• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_UMFPACKSUPPORT_H
11 #define EIGEN_UMFPACKSUPPORT_H
12 
13 namespace Eigen {
14 
15 /* TODO extract L, extract U, compute det, etc... */
16 
17 // generic double/complex<double> wrapper functions:
18 
umfpack_free_numeric(void ** Numeric,double)19 inline void umfpack_free_numeric(void **Numeric, double)
20 { umfpack_di_free_numeric(Numeric); *Numeric = 0; }
21 
umfpack_free_numeric(void ** Numeric,std::complex<double>)22 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
23 { umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
24 
umfpack_free_symbolic(void ** Symbolic,double)25 inline void umfpack_free_symbolic(void **Symbolic, double)
26 { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
27 
umfpack_free_symbolic(void ** Symbolic,std::complex<double>)28 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
29 { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
30 
umfpack_symbolic(int n_row,int n_col,const int Ap[],const int Ai[],const double Ax[],void ** Symbolic,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])31 inline int umfpack_symbolic(int n_row,int n_col,
32                             const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
33                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
34 {
35   return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
36 }
37 
umfpack_symbolic(int n_row,int n_col,const int Ap[],const int Ai[],const std::complex<double> Ax[],void ** Symbolic,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])38 inline int umfpack_symbolic(int n_row,int n_col,
39                             const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
40                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
41 {
42   return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
43 }
44 
umfpack_numeric(const int Ap[],const int Ai[],const double Ax[],void * Symbolic,void ** Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])45 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
46                             void *Symbolic, void **Numeric,
47                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
48 {
49   return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
50 }
51 
umfpack_numeric(const int Ap[],const int Ai[],const std::complex<double> Ax[],void * Symbolic,void ** Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])52 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
53                             void *Symbolic, void **Numeric,
54                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
55 {
56   return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
57 }
58 
umfpack_solve(int sys,const int Ap[],const int Ai[],const double Ax[],double X[],const double B[],void * Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])59 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
60                           double X[], const double B[], void *Numeric,
61                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
62 {
63   return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
64 }
65 
umfpack_solve(int sys,const int Ap[],const int Ai[],const std::complex<double> Ax[],std::complex<double> X[],const std::complex<double> B[],void * Numeric,const double Control[UMFPACK_CONTROL],double Info[UMFPACK_INFO])66 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
67                           std::complex<double> X[], const std::complex<double> B[], void *Numeric,
68                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
69 {
70   return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
71 }
72 
umfpack_get_lunz(int * lnz,int * unz,int * n_row,int * n_col,int * nz_udiag,void * Numeric,double)73 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
74 {
75   return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
76 }
77 
umfpack_get_lunz(int * lnz,int * unz,int * n_row,int * n_col,int * nz_udiag,void * Numeric,std::complex<double>)78 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
79 {
80   return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
81 }
82 
umfpack_get_numeric(int Lp[],int Lj[],double Lx[],int Up[],int Ui[],double Ux[],int P[],int Q[],double Dx[],int * do_recip,double Rs[],void * Numeric)83 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
84                                int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
85 {
86   return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
87 }
88 
umfpack_get_numeric(int Lp[],int Lj[],std::complex<double> Lx[],int Up[],int Ui[],std::complex<double> Ux[],int P[],int Q[],std::complex<double> Dx[],int * do_recip,double Rs[],void * Numeric)89 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
90                                int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
91 {
92   double& lx0_real = numext::real_ref(Lx[0]);
93   double& ux0_real = numext::real_ref(Ux[0]);
94   double& dx0_real = numext::real_ref(Dx[0]);
95   return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
96                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
97 }
98 
umfpack_get_determinant(double * Mx,double * Ex,void * NumericHandle,double User_Info[UMFPACK_INFO])99 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
100 {
101   return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
102 }
103 
umfpack_get_determinant(std::complex<double> * Mx,double * Ex,void * NumericHandle,double User_Info[UMFPACK_INFO])104 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
105 {
106   double& mx_real = numext::real_ref(*Mx);
107   return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
108 }
109 
110 namespace internal {
111   template<typename T> struct umfpack_helper_is_sparse_plain : false_type {};
112   template<typename Scalar, int Options, typename StorageIndex>
113   struct umfpack_helper_is_sparse_plain<SparseMatrix<Scalar,Options,StorageIndex> >
114     : true_type {};
115   template<typename Scalar, int Options, typename StorageIndex>
116   struct umfpack_helper_is_sparse_plain<MappedSparseMatrix<Scalar,Options,StorageIndex> >
117     : true_type {};
118 }
119 
120 /** \ingroup UmfPackSupport_Module
121   * \brief A sparse LU factorization and solver based on UmfPack
122   *
123   * This class allows to solve for A.X = B sparse linear problems via a LU factorization
124   * using the UmfPack library. The sparse matrix A must be squared and full rank.
125   * The vectors or matrices X and B can be either dense or sparse.
126   *
127   * \warning The input matrix A should be in a \b compressed and \b column-major form.
128   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
129   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
130   *
131   * \sa \ref TutorialSparseDirectSolvers
132   */
133 template<typename _MatrixType>
134 class UmfPackLU : internal::noncopyable
135 {
136   public:
137     typedef _MatrixType MatrixType;
138     typedef typename MatrixType::Scalar Scalar;
139     typedef typename MatrixType::RealScalar RealScalar;
140     typedef typename MatrixType::Index Index;
141     typedef Matrix<Scalar,Dynamic,1> Vector;
142     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
143     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
144     typedef SparseMatrix<Scalar> LUMatrixType;
145     typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
146 
147   public:
148 
149     UmfPackLU() { init(); }
150 
151     UmfPackLU(const MatrixType& matrix)
152     {
153       init();
154       compute(matrix);
155     }
156 
157     ~UmfPackLU()
158     {
159       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
160       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
161     }
162 
163     inline Index rows() const { return m_copyMatrix.rows(); }
164     inline Index cols() const { return m_copyMatrix.cols(); }
165 
166     /** \brief Reports whether previous computation was successful.
167       *
168       * \returns \c Success if computation was succesful,
169       *          \c NumericalIssue if the matrix.appears to be negative.
170       */
171     ComputationInfo info() const
172     {
173       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
174       return m_info;
175     }
176 
177     inline const LUMatrixType& matrixL() const
178     {
179       if (m_extractedDataAreDirty) extractData();
180       return m_l;
181     }
182 
183     inline const LUMatrixType& matrixU() const
184     {
185       if (m_extractedDataAreDirty) extractData();
186       return m_u;
187     }
188 
189     inline const IntColVectorType& permutationP() const
190     {
191       if (m_extractedDataAreDirty) extractData();
192       return m_p;
193     }
194 
195     inline const IntRowVectorType& permutationQ() const
196     {
197       if (m_extractedDataAreDirty) extractData();
198       return m_q;
199     }
200 
201     /** Computes the sparse Cholesky decomposition of \a matrix
202      *  Note that the matrix should be column-major, and in compressed format for best performance.
203      *  \sa SparseMatrix::makeCompressed().
204      */
205     template<typename InputMatrixType>
206     void compute(const InputMatrixType& matrix)
207     {
208       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
209       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
210       grapInput(matrix.derived());
211       analyzePattern_impl();
212       factorize_impl();
213     }
214 
215     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
216       *
217       * \sa compute()
218       */
219     template<typename Rhs>
220     inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
221     {
222       eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
223       eigen_assert(rows()==b.rows()
224                 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
225       return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
226     }
227 
228     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
229       *
230       * \sa compute()
231       */
232     template<typename Rhs>
233     inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
234     {
235       eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
236       eigen_assert(rows()==b.rows()
237                 && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
238       return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
239     }
240 
241     /** Performs a symbolic decomposition on the sparcity of \a matrix.
242       *
243       * This function is particularly useful when solving for several problems having the same structure.
244       *
245       * \sa factorize(), compute()
246       */
247     template<typename InputMatrixType>
248     void analyzePattern(const InputMatrixType& matrix)
249     {
250       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
251       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
252 
253       grapInput(matrix.derived());
254 
255       analyzePattern_impl();
256     }
257 
258     /** Performs a numeric decomposition of \a matrix
259       *
260       * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
261       *
262       * \sa analyzePattern(), compute()
263       */
264     template<typename InputMatrixType>
265     void factorize(const InputMatrixType& matrix)
266     {
267       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
268       if(m_numeric)
269         umfpack_free_numeric(&m_numeric,Scalar());
270 
271       grapInput(matrix.derived());
272 
273       factorize_impl();
274     }
275 
276     #ifndef EIGEN_PARSED_BY_DOXYGEN
277     /** \internal */
278     template<typename BDerived,typename XDerived>
279     bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
280     #endif
281 
282     Scalar determinant() const;
283 
284     void extractData() const;
285 
286   protected:
287 
288     void init()
289     {
290       m_info                  = InvalidInput;
291       m_isInitialized         = false;
292       m_numeric               = 0;
293       m_symbolic              = 0;
294       m_outerIndexPtr         = 0;
295       m_innerIndexPtr         = 0;
296       m_valuePtr              = 0;
297       m_extractedDataAreDirty = true;
298     }
299 
300     template<typename InputMatrixType>
301     void grapInput_impl(const InputMatrixType& mat, internal::true_type)
302     {
303       m_copyMatrix.resize(mat.rows(), mat.cols());
304       if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
305       {
306         // non supported input -> copy
307         m_copyMatrix = mat;
308         m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
309         m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
310         m_valuePtr      = m_copyMatrix.valuePtr();
311       }
312       else
313       {
314         m_outerIndexPtr = mat.outerIndexPtr();
315         m_innerIndexPtr = mat.innerIndexPtr();
316         m_valuePtr      = mat.valuePtr();
317       }
318     }
319 
320     template<typename InputMatrixType>
321     void grapInput_impl(const InputMatrixType& mat, internal::false_type)
322     {
323       m_copyMatrix = mat;
324       m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
325       m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
326       m_valuePtr      = m_copyMatrix.valuePtr();
327     }
328 
329     template<typename InputMatrixType>
330     void grapInput(const InputMatrixType& mat)
331     {
332       grapInput_impl(mat, internal::umfpack_helper_is_sparse_plain<InputMatrixType>());
333     }
334 
335     void analyzePattern_impl()
336     {
337       int errorCode = 0;
338       errorCode = umfpack_symbolic(m_copyMatrix.rows(), m_copyMatrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
339                                    &m_symbolic, 0, 0);
340 
341       m_isInitialized = true;
342       m_info = errorCode ? InvalidInput : Success;
343       m_analysisIsOk = true;
344       m_factorizationIsOk = false;
345       m_extractedDataAreDirty = true;
346     }
347 
348     void factorize_impl()
349     {
350       int errorCode;
351       errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
352                                   m_symbolic, &m_numeric, 0, 0);
353 
354       m_info = errorCode ? NumericalIssue : Success;
355       m_factorizationIsOk = true;
356       m_extractedDataAreDirty = true;
357     }
358 
359     // cached data to reduce reallocation, etc.
360     mutable LUMatrixType m_l;
361     mutable LUMatrixType m_u;
362     mutable IntColVectorType m_p;
363     mutable IntRowVectorType m_q;
364 
365     UmfpackMatrixType m_copyMatrix;
366     const Scalar* m_valuePtr;
367     const int* m_outerIndexPtr;
368     const int* m_innerIndexPtr;
369     void* m_numeric;
370     void* m_symbolic;
371 
372     mutable ComputationInfo m_info;
373     bool m_isInitialized;
374     int m_factorizationIsOk;
375     int m_analysisIsOk;
376     mutable bool m_extractedDataAreDirty;
377 
378   private:
379     UmfPackLU(UmfPackLU& ) { }
380 };
381 
382 
383 template<typename MatrixType>
384 void UmfPackLU<MatrixType>::extractData() const
385 {
386   if (m_extractedDataAreDirty)
387   {
388     // get size of the data
389     int lnz, unz, rows, cols, nz_udiag;
390     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
391 
392     // allocate data
393     m_l.resize(rows,(std::min)(rows,cols));
394     m_l.resizeNonZeros(lnz);
395 
396     m_u.resize((std::min)(rows,cols),cols);
397     m_u.resizeNonZeros(unz);
398 
399     m_p.resize(rows);
400     m_q.resize(cols);
401 
402     // extract
403     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
404                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
405                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
406 
407     m_extractedDataAreDirty = false;
408   }
409 }
410 
411 template<typename MatrixType>
412 typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
413 {
414   Scalar det;
415   umfpack_get_determinant(&det, 0, m_numeric, 0);
416   return det;
417 }
418 
419 template<typename MatrixType>
420 template<typename BDerived,typename XDerived>
421 bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
422 {
423   const int rhsCols = b.cols();
424   eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
425   eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
426   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
427 
428   int errorCode;
429   for (int j=0; j<rhsCols; ++j)
430   {
431     errorCode = umfpack_solve(UMFPACK_A,
432         m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
433         &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
434     if (errorCode!=0)
435       return false;
436   }
437 
438   return true;
439 }
440 
441 
442 namespace internal {
443 
444 template<typename _MatrixType, typename Rhs>
445 struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
446   : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
447 {
448   typedef UmfPackLU<_MatrixType> Dec;
449   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
450 
451   template<typename Dest> void evalTo(Dest& dst) const
452   {
453     dec()._solve(rhs(),dst);
454   }
455 };
456 
457 template<typename _MatrixType, typename Rhs>
458 struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
459   : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
460 {
461   typedef UmfPackLU<_MatrixType> Dec;
462   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
463 
464   template<typename Dest> void evalTo(Dest& dst) const
465   {
466     this->defaultEvalTo(dst);
467   }
468 };
469 
470 } // end namespace internal
471 
472 } // end namespace Eigen
473 
474 #endif // EIGEN_UMFPACKSUPPORT_H
475