• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SUPERLUSUPPORT_H
11 #define EIGEN_SUPERLUSUPPORT_H
12 
13 namespace Eigen {
14 
15 #define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE)		\
16     extern "C" {                                                                                          \
17       typedef struct { FLOATTYPE for_lu; FLOATTYPE total_needed; int expansions; } PREFIX##mem_usage_t;   \
18       extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *,                  \
19                                 char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,           \
20                                 void *, int, SuperMatrix *, SuperMatrix *,                                \
21                                 FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *,                       \
22                                 PREFIX##mem_usage_t *, SuperLUStat_t *, int *);                           \
23     }                                                                                                     \
24     inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,                                \
25          int *perm_c, int *perm_r, int *etree, char *equed,                                               \
26          FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                                      \
27          SuperMatrix *U, void *work, int lwork,                                                           \
28          SuperMatrix *B, SuperMatrix *X,                                                                  \
29          FLOATTYPE *recip_pivot_growth,                                                                   \
30          FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr,                                              \
31          SuperLUStat_t *stats, int *info, KEYTYPE) {                                                      \
32     PREFIX##mem_usage_t mem_usage;                                                                        \
33     PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L,                                      \
34          U, work, lwork, B, X, recip_pivot_growth, rcond,                                                 \
35          ferr, berr, &mem_usage, stats, info);                                                            \
36     return mem_usage.for_lu; /* bytes used by the factor storage */                                       \
37   }
38 
39 DECL_GSSVX(s,float,float)
40 DECL_GSSVX(c,float,std::complex<float>)
41 DECL_GSSVX(d,double,double)
42 DECL_GSSVX(z,double,std::complex<double>)
43 
44 #ifdef MILU_ALPHA
45 #define EIGEN_SUPERLU_HAS_ILU
46 #endif
47 
48 #ifdef EIGEN_SUPERLU_HAS_ILU
49 
50 // similarly for the incomplete factorization using gsisx
51 #define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE)                                                    \
52     extern "C" {                                                                                \
53       extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *,        \
54                          char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,        \
55                          void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *,   \
56                          PREFIX##mem_usage_t *, SuperLUStat_t *, int *);                        \
57     }                                                                                           \
58     inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A,                      \
59          int *perm_c, int *perm_r, int *etree, char *equed,                                     \
60          FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                            \
61          SuperMatrix *U, void *work, int lwork,                                                 \
62          SuperMatrix *B, SuperMatrix *X,                                                        \
63          FLOATTYPE *recip_pivot_growth,                                                         \
64          FLOATTYPE *rcond,                                                                      \
65          SuperLUStat_t *stats, int *info, KEYTYPE) {                                            \
66     PREFIX##mem_usage_t mem_usage;                                                              \
67     PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L,                            \
68          U, work, lwork, B, X, recip_pivot_growth, rcond,                                       \
69          &mem_usage, stats, info);                                                              \
70     return mem_usage.for_lu; /* bytes used by the factor storage */                             \
71   }
72 
73 DECL_GSISX(s,float,float)
74 DECL_GSISX(c,float,std::complex<float>)
75 DECL_GSISX(d,double,double)
76 DECL_GSISX(z,double,std::complex<double>)
77 
78 #endif
79 
80 template<typename MatrixType>
81 struct SluMatrixMapHelper;
82 
83 /** \internal
84   *
85   * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
86   * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
87   *
88   * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
89   */
90 struct SluMatrix : SuperMatrix
91 {
SluMatrixSluMatrix92   SluMatrix()
93   {
94     Store = &storage;
95   }
96 
SluMatrixSluMatrix97   SluMatrix(const SluMatrix& other)
98     : SuperMatrix(other)
99   {
100     Store = &storage;
101     storage = other.storage;
102   }
103 
104   SluMatrix& operator=(const SluMatrix& other)
105   {
106     SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
107     Store = &storage;
108     storage = other.storage;
109     return *this;
110   }
111 
112   struct
113   {
114     union {int nnz;int lda;};
115     void *values;
116     int *innerInd;
117     int *outerInd;
118   } storage;
119 
setStorageTypeSluMatrix120   void setStorageType(Stype_t t)
121   {
122     Stype = t;
123     if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
124       Store = &storage;
125     else
126     {
127       eigen_assert(false && "storage type not supported");
128       Store = 0;
129     }
130   }
131 
132   template<typename Scalar>
setScalarTypeSluMatrix133   void setScalarType()
134   {
135     if (internal::is_same<Scalar,float>::value)
136       Dtype = SLU_S;
137     else if (internal::is_same<Scalar,double>::value)
138       Dtype = SLU_D;
139     else if (internal::is_same<Scalar,std::complex<float> >::value)
140       Dtype = SLU_C;
141     else if (internal::is_same<Scalar,std::complex<double> >::value)
142       Dtype = SLU_Z;
143     else
144     {
145       eigen_assert(false && "Scalar type not supported by SuperLU");
146     }
147   }
148 
149   template<typename MatrixType>
MapSluMatrix150   static SluMatrix Map(MatrixBase<MatrixType>& _mat)
151   {
152     MatrixType& mat(_mat.derived());
153     eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU");
154     SluMatrix res;
155     res.setStorageType(SLU_DN);
156     res.setScalarType<typename MatrixType::Scalar>();
157     res.Mtype     = SLU_GE;
158 
159     res.nrow      = mat.rows();
160     res.ncol      = mat.cols();
161 
162     res.storage.lda       = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
163     res.storage.values    = (void*)(mat.data());
164     return res;
165   }
166 
167   template<typename MatrixType>
MapSluMatrix168   static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
169   {
170     SluMatrix res;
171     if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
172     {
173       res.setStorageType(SLU_NR);
174       res.nrow      = mat.cols();
175       res.ncol      = mat.rows();
176     }
177     else
178     {
179       res.setStorageType(SLU_NC);
180       res.nrow      = mat.rows();
181       res.ncol      = mat.cols();
182     }
183 
184     res.Mtype       = SLU_GE;
185 
186     res.storage.nnz       = mat.nonZeros();
187     res.storage.values    = mat.derived().valuePtr();
188     res.storage.innerInd  = mat.derived().innerIndexPtr();
189     res.storage.outerInd  = mat.derived().outerIndexPtr();
190 
191     res.setScalarType<typename MatrixType::Scalar>();
192 
193     // FIXME the following is not very accurate
194     if (MatrixType::Flags & Upper)
195       res.Mtype = SLU_TRU;
196     if (MatrixType::Flags & Lower)
197       res.Mtype = SLU_TRL;
198 
199     eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
200 
201     return res;
202   }
203 };
204 
205 template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
206 struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
207 {
208   typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
209   static void run(MatrixType& mat, SluMatrix& res)
210   {
211     eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
212     res.setStorageType(SLU_DN);
213     res.setScalarType<Scalar>();
214     res.Mtype     = SLU_GE;
215 
216     res.nrow      = mat.rows();
217     res.ncol      = mat.cols();
218 
219     res.storage.lda       = mat.outerStride();
220     res.storage.values    = mat.data();
221   }
222 };
223 
224 template<typename Derived>
225 struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
226 {
227   typedef Derived MatrixType;
228   static void run(MatrixType& mat, SluMatrix& res)
229   {
230     if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
231     {
232       res.setStorageType(SLU_NR);
233       res.nrow      = mat.cols();
234       res.ncol      = mat.rows();
235     }
236     else
237     {
238       res.setStorageType(SLU_NC);
239       res.nrow      = mat.rows();
240       res.ncol      = mat.cols();
241     }
242 
243     res.Mtype       = SLU_GE;
244 
245     res.storage.nnz       = mat.nonZeros();
246     res.storage.values    = mat.valuePtr();
247     res.storage.innerInd  = mat.innerIndexPtr();
248     res.storage.outerInd  = mat.outerIndexPtr();
249 
250     res.setScalarType<typename MatrixType::Scalar>();
251 
252     // FIXME the following is not very accurate
253     if (MatrixType::Flags & Upper)
254       res.Mtype = SLU_TRU;
255     if (MatrixType::Flags & Lower)
256       res.Mtype = SLU_TRL;
257 
258     eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
259   }
260 };
261 
262 namespace internal {
263 
264 template<typename MatrixType>
265 SluMatrix asSluMatrix(MatrixType& mat)
266 {
267   return SluMatrix::Map(mat);
268 }
269 
270 /** View a Super LU matrix as an Eigen expression */
271 template<typename Scalar, int Flags, typename Index>
272 MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
273 {
274   eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
275          || (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);
276 
277   Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;
278 
279   return MappedSparseMatrix<Scalar,Flags,Index>(
280     sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
281     sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
282 }
283 
284 } // end namespace internal
285 
286 /** \ingroup SuperLUSupport_Module
287   * \class SuperLUBase
288   * \brief The base class for the direct and incomplete LU factorization of SuperLU
289   */
290 template<typename _MatrixType, typename Derived>
291 class SuperLUBase : internal::noncopyable
292 {
293   public:
294     typedef _MatrixType MatrixType;
295     typedef typename MatrixType::Scalar Scalar;
296     typedef typename MatrixType::RealScalar RealScalar;
297     typedef typename MatrixType::Index Index;
298     typedef Matrix<Scalar,Dynamic,1> Vector;
299     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
300     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
301     typedef SparseMatrix<Scalar> LUMatrixType;
302 
303   public:
304 
305     SuperLUBase() {}
306 
307     ~SuperLUBase()
308     {
309       clearFactors();
310     }
311 
312     Derived& derived() { return *static_cast<Derived*>(this); }
313     const Derived& derived() const { return *static_cast<const Derived*>(this); }
314 
315     inline Index rows() const { return m_matrix.rows(); }
316     inline Index cols() const { return m_matrix.cols(); }
317 
318     /** \returns a reference to the Super LU option object to configure the  Super LU algorithms. */
319     inline superlu_options_t& options() { return m_sluOptions; }
320 
321     /** \brief Reports whether previous computation was successful.
322       *
323       * \returns \c Success if computation was succesful,
324       *          \c NumericalIssue if the matrix.appears to be negative.
325       */
326     ComputationInfo info() const
327     {
328       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
329       return m_info;
330     }
331 
332     /** Computes the sparse Cholesky decomposition of \a matrix */
333     void compute(const MatrixType& matrix)
334     {
335       derived().analyzePattern(matrix);
336       derived().factorize(matrix);
337     }
338 
339     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
340       *
341       * \sa compute()
342       */
343     template<typename Rhs>
344     inline const internal::solve_retval<SuperLUBase, Rhs> solve(const MatrixBase<Rhs>& b) const
345     {
346       eigen_assert(m_isInitialized && "SuperLU is not initialized.");
347       eigen_assert(rows()==b.rows()
348                 && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
349       return internal::solve_retval<SuperLUBase, Rhs>(*this, b.derived());
350     }
351 
352     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
353       *
354       * \sa compute()
355       */
356     template<typename Rhs>
357     inline const internal::sparse_solve_retval<SuperLUBase, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
358     {
359       eigen_assert(m_isInitialized && "SuperLU is not initialized.");
360       eigen_assert(rows()==b.rows()
361                 && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
362       return internal::sparse_solve_retval<SuperLUBase, Rhs>(*this, b.derived());
363     }
364 
365     /** Performs a symbolic decomposition on the sparcity of \a matrix.
366       *
367       * This function is particularly useful when solving for several problems having the same structure.
368       *
369       * \sa factorize()
370       */
371     void analyzePattern(const MatrixType& /*matrix*/)
372     {
373       m_isInitialized = true;
374       m_info = Success;
375       m_analysisIsOk = true;
376       m_factorizationIsOk = false;
377     }
378 
379     template<typename Stream>
380     void dumpMemory(Stream& /*s*/)
381     {}
382 
383   protected:
384 
385     void initFactorization(const MatrixType& a)
386     {
387       set_default_options(&this->m_sluOptions);
388 
389       const int size = a.rows();
390       m_matrix = a;
391 
392       m_sluA = internal::asSluMatrix(m_matrix);
393       clearFactors();
394 
395       m_p.resize(size);
396       m_q.resize(size);
397       m_sluRscale.resize(size);
398       m_sluCscale.resize(size);
399       m_sluEtree.resize(size);
400 
401       // set empty B and X
402       m_sluB.setStorageType(SLU_DN);
403       m_sluB.setScalarType<Scalar>();
404       m_sluB.Mtype          = SLU_GE;
405       m_sluB.storage.values = 0;
406       m_sluB.nrow           = 0;
407       m_sluB.ncol           = 0;
408       m_sluB.storage.lda    = size;
409       m_sluX                = m_sluB;
410 
411       m_extractedDataAreDirty = true;
412     }
413 
414     void init()
415     {
416       m_info = InvalidInput;
417       m_isInitialized = false;
418       m_sluL.Store = 0;
419       m_sluU.Store = 0;
420     }
421 
422     void extractData() const;
423 
424     void clearFactors()
425     {
426       if(m_sluL.Store)
427         Destroy_SuperNode_Matrix(&m_sluL);
428       if(m_sluU.Store)
429         Destroy_CompCol_Matrix(&m_sluU);
430 
431       m_sluL.Store = 0;
432       m_sluU.Store = 0;
433 
434       memset(&m_sluL,0,sizeof m_sluL);
435       memset(&m_sluU,0,sizeof m_sluU);
436     }
437 
438     // cached data to reduce reallocation, etc.
439     mutable LUMatrixType m_l;
440     mutable LUMatrixType m_u;
441     mutable IntColVectorType m_p;
442     mutable IntRowVectorType m_q;
443 
444     mutable LUMatrixType m_matrix;  // copy of the factorized matrix
445     mutable SluMatrix m_sluA;
446     mutable SuperMatrix m_sluL, m_sluU;
447     mutable SluMatrix m_sluB, m_sluX;
448     mutable SuperLUStat_t m_sluStat;
449     mutable superlu_options_t m_sluOptions;
450     mutable std::vector<int> m_sluEtree;
451     mutable Matrix<RealScalar,Dynamic,1> m_sluRscale, m_sluCscale;
452     mutable Matrix<RealScalar,Dynamic,1> m_sluFerr, m_sluBerr;
453     mutable char m_sluEqued;
454 
455     mutable ComputationInfo m_info;
456     bool m_isInitialized;
457     int m_factorizationIsOk;
458     int m_analysisIsOk;
459     mutable bool m_extractedDataAreDirty;
460 
461   private:
462     SuperLUBase(SuperLUBase& ) { }
463 };
464 
465 
466 /** \ingroup SuperLUSupport_Module
467   * \class SuperLU
468   * \brief A sparse direct LU factorization and solver based on the SuperLU library
469   *
470   * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
471   * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
472   * X and B can be either dense or sparse.
473   *
474   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
475   *
476   * \sa \ref TutorialSparseDirectSolvers
477   */
478 template<typename _MatrixType>
479 class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
480 {
481   public:
482     typedef SuperLUBase<_MatrixType,SuperLU> Base;
483     typedef _MatrixType MatrixType;
484     typedef typename Base::Scalar Scalar;
485     typedef typename Base::RealScalar RealScalar;
486     typedef typename Base::Index Index;
487     typedef typename Base::IntRowVectorType IntRowVectorType;
488     typedef typename Base::IntColVectorType IntColVectorType;
489     typedef typename Base::LUMatrixType LUMatrixType;
490     typedef TriangularView<LUMatrixType, Lower|UnitDiag>  LMatrixType;
491     typedef TriangularView<LUMatrixType,  Upper>           UMatrixType;
492 
493   public:
494 
495     SuperLU() : Base() { init(); }
496 
497     SuperLU(const MatrixType& matrix) : Base()
498     {
499       init();
500       Base::compute(matrix);
501     }
502 
503     ~SuperLU()
504     {
505     }
506 
507     /** Performs a symbolic decomposition on the sparcity of \a matrix.
508       *
509       * This function is particularly useful when solving for several problems having the same structure.
510       *
511       * \sa factorize()
512       */
513     void analyzePattern(const MatrixType& matrix)
514     {
515       m_info = InvalidInput;
516       m_isInitialized = false;
517       Base::analyzePattern(matrix);
518     }
519 
520     /** Performs a numeric decomposition of \a matrix
521       *
522       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
523       *
524       * \sa analyzePattern()
525       */
526     void factorize(const MatrixType& matrix);
527 
528     #ifndef EIGEN_PARSED_BY_DOXYGEN
529     /** \internal */
530     template<typename Rhs,typename Dest>
531     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
532     #endif // EIGEN_PARSED_BY_DOXYGEN
533 
534     inline const LMatrixType& matrixL() const
535     {
536       if (m_extractedDataAreDirty) this->extractData();
537       return m_l;
538     }
539 
540     inline const UMatrixType& matrixU() const
541     {
542       if (m_extractedDataAreDirty) this->extractData();
543       return m_u;
544     }
545 
546     inline const IntColVectorType& permutationP() const
547     {
548       if (m_extractedDataAreDirty) this->extractData();
549       return m_p;
550     }
551 
552     inline const IntRowVectorType& permutationQ() const
553     {
554       if (m_extractedDataAreDirty) this->extractData();
555       return m_q;
556     }
557 
558     Scalar determinant() const;
559 
560   protected:
561 
562     using Base::m_matrix;
563     using Base::m_sluOptions;
564     using Base::m_sluA;
565     using Base::m_sluB;
566     using Base::m_sluX;
567     using Base::m_p;
568     using Base::m_q;
569     using Base::m_sluEtree;
570     using Base::m_sluEqued;
571     using Base::m_sluRscale;
572     using Base::m_sluCscale;
573     using Base::m_sluL;
574     using Base::m_sluU;
575     using Base::m_sluStat;
576     using Base::m_sluFerr;
577     using Base::m_sluBerr;
578     using Base::m_l;
579     using Base::m_u;
580 
581     using Base::m_analysisIsOk;
582     using Base::m_factorizationIsOk;
583     using Base::m_extractedDataAreDirty;
584     using Base::m_isInitialized;
585     using Base::m_info;
586 
587     void init()
588     {
589       Base::init();
590 
591       set_default_options(&this->m_sluOptions);
592       m_sluOptions.PrintStat        = NO;
593       m_sluOptions.ConditionNumber  = NO;
594       m_sluOptions.Trans            = NOTRANS;
595       m_sluOptions.ColPerm          = COLAMD;
596     }
597 
598 
599   private:
600     SuperLU(SuperLU& ) { }
601 };
602 
603 template<typename MatrixType>
604 void SuperLU<MatrixType>::factorize(const MatrixType& a)
605 {
606   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
607   if(!m_analysisIsOk)
608   {
609     m_info = InvalidInput;
610     return;
611   }
612 
613   this->initFactorization(a);
614 
615   m_sluOptions.ColPerm = COLAMD;
616   int info = 0;
617   RealScalar recip_pivot_growth, rcond;
618   RealScalar ferr, berr;
619 
620   StatInit(&m_sluStat);
621   SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
622                 &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
623                 &m_sluL, &m_sluU,
624                 NULL, 0,
625                 &m_sluB, &m_sluX,
626                 &recip_pivot_growth, &rcond,
627                 &ferr, &berr,
628                 &m_sluStat, &info, Scalar());
629   StatFree(&m_sluStat);
630 
631   m_extractedDataAreDirty = true;
632 
633   // FIXME how to better check for errors ???
634   m_info = info == 0 ? Success : NumericalIssue;
635   m_factorizationIsOk = true;
636 }
637 
638 template<typename MatrixType>
639 template<typename Rhs,typename Dest>
640 void SuperLU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
641 {
642   eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
643 
644   const int size = m_matrix.rows();
645   const int rhsCols = b.cols();
646   eigen_assert(size==b.rows());
647 
648   m_sluOptions.Trans = NOTRANS;
649   m_sluOptions.Fact = FACTORED;
650   m_sluOptions.IterRefine = NOREFINE;
651 
652 
653   m_sluFerr.resize(rhsCols);
654   m_sluBerr.resize(rhsCols);
655   m_sluB = SluMatrix::Map(b.const_cast_derived());
656   m_sluX = SluMatrix::Map(x.derived());
657 
658   typename Rhs::PlainObject b_cpy;
659   if(m_sluEqued!='N')
660   {
661     b_cpy = b;
662     m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());
663   }
664 
665   StatInit(&m_sluStat);
666   int info = 0;
667   RealScalar recip_pivot_growth, rcond;
668   SuperLU_gssvx(&m_sluOptions, &m_sluA,
669                 m_q.data(), m_p.data(),
670                 &m_sluEtree[0], &m_sluEqued,
671                 &m_sluRscale[0], &m_sluCscale[0],
672                 &m_sluL, &m_sluU,
673                 NULL, 0,
674                 &m_sluB, &m_sluX,
675                 &recip_pivot_growth, &rcond,
676                 &m_sluFerr[0], &m_sluBerr[0],
677                 &m_sluStat, &info, Scalar());
678   StatFree(&m_sluStat);
679   m_info = info==0 ? Success : NumericalIssue;
680 }
681 
682 // the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
683 //
684 //  Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
685 //
686 //  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
687 //  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
688 //
689 template<typename MatrixType, typename Derived>
690 void SuperLUBase<MatrixType,Derived>::extractData() const
691 {
692   eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()");
693   if (m_extractedDataAreDirty)
694   {
695     int         upper;
696     int         fsupc, istart, nsupr;
697     int         lastl = 0, lastu = 0;
698     SCformat    *Lstore = static_cast<SCformat*>(m_sluL.Store);
699     NCformat    *Ustore = static_cast<NCformat*>(m_sluU.Store);
700     Scalar      *SNptr;
701 
702     const int size = m_matrix.rows();
703     m_l.resize(size,size);
704     m_l.resizeNonZeros(Lstore->nnz);
705     m_u.resize(size,size);
706     m_u.resizeNonZeros(Ustore->nnz);
707 
708     int* Lcol = m_l.outerIndexPtr();
709     int* Lrow = m_l.innerIndexPtr();
710     Scalar* Lval = m_l.valuePtr();
711 
712     int* Ucol = m_u.outerIndexPtr();
713     int* Urow = m_u.innerIndexPtr();
714     Scalar* Uval = m_u.valuePtr();
715 
716     Ucol[0] = 0;
717     Ucol[0] = 0;
718 
719     /* for each supernode */
720     for (int k = 0; k <= Lstore->nsuper; ++k)
721     {
722       fsupc   = L_FST_SUPC(k);
723       istart  = L_SUB_START(fsupc);
724       nsupr   = L_SUB_START(fsupc+1) - istart;
725       upper   = 1;
726 
727       /* for each column in the supernode */
728       for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
729       {
730         SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];
731 
732         /* Extract U */
733         for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
734         {
735           Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
736           /* Matlab doesn't like explicit zero. */
737           if (Uval[lastu] != 0.0)
738             Urow[lastu++] = U_SUB(i);
739         }
740         for (int i = 0; i < upper; ++i)
741         {
742           /* upper triangle in the supernode */
743           Uval[lastu] = SNptr[i];
744           /* Matlab doesn't like explicit zero. */
745           if (Uval[lastu] != 0.0)
746             Urow[lastu++] = L_SUB(istart+i);
747         }
748         Ucol[j+1] = lastu;
749 
750         /* Extract L */
751         Lval[lastl] = 1.0; /* unit diagonal */
752         Lrow[lastl++] = L_SUB(istart + upper - 1);
753         for (int i = upper; i < nsupr; ++i)
754         {
755           Lval[lastl] = SNptr[i];
756           /* Matlab doesn't like explicit zero. */
757           if (Lval[lastl] != 0.0)
758             Lrow[lastl++] = L_SUB(istart+i);
759         }
760         Lcol[j+1] = lastl;
761 
762         ++upper;
763       } /* for j ... */
764 
765     } /* for k ... */
766 
767     // squeeze the matrices :
768     m_l.resizeNonZeros(lastl);
769     m_u.resizeNonZeros(lastu);
770 
771     m_extractedDataAreDirty = false;
772   }
773 }
774 
775 template<typename MatrixType>
776 typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
777 {
778   eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()");
779 
780   if (m_extractedDataAreDirty)
781     this->extractData();
782 
783   Scalar det = Scalar(1);
784   for (int j=0; j<m_u.cols(); ++j)
785   {
786     if (m_u.outerIndexPtr()[j+1]-m_u.outerIndexPtr()[j] > 0)
787     {
788       int lastId = m_u.outerIndexPtr()[j+1]-1;
789       eigen_assert(m_u.innerIndexPtr()[lastId]<=j);
790       if (m_u.innerIndexPtr()[lastId]==j)
791         det *= m_u.valuePtr()[lastId];
792     }
793   }
794   if(m_sluEqued!='N')
795     return det/m_sluRscale.prod()/m_sluCscale.prod();
796   else
797     return det;
798 }
799 
800 #ifdef EIGEN_PARSED_BY_DOXYGEN
801 #define EIGEN_SUPERLU_HAS_ILU
802 #endif
803 
804 #ifdef EIGEN_SUPERLU_HAS_ILU
805 
806 /** \ingroup SuperLUSupport_Module
807   * \class SuperILU
808   * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library
809   *
810   * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization
811   * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers.
812   *
813   * \warning This class requires SuperLU 4 or later.
814   *
815   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
816   *
817   * \sa \ref TutorialSparseDirectSolvers, class ConjugateGradient, class BiCGSTAB
818   */
819 
820 template<typename _MatrixType>
821 class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
822 {
823   public:
824     typedef SuperLUBase<_MatrixType,SuperILU> Base;
825     typedef _MatrixType MatrixType;
826     typedef typename Base::Scalar Scalar;
827     typedef typename Base::RealScalar RealScalar;
828     typedef typename Base::Index Index;
829 
830   public:
831 
832     SuperILU() : Base() { init(); }
833 
834     SuperILU(const MatrixType& matrix) : Base()
835     {
836       init();
837       Base::compute(matrix);
838     }
839 
840     ~SuperILU()
841     {
842     }
843 
844     /** Performs a symbolic decomposition on the sparcity of \a matrix.
845       *
846       * This function is particularly useful when solving for several problems having the same structure.
847       *
848       * \sa factorize()
849       */
850     void analyzePattern(const MatrixType& matrix)
851     {
852       Base::analyzePattern(matrix);
853     }
854 
855     /** Performs a numeric decomposition of \a matrix
856       *
857       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
858       *
859       * \sa analyzePattern()
860       */
861     void factorize(const MatrixType& matrix);
862 
863     #ifndef EIGEN_PARSED_BY_DOXYGEN
864     /** \internal */
865     template<typename Rhs,typename Dest>
866     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
867     #endif // EIGEN_PARSED_BY_DOXYGEN
868 
869   protected:
870 
871     using Base::m_matrix;
872     using Base::m_sluOptions;
873     using Base::m_sluA;
874     using Base::m_sluB;
875     using Base::m_sluX;
876     using Base::m_p;
877     using Base::m_q;
878     using Base::m_sluEtree;
879     using Base::m_sluEqued;
880     using Base::m_sluRscale;
881     using Base::m_sluCscale;
882     using Base::m_sluL;
883     using Base::m_sluU;
884     using Base::m_sluStat;
885     using Base::m_sluFerr;
886     using Base::m_sluBerr;
887     using Base::m_l;
888     using Base::m_u;
889 
890     using Base::m_analysisIsOk;
891     using Base::m_factorizationIsOk;
892     using Base::m_extractedDataAreDirty;
893     using Base::m_isInitialized;
894     using Base::m_info;
895 
896     void init()
897     {
898       Base::init();
899 
900       ilu_set_default_options(&m_sluOptions);
901       m_sluOptions.PrintStat        = NO;
902       m_sluOptions.ConditionNumber  = NO;
903       m_sluOptions.Trans            = NOTRANS;
904       m_sluOptions.ColPerm          = MMD_AT_PLUS_A;
905 
906       // no attempt to preserve column sum
907       m_sluOptions.ILU_MILU = SILU;
908       // only basic ILU(k) support -- no direct control over memory consumption
909       // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
910       // and set ILU_FillFactor to max memory growth
911       m_sluOptions.ILU_DropRule = DROP_BASIC;
912       m_sluOptions.ILU_DropTol = NumTraits<Scalar>::dummy_precision()*10;
913     }
914 
915   private:
916     SuperILU(SuperILU& ) { }
917 };
918 
919 template<typename MatrixType>
920 void SuperILU<MatrixType>::factorize(const MatrixType& a)
921 {
922   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
923   if(!m_analysisIsOk)
924   {
925     m_info = InvalidInput;
926     return;
927   }
928 
929   this->initFactorization(a);
930 
931   int info = 0;
932   RealScalar recip_pivot_growth, rcond;
933 
934   StatInit(&m_sluStat);
935   SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
936                 &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
937                 &m_sluL, &m_sluU,
938                 NULL, 0,
939                 &m_sluB, &m_sluX,
940                 &recip_pivot_growth, &rcond,
941                 &m_sluStat, &info, Scalar());
942   StatFree(&m_sluStat);
943 
944   // FIXME how to better check for errors ???
945   m_info = info == 0 ? Success : NumericalIssue;
946   m_factorizationIsOk = true;
947 }
948 
949 template<typename MatrixType>
950 template<typename Rhs,typename Dest>
951 void SuperILU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
952 {
953   eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
954 
955   const int size = m_matrix.rows();
956   const int rhsCols = b.cols();
957   eigen_assert(size==b.rows());
958 
959   m_sluOptions.Trans = NOTRANS;
960   m_sluOptions.Fact = FACTORED;
961   m_sluOptions.IterRefine = NOREFINE;
962 
963   m_sluFerr.resize(rhsCols);
964   m_sluBerr.resize(rhsCols);
965   m_sluB = SluMatrix::Map(b.const_cast_derived());
966   m_sluX = SluMatrix::Map(x.derived());
967 
968   typename Rhs::PlainObject b_cpy;
969   if(m_sluEqued!='N')
970   {
971     b_cpy = b;
972     m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());
973   }
974 
975   int info = 0;
976   RealScalar recip_pivot_growth, rcond;
977 
978   StatInit(&m_sluStat);
979   SuperLU_gsisx(&m_sluOptions, &m_sluA,
980                 m_q.data(), m_p.data(),
981                 &m_sluEtree[0], &m_sluEqued,
982                 &m_sluRscale[0], &m_sluCscale[0],
983                 &m_sluL, &m_sluU,
984                 NULL, 0,
985                 &m_sluB, &m_sluX,
986                 &recip_pivot_growth, &rcond,
987                 &m_sluStat, &info, Scalar());
988   StatFree(&m_sluStat);
989 
990   m_info = info==0 ? Success : NumericalIssue;
991 }
992 #endif
993 
994 namespace internal {
995 
996 template<typename _MatrixType, typename Derived, typename Rhs>
997 struct solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
998   : solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
999 {
1000   typedef SuperLUBase<_MatrixType,Derived> Dec;
1001   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
1002 
1003   template<typename Dest> void evalTo(Dest& dst) const
1004   {
1005     dec().derived()._solve(rhs(),dst);
1006   }
1007 };
1008 
1009 template<typename _MatrixType, typename Derived, typename Rhs>
1010 struct sparse_solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
1011   : sparse_solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
1012 {
1013   typedef SuperLUBase<_MatrixType,Derived> Dec;
1014   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
1015 
1016   template<typename Dest> void evalTo(Dest& dst) const
1017   {
1018     this->defaultEvalTo(dst);
1019   }
1020 };
1021 
1022 } // end namespace internal
1023 
1024 } // end namespace Eigen
1025 
1026 #endif // EIGEN_SUPERLUSUPPORT_H
1027