94   } else {
95     vector<int> constraints;
96     for (int i = 0; i < parameter_blocks.size(); ++i) {
97       constraints.push_back(
98           parameter_block_ordering.GroupId(
99               parameter_blocks[i]->mutable_user_state()));
100     }
101     ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
102                                                    &constraints[0],
103                                                    ordering);
104   }
105 
106   ss.Free(block_jacobian_transpose);
107 #endif  // CERES_NO_SUITESPARSE
108 }
109 
OrderingForSparseNormalCholeskyUsingCXSparse(const TripletSparseMatrix & tsm_block_jacobian_transpose,int * ordering)110 void OrderingForSparseNormalCholeskyUsingCXSparse(
111     const TripletSparseMatrix& tsm_block_jacobian_transpose,
112     int* ordering) {
113 #ifdef CERES_NO_CXSPARSE
114   LOG(FATAL) << "Congratulations, you found a Ceres bug! "
115              << "Please report this error to the developers.";
116 #else  // CERES_NO_CXSPARSE
117   // CXSparse works with J'J instead of J'. So compute the block
118   // sparsity for J'J and compute an approximate minimum degree
119   // ordering.
120   CXSparse cxsparse;
121   cs_di* block_jacobian_transpose;
122   block_jacobian_transpose =
123       cxsparse.CreateSparseMatrix(
124             const_cast<TripletSparseMatrix*>(&tsm_block_jacobian_transpose));
125   cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose);
126   cs_di* block_hessian =
127       cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian);
128   cxsparse.Free(block_jacobian);
129   cxsparse.Free(block_jacobian_transpose);
130 
131   cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, ordering);
132   cxsparse.Free(block_hessian);
133 #endif  // CERES_NO_CXSPARSE
134 }
135 
136 }  // namespace
137 
ApplyOrdering(const ProblemImpl::ParameterMap & parameter_map,const ParameterBlockOrdering & ordering,Program * program,string * error)138 bool ApplyOrdering(const ProblemImpl::ParameterMap& parameter_map,
139                    const ParameterBlockOrdering& ordering,
140                    Program* program,
141                    string* error) {
142   const int num_parameter_blocks =  program->NumParameterBlocks();
143   if (ordering.NumElements() != num_parameter_blocks) {
144     *error = StringPrintf("User specified ordering does not have the same "
145                           "number of parameters as the problem. The problem"
146                           "has %d blocks while the ordering has %d blocks.",
147                           num_parameter_blocks,
148                           ordering.NumElements());
149     return false;
150   }
151 
152   vector<ParameterBlock*>* parameter_blocks =
153       program->mutable_parameter_blocks();
154   parameter_blocks->clear();
155 
156   const map<int, set<double*> >& groups =
157       ordering.group_to_elements();
158 
159   for (map<int, set<double*> >::const_iterator group_it = groups.begin();
160        group_it != groups.end();
161        ++group_it) {
162     const set<double*>& group = group_it->second;
163     for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
164          parameter_block_ptr_it != group.end();
165          ++parameter_block_ptr_it) {
166       ProblemImpl::ParameterMap::const_iterator parameter_block_it =
167           parameter_map.find(*parameter_block_ptr_it);
168       if (parameter_block_it == parameter_map.end()) {
169         *error = StringPrintf("User specified ordering contains a pointer "
170                               "to a double that is not a parameter block in "
171                               "the problem. The invalid double is in group: %d",
172                               group_it->first);
173         return false;
174       }
175       parameter_blocks->push_back(parameter_block_it->second);
176     }
177   }
178   return true;
179 }
180 
LexicographicallyOrderResidualBlocks(const int num_eliminate_blocks,Program * program,string * error)181 bool LexicographicallyOrderResidualBlocks(const int num_eliminate_blocks,
182                                           Program* program,
183                                           string* error) {
184   CHECK_GE(num_eliminate_blocks, 1)
185       << "Congratulations, you found a Ceres bug! Please report this error "
186       << "to the developers.";
187 
188   // Create a histogram of the number of residuals for each E block. There is an
189   // extra bucket at the end to catch all non-eliminated F blocks.
190   vector<int> residual_blocks_per_e_block(num_eliminate_blocks + 1);
191   vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
192   vector<int> min_position_per_residual(residual_blocks->size());
193   for (int i = 0; i < residual_blocks->size(); ++i) {
194     ResidualBlock* residual_block = (*residual_blocks)[i];
195     int position = MinParameterBlock(residual_block, num_eliminate_blocks);
196     min_position_per_residual[i] = position;
197     DCHECK_LE(position, num_eliminate_blocks);
198     residual_blocks_per_e_block[position]++;
199   }
200 
201   // Run a cumulative sum on the histogram, to obtain offsets to the start of
202   // each histogram bucket (where each bucket is for the residuals for that
203   // E-block).
204   vector<int> offsets(num_eliminate_blocks + 1);
205   std::partial_sum(residual_blocks_per_e_block.begin(),
206                    residual_blocks_per_e_block.end(),
207                    offsets.begin());
208   CHECK_EQ(offsets.back(), residual_blocks->size())
209       << "Congratulations, you found a Ceres bug! Please report this error "
210       << "to the developers.";
211 
212   CHECK(find(residual_blocks_per_e_block.begin(),
213              residual_blocks_per_e_block.end() - 1, 0) !=
214         residual_blocks_per_e_block.end())
215       << "Congratulations, you found a Ceres bug! Please report this error "
216       << "to the developers.";
217 
218   // Fill in each bucket with the residual blocks for its corresponding E block.
219   // Each bucket is individually filled from the back of the bucket to the front
220   // of the bucket. The filling order among the buckets is dictated by the
221   // residual blocks. This loop uses the offsets as counters; subtracting one
222   // from each offset as a residual block is placed in the bucket. When the
223   // filling is finished, the offset pointerts should have shifted down one
224   // entry (this is verified below).
225   vector<ResidualBlock*> reordered_residual_blocks(
226       (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
227   for (int i = 0; i < residual_blocks->size(); ++i) {
228     int bucket = min_position_per_residual[i];
229 
230     // Decrement the cursor, which should now point at the next empty position.
231     offsets[bucket]--;
232 
233     // Sanity.
234     CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
235         << "Congratulations, you found a Ceres bug! Please report this error "
236         << "to the developers.";
237 
238     reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
239   }
240 
241   // Sanity check #1: The difference in bucket offsets should match the
242   // histogram sizes.
243   for (int i = 0; i < num_eliminate_blocks; ++i) {
244     CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
245         << "Congratulations, you found a Ceres bug! Please report this error "
246         << "to the developers.";
247   }
248   // Sanity check #2: No NULL's left behind.
249   for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
250     CHECK(reordered_residual_blocks[i] != NULL)
251         << "Congratulations, you found a Ceres bug! Please report this error "
252         << "to the developers.";
253   }
254 
255   // Now that the residuals are collected by E block, swap them in place.
256   swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
257   return true;
258 }
259 
MaybeReorderSchurComplementColumnsUsingSuiteSparse(const ParameterBlockOrdering & parameter_block_ordering,Program * program)260 void MaybeReorderSchurComplementColumnsUsingSuiteSparse(
261     const ParameterBlockOrdering& parameter_block_ordering,
262     Program* program) {
263   // Pre-order the columns corresponding to the schur complement if
264   // possible.
265 #ifndef CERES_NO_SUITESPARSE
266   SuiteSparse ss;
267   if (!SuiteSparse::IsConstrainedApproximateMinimumDegreeOrderingAvailable()) {
268     return;
269   }
270 
271   vector<int> constraints;
272   vector<ParameterBlock*>& parameter_blocks =
273       *(program->mutable_parameter_blocks());
274 
275   for (int i = 0; i < parameter_blocks.size(); ++i) {
276     constraints.push_back(
277         parameter_block_ordering.GroupId(
278             parameter_blocks[i]->mutable_user_state()));
279   }
280 
281   // Renumber the entries of constraints to be contiguous integers
282   // as camd requires that the group ids be in the range [0,
283   // parameter_blocks.size() - 1].
284   MapValuesToContiguousRange(constraints.size(), &constraints[0]);
285 
286   // Set the offsets and index for CreateJacobianSparsityTranspose.
287   program->SetParameterOffsetsAndIndex();
288   // Compute a block sparse presentation of J'.
289   scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
290       program->CreateJacobianBlockSparsityTranspose());
291 
292 
293   cholmod_sparse* block_jacobian_transpose =
294       ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get());
295 
296   vector<int> ordering(parameter_blocks.size(), 0);
297   ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose,
298                                                  &constraints[0],
299                                                  &ordering[0]);
300   ss.Free(block_jacobian_transpose);
301 
302   const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
303   for (int i = 0; i < program->NumParameterBlocks(); ++i) {
304     parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
305   }
306 #endif
307 }
308 
ReorderProgramForSchurTypeLinearSolver(const LinearSolverType linear_solver_type,const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,const ProblemImpl::ParameterMap & parameter_map,ParameterBlockOrdering * parameter_block_ordering,Program * program,string * error)309 bool ReorderProgramForSchurTypeLinearSolver(
310     const LinearSolverType linear_solver_type,
311     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
312     const ProblemImpl::ParameterMap& parameter_map,
313     ParameterBlockOrdering* parameter_block_ordering,
314     Program* program,
315     string* error) {
316   if (parameter_block_ordering->NumGroups() == 1) {
317     // If the user supplied an parameter_block_ordering with just one
318     // group, it is equivalent to the user supplying NULL as an
319     // parameter_block_ordering. Ceres is completely free to choose the
320     // parameter block ordering as it sees fit. For Schur type solvers,
321     // this means that the user wishes for Ceres to identify the
322     // e_blocks, which we do by computing a maximal independent set.
323     vector<ParameterBlock*> schur_ordering;
324     const int num_eliminate_blocks =
325         ComputeStableSchurOrdering(*program, &schur_ordering);
326 
327     CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks())
328         << "Congratulations, you found a Ceres bug! Please report this error "
329         << "to the developers.";
330 
331     // Update the parameter_block_ordering object.
332     for (int i = 0; i < schur_ordering.size(); ++i) {
333       double* parameter_block = schur_ordering[i]->mutable_user_state();
334       const int group_id = (i < num_eliminate_blocks) ? 0 : 1;
335       parameter_block_ordering->AddElementToGroup(parameter_block, group_id);
336     }
337 
338     // We could call ApplyOrdering but this is cheaper and
339     // simpler.
340     swap(*program->mutable_parameter_blocks(), schur_ordering);
341   } else {
342     // The user provided an ordering with more than one elimination
343     // group. Trust the user and apply the ordering.
344     if (!ApplyOrdering(parameter_map,
345                        *parameter_block_ordering,
346                        program,
347                        error)) {
348       return false;
349     }
350   }
351 
352   if (linear_solver_type == SPARSE_SCHUR &&
353       sparse_linear_algebra_library_type == SUITE_SPARSE) {
354     MaybeReorderSchurComplementColumnsUsingSuiteSparse(
355         *parameter_block_ordering,
356         program);
357   }
358 
359   program->SetParameterOffsetsAndIndex();
360   // Schur type solvers also require that their residual blocks be
361   // lexicographically ordered.
362   const int num_eliminate_blocks =
363       parameter_block_ordering->group_to_elements().begin()->second.size();
364   if (!LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
365                                             program,
366                                             error)) {
367     return false;
368   }
369 
370   program->SetParameterOffsetsAndIndex();
371   return true;
372 }
373 
ReorderProgramForSparseNormalCholesky(const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,const ParameterBlockOrdering & parameter_block_ordering,Program * program,string * error)374 bool ReorderProgramForSparseNormalCholesky(
375     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
376     const ParameterBlockOrdering& parameter_block_ordering,
377     Program* program,
378     string* error) {
379 
380   if (sparse_linear_algebra_library_type != SUITE_SPARSE &&
381       sparse_linear_algebra_library_type != CX_SPARSE &&
382       sparse_linear_algebra_library_type != EIGEN_SPARSE) {
383     *error = "Unknown sparse linear algebra library.";
384     return false;
385   }
386 
387   // For Eigen, there is nothing to do. This is because Eigen in its
388   // current stable version does not expose a method for doing
389   // symbolic analysis on pre-ordered matrices, so a block
390   // pre-ordering is a bit pointless.
391   //
392   // The dev version as recently as July 20, 2014 has support for
393   // pre-ordering. Once this becomes more widespread, or we add
394   // support for detecting Eigen versions, we can add support for this
395   // along the lines of CXSparse.
396   if (sparse_linear_algebra_library_type == EIGEN_SPARSE) {
397     program->SetParameterOffsetsAndIndex();
398     return true;
399   }
400 
401   // Set the offsets and index for CreateJacobianSparsityTranspose.
402   program->SetParameterOffsetsAndIndex();
403   // Compute a block sparse presentation of J'.
404   scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose(
405       program->CreateJacobianBlockSparsityTranspose());
406 
407   vector<int> ordering(program->NumParameterBlocks(), 0);
408   vector<ParameterBlock*>& parameter_blocks =
409       *(program->mutable_parameter_blocks());
410 
411   if (sparse_linear_algebra_library_type == SUITE_SPARSE) {
412     OrderingForSparseNormalCholeskyUsingSuiteSparse(
413         *tsm_block_jacobian_transpose,
414         parameter_blocks,
415         parameter_block_ordering,
416         &ordering[0]);
417   } else if (sparse_linear_algebra_library_type == CX_SPARSE){
418     OrderingForSparseNormalCholeskyUsingCXSparse(
419         *tsm_block_jacobian_transpose,
420         &ordering[0]);
421   }
422 
423   // Apply ordering.
424   const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks);
425   for (int i = 0; i < program->NumParameterBlocks(); ++i) {
426     parameter_blocks[i] = parameter_blocks_copy[ordering[i]];
427   }
428 
429   program->SetParameterOffsetsAndIndex();
430   return true;
431 }
432 
433 }  // namespace internal
434 }  // namespace ceres
435