• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_r0};
18 const Register kReturnRegister1 = {Register::kCode_r1};
19 const Register kReturnRegister2 = {Register::kCode_r2};
20 const Register kJSFunctionRegister = {Register::kCode_r1};
21 const Register kContextRegister = {Register::kCode_r7};
22 const Register kAllocateSizeRegister = {Register::kCode_r1};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r0};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r0};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r3};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r1};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r0};
31 
32 // ----------------------------------------------------------------------------
33 // Static helper functions
34 
35 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)36 inline MemOperand FieldMemOperand(Register object, int offset) {
37   return MemOperand(object, offset - kHeapObjectTag);
38 }
39 
40 
41 // Give alias names to registers
42 const Register cp = {Register::kCode_r7};  // JavaScript context pointer.
43 const Register pp = {Register::kCode_r8};  // Constant pool pointer.
44 const Register kRootRegister = {Register::kCode_r10};  // Roots array pointer.
45 
46 // Flags used for AllocateHeapNumber
47 enum TaggingMode {
48   // Tag the result.
49   TAG_RESULT,
50   // Don't tag
51   DONT_TAG_RESULT
52 };
53 
54 
55 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
56 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
57 enum PointersToHereCheck {
58   kPointersToHereMaybeInteresting,
59   kPointersToHereAreAlwaysInteresting
60 };
61 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
62 
63 
64 Register GetRegisterThatIsNotOneOf(Register reg1,
65                                    Register reg2 = no_reg,
66                                    Register reg3 = no_reg,
67                                    Register reg4 = no_reg,
68                                    Register reg5 = no_reg,
69                                    Register reg6 = no_reg);
70 
71 
72 #ifdef DEBUG
73 bool AreAliased(Register reg1,
74                 Register reg2,
75                 Register reg3 = no_reg,
76                 Register reg4 = no_reg,
77                 Register reg5 = no_reg,
78                 Register reg6 = no_reg,
79                 Register reg7 = no_reg,
80                 Register reg8 = no_reg);
81 #endif
82 
83 
84 enum TargetAddressStorageMode {
85   CAN_INLINE_TARGET_ADDRESS,
86   NEVER_INLINE_TARGET_ADDRESS
87 };
88 
89 // MacroAssembler implements a collection of frequently used macros.
90 class MacroAssembler: public Assembler {
91  public:
92   MacroAssembler(Isolate* isolate, void* buffer, int size,
93                  CodeObjectRequired create_code_object);
94 
95 
96   // Returns the size of a call in instructions. Note, the value returned is
97   // only valid as long as no entries are added to the constant pool between
98   // checking the call size and emitting the actual call.
99   static int CallSize(Register target, Condition cond = al);
100   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
101   int CallStubSize(CodeStub* stub,
102                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
103                    Condition cond = al);
104 
105   // Jump, Call, and Ret pseudo instructions implementing inter-working.
106   void Jump(Register target, Condition cond = al);
107   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
108   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
109   void Call(Register target, Condition cond = al);
110   void Call(Address target, RelocInfo::Mode rmode,
111             Condition cond = al,
112             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
113   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
114             TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al,
115             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
116   int CallSize(Handle<Code> code,
117                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
118                TypeFeedbackId ast_id = TypeFeedbackId::None(),
119                Condition cond = al);
120   void Ret(Condition cond = al);
121 
122   // Used for patching in calls to the deoptimizer.
123   void CallDeoptimizer(Address target);
124   static int CallDeoptimizerSize();
125 
126   // Emit code to discard a non-negative number of pointer-sized elements
127   // from the stack, clobbering only the sp register.
128   void Drop(int count, Condition cond = al);
129   void Drop(Register count, Condition cond = al);
130 
131   void Ret(int drop, Condition cond = al);
132 
133   // Swap two registers.  If the scratch register is omitted then a slightly
134   // less efficient form using xor instead of mov is emitted.
135   void Swap(Register reg1,
136             Register reg2,
137             Register scratch = no_reg,
138             Condition cond = al);
139 
140   void Mls(Register dst, Register src1, Register src2, Register srcA,
141            Condition cond = al);
142   void And(Register dst, Register src1, const Operand& src2,
143            Condition cond = al);
144   void Ubfx(Register dst, Register src, int lsb, int width,
145             Condition cond = al);
146   void Sbfx(Register dst, Register src, int lsb, int width,
147             Condition cond = al);
148   // The scratch register is not used for ARMv7.
149   // scratch can be the same register as src (in which case it is trashed), but
150   // not the same as dst.
151   void Bfi(Register dst,
152            Register src,
153            Register scratch,
154            int lsb,
155            int width,
156            Condition cond = al);
157   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
158 
159   void Call(Label* target);
Push(Register src)160   void Push(Register src) { push(src); }
Pop(Register dst)161   void Pop(Register dst) { pop(dst); }
162 
163   // Register move. May do nothing if the registers are identical.
Move(Register dst,Smi * smi)164   void Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
165   void Move(Register dst, Handle<Object> value);
166   void Move(Register dst, Register src, Condition cond = al);
167   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
168             Condition cond = al) {
169     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
170       mov(dst, src, sbit, cond);
171     }
172   }
173   void Move(SwVfpRegister dst, SwVfpRegister src);
174   void Move(DwVfpRegister dst, DwVfpRegister src);
175 
176   void Load(Register dst, const MemOperand& src, Representation r);
177   void Store(Register src, const MemOperand& dst, Representation r);
178 
179   // Load an object from the root table.
180   void LoadRoot(Register destination,
181                 Heap::RootListIndex index,
182                 Condition cond = al);
183   // Store an object to the root table.
184   void StoreRoot(Register source,
185                  Heap::RootListIndex index,
186                  Condition cond = al);
187 
188   // ---------------------------------------------------------------------------
189   // GC Support
190 
191   void IncrementalMarkingRecordWriteHelper(Register object,
192                                            Register value,
193                                            Register address);
194 
195   enum RememberedSetFinalAction {
196     kReturnAtEnd,
197     kFallThroughAtEnd
198   };
199 
200   // Record in the remembered set the fact that we have a pointer to new space
201   // at the address pointed to by the addr register.  Only works if addr is not
202   // in new space.
203   void RememberedSetHelper(Register object,  // Used for debug code.
204                            Register addr,
205                            Register scratch,
206                            SaveFPRegsMode save_fp,
207                            RememberedSetFinalAction and_then);
208 
209   void CheckPageFlag(Register object,
210                      Register scratch,
211                      int mask,
212                      Condition cc,
213                      Label* condition_met);
214 
215   // Check if object is in new space.  Jumps if the object is not in new space.
216   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)217   void JumpIfNotInNewSpace(Register object,
218                            Register scratch,
219                            Label* branch) {
220     InNewSpace(object, scratch, eq, branch);
221   }
222 
223   // Check if object is in new space.  Jumps if the object is in new space.
224   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)225   void JumpIfInNewSpace(Register object,
226                         Register scratch,
227                         Label* branch) {
228     InNewSpace(object, scratch, ne, branch);
229   }
230 
231   // Check if an object has a given incremental marking color.
232   void HasColor(Register object,
233                 Register scratch0,
234                 Register scratch1,
235                 Label* has_color,
236                 int first_bit,
237                 int second_bit);
238 
239   void JumpIfBlack(Register object,
240                    Register scratch0,
241                    Register scratch1,
242                    Label* on_black);
243 
244   // Checks the color of an object.  If the object is white we jump to the
245   // incremental marker.
246   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
247                    Register scratch3, Label* value_is_white);
248 
249   // Notify the garbage collector that we wrote a pointer into an object.
250   // |object| is the object being stored into, |value| is the object being
251   // stored.  value and scratch registers are clobbered by the operation.
252   // The offset is the offset from the start of the object, not the offset from
253   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
254   void RecordWriteField(
255       Register object,
256       int offset,
257       Register value,
258       Register scratch,
259       LinkRegisterStatus lr_status,
260       SaveFPRegsMode save_fp,
261       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
262       SmiCheck smi_check = INLINE_SMI_CHECK,
263       PointersToHereCheck pointers_to_here_check_for_value =
264           kPointersToHereMaybeInteresting);
265 
266   // As above, but the offset has the tag presubtracted.  For use with
267   // MemOperand(reg, off).
268   inline void RecordWriteContextSlot(
269       Register context,
270       int offset,
271       Register value,
272       Register scratch,
273       LinkRegisterStatus lr_status,
274       SaveFPRegsMode save_fp,
275       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
276       SmiCheck smi_check = INLINE_SMI_CHECK,
277       PointersToHereCheck pointers_to_here_check_for_value =
278           kPointersToHereMaybeInteresting) {
279     RecordWriteField(context,
280                      offset + kHeapObjectTag,
281                      value,
282                      scratch,
283                      lr_status,
284                      save_fp,
285                      remembered_set_action,
286                      smi_check,
287                      pointers_to_here_check_for_value);
288   }
289 
290   // Notify the garbage collector that we wrote a code entry into a
291   // JSFunction. Only scratch is clobbered by the operation.
292   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
293                                  Register scratch);
294 
295   void RecordWriteForMap(
296       Register object,
297       Register map,
298       Register dst,
299       LinkRegisterStatus lr_status,
300       SaveFPRegsMode save_fp);
301 
302   // For a given |object| notify the garbage collector that the slot |address|
303   // has been written.  |value| is the object being stored. The value and
304   // address registers are clobbered by the operation.
305   void RecordWrite(
306       Register object,
307       Register address,
308       Register value,
309       LinkRegisterStatus lr_status,
310       SaveFPRegsMode save_fp,
311       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
312       SmiCheck smi_check = INLINE_SMI_CHECK,
313       PointersToHereCheck pointers_to_here_check_for_value =
314           kPointersToHereMaybeInteresting);
315 
316   // Push a handle.
317   void Push(Handle<Object> handle);
Push(Smi * smi)318   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
319 
320   // Push two registers.  Pushes leftmost register first (to highest address).
321   void Push(Register src1, Register src2, Condition cond = al) {
322     if (src1.code() > src2.code()) {
323       stm(db_w, sp, src1.bit() | src2.bit(), cond);
324     } else {
325       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
326       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
327     }
328   }
329 
330   // Push three registers.  Pushes leftmost register first (to highest address).
331   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
332     if (src1.code() > src2.code()) {
333       if (src2.code() > src3.code()) {
334         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
335       } else {
336         stm(db_w, sp, src1.bit() | src2.bit(), cond);
337         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
338       }
339     } else {
340       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
341       Push(src2, src3, cond);
342     }
343   }
344 
345   // Push four registers.  Pushes leftmost register first (to highest address).
346   void Push(Register src1,
347             Register src2,
348             Register src3,
349             Register src4,
350             Condition cond = al) {
351     if (src1.code() > src2.code()) {
352       if (src2.code() > src3.code()) {
353         if (src3.code() > src4.code()) {
354           stm(db_w,
355               sp,
356               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
357               cond);
358         } else {
359           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
360           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
361         }
362       } else {
363         stm(db_w, sp, src1.bit() | src2.bit(), cond);
364         Push(src3, src4, cond);
365       }
366     } else {
367       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
368       Push(src2, src3, src4, cond);
369     }
370   }
371 
372   // Push five registers.  Pushes leftmost register first (to highest address).
373   void Push(Register src1, Register src2, Register src3, Register src4,
374             Register src5, Condition cond = al) {
375     if (src1.code() > src2.code()) {
376       if (src2.code() > src3.code()) {
377         if (src3.code() > src4.code()) {
378           if (src4.code() > src5.code()) {
379             stm(db_w, sp,
380                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
381                 cond);
382           } else {
383             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
384                 cond);
385             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
386           }
387         } else {
388           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
389           Push(src4, src5, cond);
390         }
391       } else {
392         stm(db_w, sp, src1.bit() | src2.bit(), cond);
393         Push(src3, src4, src5, cond);
394       }
395     } else {
396       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
397       Push(src2, src3, src4, src5, cond);
398     }
399   }
400 
401   // Pop two registers. Pops rightmost register first (from lower address).
402   void Pop(Register src1, Register src2, Condition cond = al) {
403     DCHECK(!src1.is(src2));
404     if (src1.code() > src2.code()) {
405       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
406     } else {
407       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
408       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
409     }
410   }
411 
412   // Pop three registers.  Pops rightmost register first (from lower address).
413   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
414     DCHECK(!AreAliased(src1, src2, src3));
415     if (src1.code() > src2.code()) {
416       if (src2.code() > src3.code()) {
417         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
418       } else {
419         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
420         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
421       }
422     } else {
423       Pop(src2, src3, cond);
424       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
425     }
426   }
427 
428   // Pop four registers.  Pops rightmost register first (from lower address).
429   void Pop(Register src1,
430            Register src2,
431            Register src3,
432            Register src4,
433            Condition cond = al) {
434     DCHECK(!AreAliased(src1, src2, src3, src4));
435     if (src1.code() > src2.code()) {
436       if (src2.code() > src3.code()) {
437         if (src3.code() > src4.code()) {
438           ldm(ia_w,
439               sp,
440               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
441               cond);
442         } else {
443           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
444           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
445         }
446       } else {
447         Pop(src3, src4, cond);
448         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
449       }
450     } else {
451       Pop(src2, src3, src4, cond);
452       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
453     }
454   }
455 
456   // Push a fixed frame, consisting of lr, fp, constant pool (if
457   // FLAG_enable_embedded_constant_pool)
458   void PushCommonFrame(Register marker_reg = no_reg);
459 
460   // Push a standard frame, consisting of lr, fp, constant pool (if
461   // FLAG_enable_embedded_constant_pool), context and JS function
462   void PushStandardFrame(Register function_reg);
463 
464   void PopCommonFrame(Register marker_reg = no_reg);
465 
466   // Push and pop the registers that can hold pointers, as defined by the
467   // RegList constant kSafepointSavedRegisters.
468   void PushSafepointRegisters();
469   void PopSafepointRegisters();
470   // Store value in register src in the safepoint stack slot for
471   // register dst.
472   void StoreToSafepointRegisterSlot(Register src, Register dst);
473   // Load the value of the src register from its safepoint stack slot
474   // into register dst.
475   void LoadFromSafepointRegisterSlot(Register dst, Register src);
476 
477   // Load two consecutive registers with two consecutive memory locations.
478   void Ldrd(Register dst1,
479             Register dst2,
480             const MemOperand& src,
481             Condition cond = al);
482 
483   // Store two consecutive registers to two consecutive memory locations.
484   void Strd(Register src1,
485             Register src2,
486             const MemOperand& dst,
487             Condition cond = al);
488 
489   // If the value is a NaN, canonicalize the value else, do nothing.
490   void VFPCanonicalizeNaN(const DwVfpRegister dst,
491                           const DwVfpRegister src,
492                           const Condition cond = al);
493   void VFPCanonicalizeNaN(const DwVfpRegister value,
494                           const Condition cond = al) {
495     VFPCanonicalizeNaN(value, value, cond);
496   }
497 
498   // Compare single values and move the result to the normal condition flags.
499   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
500                              const Condition cond = al);
501   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
502                              const Condition cond = al);
503 
504   // Compare double values and move the result to the normal condition flags.
505   void VFPCompareAndSetFlags(const DwVfpRegister src1,
506                              const DwVfpRegister src2,
507                              const Condition cond = al);
508   void VFPCompareAndSetFlags(const DwVfpRegister src1,
509                              const double src2,
510                              const Condition cond = al);
511 
512   // Compare single values and then load the fpscr flags to a register.
513   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
514                               const SwVfpRegister src2,
515                               const Register fpscr_flags,
516                               const Condition cond = al);
517   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
518                               const Register fpscr_flags,
519                               const Condition cond = al);
520 
521   // Compare double values and then load the fpscr flags to a register.
522   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
523                               const DwVfpRegister src2,
524                               const Register fpscr_flags,
525                               const Condition cond = al);
526   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
527                               const double src2,
528                               const Register fpscr_flags,
529                               const Condition cond = al);
530 
531   void Vmov(const DwVfpRegister dst,
532             const double imm,
533             const Register scratch = no_reg);
534 
535   void VmovHigh(Register dst, DwVfpRegister src);
536   void VmovHigh(DwVfpRegister dst, Register src);
537   void VmovLow(Register dst, DwVfpRegister src);
538   void VmovLow(DwVfpRegister dst, Register src);
539 
540   void LslPair(Register dst_low, Register dst_high, Register src_low,
541                Register src_high, Register scratch, Register shift);
542   void LslPair(Register dst_low, Register dst_high, Register src_low,
543                Register src_high, uint32_t shift);
544   void LsrPair(Register dst_low, Register dst_high, Register src_low,
545                Register src_high, Register scratch, Register shift);
546   void LsrPair(Register dst_low, Register dst_high, Register src_low,
547                Register src_high, uint32_t shift);
548   void AsrPair(Register dst_low, Register dst_high, Register src_low,
549                Register src_high, Register scratch, Register shift);
550   void AsrPair(Register dst_low, Register dst_high, Register src_low,
551                Register src_high, uint32_t shift);
552 
553   // Loads the number from object into dst register.
554   // If |object| is neither smi nor heap number, |not_number| is jumped to
555   // with |object| still intact.
556   void LoadNumber(Register object,
557                   LowDwVfpRegister dst,
558                   Register heap_number_map,
559                   Register scratch,
560                   Label* not_number);
561 
562   // Loads the number from object into double_dst in the double format.
563   // Control will jump to not_int32 if the value cannot be exactly represented
564   // by a 32-bit integer.
565   // Floating point value in the 32-bit integer range that are not exact integer
566   // won't be loaded.
567   void LoadNumberAsInt32Double(Register object,
568                                DwVfpRegister double_dst,
569                                Register heap_number_map,
570                                Register scratch,
571                                LowDwVfpRegister double_scratch,
572                                Label* not_int32);
573 
574   // Loads the number from object into dst as a 32-bit integer.
575   // Control will jump to not_int32 if the object cannot be exactly represented
576   // by a 32-bit integer.
577   // Floating point value in the 32-bit integer range that are not exact integer
578   // won't be converted.
579   void LoadNumberAsInt32(Register object,
580                          Register dst,
581                          Register heap_number_map,
582                          Register scratch,
583                          DwVfpRegister double_scratch0,
584                          LowDwVfpRegister double_scratch1,
585                          Label* not_int32);
586 
587   // Generates function and stub prologue code.
588   void StubPrologue(StackFrame::Type type);
589   void Prologue(bool code_pre_aging);
590 
591   // Enter exit frame.
592   // stack_space - extra stack space, used for alignment before call to C.
593   void EnterExitFrame(bool save_doubles, int stack_space = 0);
594 
595   // Leave the current exit frame. Expects the return value in r0.
596   // Expect the number of values, pushed prior to the exit frame, to
597   // remove in a register (or no_reg, if there is nothing to remove).
598   void LeaveExitFrame(bool save_doubles, Register argument_count,
599                       bool restore_context,
600                       bool argument_count_is_length = false);
601 
602   // Get the actual activation frame alignment for target environment.
603   static int ActivationFrameAlignment();
604 
605   void LoadContext(Register dst, int context_chain_length);
606 
607   // Load the global object from the current context.
LoadGlobalObject(Register dst)608   void LoadGlobalObject(Register dst) {
609     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
610   }
611 
612   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)613   void LoadGlobalProxy(Register dst) {
614     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
615   }
616 
617   // Conditionally load the cached Array transitioned map of type
618   // transitioned_kind from the native context if the map in register
619   // map_in_out is the cached Array map in the native context of
620   // expected_kind.
621   void LoadTransitionedArrayMapConditional(
622       ElementsKind expected_kind,
623       ElementsKind transitioned_kind,
624       Register map_in_out,
625       Register scratch,
626       Label* no_map_match);
627 
628   void LoadNativeContextSlot(int index, Register dst);
629 
630   // Load the initial map from the global function. The registers
631   // function and map can be the same, function is then overwritten.
632   void LoadGlobalFunctionInitialMap(Register function,
633                                     Register map,
634                                     Register scratch);
635 
InitializeRootRegister()636   void InitializeRootRegister() {
637     ExternalReference roots_array_start =
638         ExternalReference::roots_array_start(isolate());
639     mov(kRootRegister, Operand(roots_array_start));
640   }
641 
642   // ---------------------------------------------------------------------------
643   // JavaScript invokes
644 
645   // Removes current frame and its arguments from the stack preserving
646   // the arguments and a return address pushed to the stack for the next call.
647   // Both |callee_args_count| and |caller_args_count_reg| do not include
648   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
649   // is trashed.
650   void PrepareForTailCall(const ParameterCount& callee_args_count,
651                           Register caller_args_count_reg, Register scratch0,
652                           Register scratch1);
653 
654   // Invoke the JavaScript function code by either calling or jumping.
655   void InvokeFunctionCode(Register function, Register new_target,
656                           const ParameterCount& expected,
657                           const ParameterCount& actual, InvokeFlag flag,
658                           const CallWrapper& call_wrapper);
659 
660   void FloodFunctionIfStepping(Register fun, Register new_target,
661                                const ParameterCount& expected,
662                                const ParameterCount& actual);
663 
664   // Invoke the JavaScript function in the given register. Changes the
665   // current context to the context in the function before invoking.
666   void InvokeFunction(Register function,
667                       Register new_target,
668                       const ParameterCount& actual,
669                       InvokeFlag flag,
670                       const CallWrapper& call_wrapper);
671 
672   void InvokeFunction(Register function,
673                       const ParameterCount& expected,
674                       const ParameterCount& actual,
675                       InvokeFlag flag,
676                       const CallWrapper& call_wrapper);
677 
678   void InvokeFunction(Handle<JSFunction> function,
679                       const ParameterCount& expected,
680                       const ParameterCount& actual,
681                       InvokeFlag flag,
682                       const CallWrapper& call_wrapper);
683 
684   void IsObjectJSStringType(Register object,
685                             Register scratch,
686                             Label* fail);
687 
688   void IsObjectNameType(Register object,
689                         Register scratch,
690                         Label* fail);
691 
692   // ---------------------------------------------------------------------------
693   // Debugger Support
694 
695   void DebugBreak();
696 
697   // ---------------------------------------------------------------------------
698   // Exception handling
699 
700   // Push a new stack handler and link into stack handler chain.
701   void PushStackHandler();
702 
703   // Unlink the stack handler on top of the stack from the stack handler chain.
704   // Must preserve the result register.
705   void PopStackHandler();
706 
707   // ---------------------------------------------------------------------------
708   // Inline caching support
709 
710   // Generate code for checking access rights - used for security checks
711   // on access to global objects across environments. The holder register
712   // is left untouched, whereas both scratch registers are clobbered.
713   void CheckAccessGlobalProxy(Register holder_reg,
714                               Register scratch,
715                               Label* miss);
716 
717   void GetNumberHash(Register t0, Register scratch);
718 
719   void LoadFromNumberDictionary(Label* miss,
720                                 Register elements,
721                                 Register key,
722                                 Register result,
723                                 Register t0,
724                                 Register t1,
725                                 Register t2);
726 
727 
MarkCode(NopMarkerTypes type)728   inline void MarkCode(NopMarkerTypes type) {
729     nop(type);
730   }
731 
732   // Check if the given instruction is a 'type' marker.
733   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
734   // These instructions are generated to mark special location in the code,
735   // like some special IC code.
IsMarkedCode(Instr instr,int type)736   static inline bool IsMarkedCode(Instr instr, int type) {
737     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
738     return IsNop(instr, type);
739   }
740 
741 
GetCodeMarker(Instr instr)742   static inline int GetCodeMarker(Instr instr) {
743     int dst_reg_offset = 12;
744     int dst_mask = 0xf << dst_reg_offset;
745     int src_mask = 0xf;
746     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
747     int src_reg = instr & src_mask;
748     uint32_t non_register_mask = ~(dst_mask | src_mask);
749     uint32_t mov_mask = al | 13 << 21;
750 
751     // Return <n> if we have a mov rn rn, else return -1.
752     int type = ((instr & non_register_mask) == mov_mask) &&
753                (dst_reg == src_reg) &&
754                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
755                    ? src_reg
756                    : -1;
757     DCHECK((type == -1) ||
758            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
759     return type;
760   }
761 
762 
763   // ---------------------------------------------------------------------------
764   // Allocation support
765 
766   // Allocate an object in new space or old space. The object_size is
767   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
768   // is passed. If the space is exhausted control continues at the gc_required
769   // label. The allocated object is returned in result. If the flag
770   // tag_allocated_object is true the result is tagged as as a heap object.
771   // All registers are clobbered also when control continues at the gc_required
772   // label.
773   void Allocate(int object_size,
774                 Register result,
775                 Register scratch1,
776                 Register scratch2,
777                 Label* gc_required,
778                 AllocationFlags flags);
779 
780   void Allocate(Register object_size, Register result, Register result_end,
781                 Register scratch, Label* gc_required, AllocationFlags flags);
782 
783   // FastAllocate is right now only used for folded allocations. It just
784   // increments the top pointer without checking against limit. This can only
785   // be done if it was proved earlier that the allocation will succeed.
786   void FastAllocate(int object_size, Register result, Register scratch1,
787                     Register scratch2, AllocationFlags flags);
788 
789   void FastAllocate(Register object_size, Register result, Register result_end,
790                     Register scratch, AllocationFlags flags);
791 
792   void AllocateTwoByteString(Register result,
793                              Register length,
794                              Register scratch1,
795                              Register scratch2,
796                              Register scratch3,
797                              Label* gc_required);
798   void AllocateOneByteString(Register result, Register length,
799                              Register scratch1, Register scratch2,
800                              Register scratch3, Label* gc_required);
801   void AllocateTwoByteConsString(Register result,
802                                  Register length,
803                                  Register scratch1,
804                                  Register scratch2,
805                                  Label* gc_required);
806   void AllocateOneByteConsString(Register result, Register length,
807                                  Register scratch1, Register scratch2,
808                                  Label* gc_required);
809   void AllocateTwoByteSlicedString(Register result,
810                                    Register length,
811                                    Register scratch1,
812                                    Register scratch2,
813                                    Label* gc_required);
814   void AllocateOneByteSlicedString(Register result, Register length,
815                                    Register scratch1, Register scratch2,
816                                    Label* gc_required);
817 
818   // Allocates a heap number or jumps to the gc_required label if the young
819   // space is full and a scavenge is needed. All registers are clobbered also
820   // when control continues at the gc_required label.
821   void AllocateHeapNumber(Register result,
822                           Register scratch1,
823                           Register scratch2,
824                           Register heap_number_map,
825                           Label* gc_required,
826                           MutableMode mode = IMMUTABLE);
827   void AllocateHeapNumberWithValue(Register result,
828                                    DwVfpRegister value,
829                                    Register scratch1,
830                                    Register scratch2,
831                                    Register heap_number_map,
832                                    Label* gc_required);
833 
834   // Allocate and initialize a JSValue wrapper with the specified {constructor}
835   // and {value}.
836   void AllocateJSValue(Register result, Register constructor, Register value,
837                        Register scratch1, Register scratch2,
838                        Label* gc_required);
839 
840   // Copies a number of bytes from src to dst. All registers are clobbered. On
841   // exit src and dst will point to the place just after where the last byte was
842   // read or written and length will be zero.
843   void CopyBytes(Register src,
844                  Register dst,
845                  Register length,
846                  Register scratch);
847 
848   // Initialize fields with filler values.  Fields starting at |current_address|
849   // not including |end_address| are overwritten with the value in |filler|.  At
850   // the end the loop, |current_address| takes the value of |end_address|.
851   void InitializeFieldsWithFiller(Register current_address,
852                                   Register end_address, Register filler);
853 
854   // ---------------------------------------------------------------------------
855   // Support functions.
856 
857   // Machine code version of Map::GetConstructor().
858   // |temp| holds |result|'s map when done, and |temp2| its instance type.
859   void GetMapConstructor(Register result, Register map, Register temp,
860                          Register temp2);
861 
862   // Try to get function prototype of a function and puts the value in
863   // the result register. Checks that the function really is a
864   // function and jumps to the miss label if the fast checks fail. The
865   // function register will be untouched; the other registers may be
866   // clobbered.
867   void TryGetFunctionPrototype(Register function, Register result,
868                                Register scratch, Label* miss);
869 
870   // Compare object type for heap object.  heap_object contains a non-Smi
871   // whose object type should be compared with the given type.  This both
872   // sets the flags and leaves the object type in the type_reg register.
873   // It leaves the map in the map register (unless the type_reg and map register
874   // are the same register).  It leaves the heap object in the heap_object
875   // register unless the heap_object register is the same register as one of the
876   // other registers.
877   // Type_reg can be no_reg. In that case ip is used.
878   void CompareObjectType(Register heap_object,
879                          Register map,
880                          Register type_reg,
881                          InstanceType type);
882 
883   // Compare instance type in a map.  map contains a valid map object whose
884   // object type should be compared with the given type.  This both
885   // sets the flags and leaves the object type in the type_reg register.
886   void CompareInstanceType(Register map,
887                            Register type_reg,
888                            InstanceType type);
889 
890 
891   // Check if a map for a JSObject indicates that the object has fast elements.
892   // Jump to the specified label if it does not.
893   void CheckFastElements(Register map,
894                          Register scratch,
895                          Label* fail);
896 
897   // Check if a map for a JSObject indicates that the object can have both smi
898   // and HeapObject elements.  Jump to the specified label if it does not.
899   void CheckFastObjectElements(Register map,
900                                Register scratch,
901                                Label* fail);
902 
903   // Check if a map for a JSObject indicates that the object has fast smi only
904   // elements.  Jump to the specified label if it does not.
905   void CheckFastSmiElements(Register map,
906                             Register scratch,
907                             Label* fail);
908 
909   // Check to see if maybe_number can be stored as a double in
910   // FastDoubleElements. If it can, store it at the index specified by key in
911   // the FastDoubleElements array elements. Otherwise jump to fail.
912   void StoreNumberToDoubleElements(Register value_reg,
913                                    Register key_reg,
914                                    Register elements_reg,
915                                    Register scratch1,
916                                    LowDwVfpRegister double_scratch,
917                                    Label* fail,
918                                    int elements_offset = 0);
919 
920   // Compare an object's map with the specified map and its transitioned
921   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
922   // set with result of map compare. If multiple map compares are required, the
923   // compare sequences branches to early_success.
924   void CompareMap(Register obj,
925                   Register scratch,
926                   Handle<Map> map,
927                   Label* early_success);
928 
929   // As above, but the map of the object is already loaded into the register
930   // which is preserved by the code generated.
931   void CompareMap(Register obj_map,
932                   Handle<Map> map,
933                   Label* early_success);
934 
935   // Check if the map of an object is equal to a specified map and branch to
936   // label if not. Skip the smi check if not required (object is known to be a
937   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
938   // against maps that are ElementsKind transition maps of the specified map.
939   void CheckMap(Register obj,
940                 Register scratch,
941                 Handle<Map> map,
942                 Label* fail,
943                 SmiCheckType smi_check_type);
944 
945 
946   void CheckMap(Register obj,
947                 Register scratch,
948                 Heap::RootListIndex index,
949                 Label* fail,
950                 SmiCheckType smi_check_type);
951 
952 
953   // Check if the map of an object is equal to a specified weak map and branch
954   // to a specified target if equal. Skip the smi check if not required
955   // (object is known to be a heap object)
956   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
957                        Handle<WeakCell> cell, Handle<Code> success,
958                        SmiCheckType smi_check_type);
959 
960   // Compare the given value and the value of weak cell.
961   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
962 
963   void GetWeakValue(Register value, Handle<WeakCell> cell);
964 
965   // Load the value of the weak cell in the value register. Branch to the given
966   // miss label if the weak cell was cleared.
967   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
968 
969   // Compare the object in a register to a value from the root list.
970   // Uses the ip register as scratch.
971   void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)972   void PushRoot(Heap::RootListIndex index) {
973     LoadRoot(ip, index);
974     Push(ip);
975   }
976 
977   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)978   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
979     CompareRoot(with, index);
980     b(eq, if_equal);
981   }
982 
983   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)984   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
985                      Label* if_not_equal) {
986     CompareRoot(with, index);
987     b(ne, if_not_equal);
988   }
989 
990   // Load and check the instance type of an object for being a string.
991   // Loads the type into the second argument register.
992   // Returns a condition that will be enabled if the object was a string
993   // and the passed-in condition passed. If the passed-in condition failed
994   // then flags remain unchanged.
995   Condition IsObjectStringType(Register obj,
996                                Register type,
997                                Condition cond = al) {
998     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
999     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
1000     tst(type, Operand(kIsNotStringMask), cond);
1001     DCHECK_EQ(0u, kStringTag);
1002     return eq;
1003   }
1004 
1005 
1006   // Picks out an array index from the hash field.
1007   // Register use:
1008   //   hash - holds the index's hash. Clobbered.
1009   //   index - holds the overwritten index on exit.
1010   void IndexFromHash(Register hash, Register index);
1011 
1012   // Get the number of least significant bits from a register
1013   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1014   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1015 
1016   // Load the value of a smi object into a double register.
1017   // The register value must be between d0 and d15.
1018   void SmiToDouble(LowDwVfpRegister value, Register smi);
1019 
1020   // Check if a double can be exactly represented as a signed 32-bit integer.
1021   // Z flag set to one if true.
1022   void TestDoubleIsInt32(DwVfpRegister double_input,
1023                          LowDwVfpRegister double_scratch);
1024 
1025   // Try to convert a double to a signed 32-bit integer.
1026   // Z flag set to one and result assigned if the conversion is exact.
1027   void TryDoubleToInt32Exact(Register result,
1028                              DwVfpRegister double_input,
1029                              LowDwVfpRegister double_scratch);
1030 
1031   // Floor a double and writes the value to the result register.
1032   // Go to exact if the conversion is exact (to be able to test -0),
1033   // fall through calling code if an overflow occurred, else go to done.
1034   // In return, input_high is loaded with high bits of input.
1035   void TryInt32Floor(Register result,
1036                      DwVfpRegister double_input,
1037                      Register input_high,
1038                      LowDwVfpRegister double_scratch,
1039                      Label* done,
1040                      Label* exact);
1041 
1042   // Performs a truncating conversion of a floating point number as used by
1043   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1044   // succeeds, otherwise falls through if result is saturated. On return
1045   // 'result' either holds answer, or is clobbered on fall through.
1046   //
1047   // Only public for the test code in test-code-stubs-arm.cc.
1048   void TryInlineTruncateDoubleToI(Register result,
1049                                   DwVfpRegister input,
1050                                   Label* done);
1051 
1052   // Performs a truncating conversion of a floating point number as used by
1053   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1054   // Exits with 'result' holding the answer.
1055   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
1056 
1057   // Performs a truncating conversion of a heap number as used by
1058   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1059   // must be different registers.  Exits with 'result' holding the answer.
1060   void TruncateHeapNumberToI(Register result, Register object);
1061 
1062   // Converts the smi or heap number in object to an int32 using the rules
1063   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1064   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1065   // different registers.
1066   void TruncateNumberToI(Register object,
1067                          Register result,
1068                          Register heap_number_map,
1069                          Register scratch1,
1070                          Label* not_int32);
1071 
1072   // Check whether d16-d31 are available on the CPU. The result is given by the
1073   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
1074   void CheckFor32DRegs(Register scratch);
1075 
1076   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
1077   // values to location, saving [d0..(d15|d31)].
1078   void SaveFPRegs(Register location, Register scratch);
1079 
1080   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
1081   // values to location, restoring [d0..(d15|d31)].
1082   void RestoreFPRegs(Register location, Register scratch);
1083 
1084   // ---------------------------------------------------------------------------
1085   // Runtime calls
1086 
1087   // Call a code stub.
1088   void CallStub(CodeStub* stub,
1089                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1090                 Condition cond = al);
1091 
1092   // Call a code stub.
1093   void TailCallStub(CodeStub* stub, Condition cond = al);
1094 
1095   // Call a runtime routine.
1096   void CallRuntime(const Runtime::Function* f,
1097                    int num_arguments,
1098                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1099   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1100     const Runtime::Function* function = Runtime::FunctionForId(fid);
1101     CallRuntime(function, function->nargs, kSaveFPRegs);
1102   }
1103 
1104   // Convenience function: Same as above, but takes the fid instead.
1105   void CallRuntime(Runtime::FunctionId fid,
1106                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1107     const Runtime::Function* function = Runtime::FunctionForId(fid);
1108     CallRuntime(function, function->nargs, save_doubles);
1109   }
1110 
1111   // Convenience function: Same as above, but takes the fid instead.
1112   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1113                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1114     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1115   }
1116 
1117   // Convenience function: call an external reference.
1118   void CallExternalReference(const ExternalReference& ext,
1119                              int num_arguments);
1120 
1121   // Convenience function: tail call a runtime routine (jump).
1122   void TailCallRuntime(Runtime::FunctionId fid);
1123 
1124   int CalculateStackPassedWords(int num_reg_arguments,
1125                                 int num_double_arguments);
1126 
1127   // Before calling a C-function from generated code, align arguments on stack.
1128   // After aligning the frame, non-register arguments must be stored in
1129   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1130   // are word sized. If double arguments are used, this function assumes that
1131   // all double arguments are stored before core registers; otherwise the
1132   // correct alignment of the double values is not guaranteed.
1133   // Some compilers/platforms require the stack to be aligned when calling
1134   // C++ code.
1135   // Needs a scratch register to do some arithmetic. This register will be
1136   // trashed.
1137   void PrepareCallCFunction(int num_reg_arguments,
1138                             int num_double_registers,
1139                             Register scratch);
1140   void PrepareCallCFunction(int num_reg_arguments,
1141                             Register scratch);
1142 
1143   // There are two ways of passing double arguments on ARM, depending on
1144   // whether soft or hard floating point ABI is used. These functions
1145   // abstract parameter passing for the three different ways we call
1146   // C functions from generated code.
1147   void MovToFloatParameter(DwVfpRegister src);
1148   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
1149   void MovToFloatResult(DwVfpRegister src);
1150 
1151   // Calls a C function and cleans up the space for arguments allocated
1152   // by PrepareCallCFunction. The called function is not allowed to trigger a
1153   // garbage collection, since that might move the code and invalidate the
1154   // return address (unless this is somehow accounted for by the called
1155   // function).
1156   void CallCFunction(ExternalReference function, int num_arguments);
1157   void CallCFunction(Register function, int num_arguments);
1158   void CallCFunction(ExternalReference function,
1159                      int num_reg_arguments,
1160                      int num_double_arguments);
1161   void CallCFunction(Register function,
1162                      int num_reg_arguments,
1163                      int num_double_arguments);
1164 
1165   void MovFromFloatParameter(DwVfpRegister dst);
1166   void MovFromFloatResult(DwVfpRegister dst);
1167 
1168   // Jump to a runtime routine.
1169   void JumpToExternalReference(const ExternalReference& builtin);
1170 
CodeObject()1171   Handle<Object> CodeObject() {
1172     DCHECK(!code_object_.is_null());
1173     return code_object_;
1174   }
1175 
1176 
1177   // Emit code for a truncating division by a constant. The dividend register is
1178   // unchanged and ip gets clobbered. Dividend and result must be different.
1179   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1180 
1181   // ---------------------------------------------------------------------------
1182   // StatsCounter support
1183 
1184   void SetCounter(StatsCounter* counter, int value,
1185                   Register scratch1, Register scratch2);
1186   void IncrementCounter(StatsCounter* counter, int value,
1187                         Register scratch1, Register scratch2);
1188   void DecrementCounter(StatsCounter* counter, int value,
1189                         Register scratch1, Register scratch2);
1190 
1191 
1192   // ---------------------------------------------------------------------------
1193   // Debugging
1194 
1195   // Calls Abort(msg) if the condition cond is not satisfied.
1196   // Use --debug_code to enable.
1197   void Assert(Condition cond, BailoutReason reason);
1198   void AssertFastElements(Register elements);
1199 
1200   // Like Assert(), but always enabled.
1201   void Check(Condition cond, BailoutReason reason);
1202 
1203   // Print a message to stdout and abort execution.
1204   void Abort(BailoutReason msg);
1205 
1206   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1207   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1208   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1209   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1210   bool has_frame() { return has_frame_; }
1211   inline bool AllowThisStubCall(CodeStub* stub);
1212 
1213   // EABI variant for double arguments in use.
use_eabi_hardfloat()1214   bool use_eabi_hardfloat() {
1215 #ifdef __arm__
1216     return base::OS::ArmUsingHardFloat();
1217 #elif USE_EABI_HARDFLOAT
1218     return true;
1219 #else
1220     return false;
1221 #endif
1222   }
1223 
1224   // ---------------------------------------------------------------------------
1225   // Number utilities
1226 
1227   // Check whether the value of reg is a power of two and not zero. If not
1228   // control continues at the label not_power_of_two. If reg is a power of two
1229   // the register scratch contains the value of (reg - 1) when control falls
1230   // through.
1231   void JumpIfNotPowerOfTwoOrZero(Register reg,
1232                                  Register scratch,
1233                                  Label* not_power_of_two_or_zero);
1234   // Check whether the value of reg is a power of two and not zero.
1235   // Control falls through if it is, with scratch containing the mask
1236   // value (reg - 1).
1237   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1238   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1239   // strictly positive but not a power of two.
1240   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
1241                                        Register scratch,
1242                                        Label* zero_and_neg,
1243                                        Label* not_power_of_two);
1244 
1245   // ---------------------------------------------------------------------------
1246   // Smi utilities
1247 
1248   void SmiTag(Register reg, SBit s = LeaveCC) {
1249     add(reg, reg, Operand(reg), s);
1250   }
1251   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
1252     add(dst, src, Operand(src), s);
1253   }
1254 
1255   // Try to convert int32 to smi. If the value is to large, preserve
1256   // the original value and jump to not_a_smi. Destroys scratch and
1257   // sets flags.
TrySmiTag(Register reg,Label * not_a_smi)1258   void TrySmiTag(Register reg, Label* not_a_smi) {
1259     TrySmiTag(reg, reg, not_a_smi);
1260   }
TrySmiTag(Register reg,Register src,Label * not_a_smi)1261   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
1262     SmiTag(ip, src, SetCC);
1263     b(vs, not_a_smi);
1264     mov(reg, ip);
1265   }
1266 
1267 
1268   void SmiUntag(Register reg, SBit s = LeaveCC) {
1269     mov(reg, Operand::SmiUntag(reg), s);
1270   }
1271   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
1272     mov(dst, Operand::SmiUntag(src), s);
1273   }
1274 
1275   // Untag the source value into destination and jump if source is a smi.
1276   // Souce and destination can be the same register.
1277   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1278 
1279   // Untag the source value into destination and jump if source is not a smi.
1280   // Souce and destination can be the same register.
1281   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1282 
1283   // Test if the register contains a smi (Z == 0 (eq) if true).
SmiTst(Register value)1284   inline void SmiTst(Register value) {
1285     tst(value, Operand(kSmiTagMask));
1286   }
NonNegativeSmiTst(Register value)1287   inline void NonNegativeSmiTst(Register value) {
1288     tst(value, Operand(kSmiTagMask | kSmiSignMask));
1289   }
1290   // Jump if the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1291   inline void JumpIfSmi(Register value, Label* smi_label) {
1292     tst(value, Operand(kSmiTagMask));
1293     b(eq, smi_label);
1294   }
1295   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1296   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1297     tst(value, Operand(kSmiTagMask));
1298     b(ne, not_smi_label);
1299   }
1300   // Jump if either of the registers contain a non-smi.
1301   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1302   // Jump if either of the registers contain a smi.
1303   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1304 
1305   // Abort execution if argument is a number, enabled via --debug-code.
1306   void AssertNotNumber(Register object);
1307 
1308   // Abort execution if argument is a smi, enabled via --debug-code.
1309   void AssertNotSmi(Register object);
1310   void AssertSmi(Register object);
1311 
1312   // Abort execution if argument is not a string, enabled via --debug-code.
1313   void AssertString(Register object);
1314 
1315   // Abort execution if argument is not a name, enabled via --debug-code.
1316   void AssertName(Register object);
1317 
1318   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1319   void AssertFunction(Register object);
1320 
1321   // Abort execution if argument is not a JSBoundFunction,
1322   // enabled via --debug-code.
1323   void AssertBoundFunction(Register object);
1324 
1325   // Abort execution if argument is not a JSGeneratorObject,
1326   // enabled via --debug-code.
1327   void AssertGeneratorObject(Register object);
1328 
1329   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1330   void AssertReceiver(Register object);
1331 
1332   // Abort execution if argument is not undefined or an AllocationSite, enabled
1333   // via --debug-code.
1334   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1335 
1336   // Abort execution if reg is not the root value with the given index,
1337   // enabled via --debug-code.
1338   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1339 
1340   // ---------------------------------------------------------------------------
1341   // HeapNumber utilities
1342 
1343   void JumpIfNotHeapNumber(Register object,
1344                            Register heap_number_map,
1345                            Register scratch,
1346                            Label* on_not_heap_number);
1347 
1348   // ---------------------------------------------------------------------------
1349   // String utilities
1350 
1351   // Checks if both objects are sequential one-byte strings and jumps to label
1352   // if either is not. Assumes that neither object is a smi.
1353   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1354                                                     Register object2,
1355                                                     Register scratch1,
1356                                                     Register scratch2,
1357                                                     Label* failure);
1358 
1359   // Checks if both objects are sequential one-byte strings and jumps to label
1360   // if either is not.
1361   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1362                                              Register scratch1,
1363                                              Register scratch2,
1364                                              Label* not_flat_one_byte_strings);
1365 
1366   // Checks if both instance types are sequential one-byte strings and jumps to
1367   // label if either is not.
1368   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1369       Register first_object_instance_type, Register second_object_instance_type,
1370       Register scratch1, Register scratch2, Label* failure);
1371 
1372   // Check if instance type is sequential one-byte string and jump to label if
1373   // it is not.
1374   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1375                                                 Label* failure);
1376 
1377   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1378 
1379   void EmitSeqStringSetCharCheck(Register string,
1380                                  Register index,
1381                                  Register value,
1382                                  uint32_t encoding_mask);
1383 
1384 
1385   void ClampUint8(Register output_reg, Register input_reg);
1386 
1387   void ClampDoubleToUint8(Register result_reg,
1388                           DwVfpRegister input_reg,
1389                           LowDwVfpRegister double_scratch);
1390 
1391 
1392   void LoadInstanceDescriptors(Register map, Register descriptors);
1393   void EnumLength(Register dst, Register map);
1394   void NumberOfOwnDescriptors(Register dst, Register map);
1395   void LoadAccessor(Register dst, Register holder, int accessor_index,
1396                     AccessorComponent accessor);
1397 
1398   template<typename Field>
DecodeField(Register dst,Register src)1399   void DecodeField(Register dst, Register src) {
1400     Ubfx(dst, src, Field::kShift, Field::kSize);
1401   }
1402 
1403   template<typename Field>
DecodeField(Register reg)1404   void DecodeField(Register reg) {
1405     DecodeField<Field>(reg, reg);
1406   }
1407 
1408   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1409   void DecodeFieldToSmi(Register dst, Register src) {
1410     static const int shift = Field::kShift;
1411     static const int mask = Field::kMask >> shift << kSmiTagSize;
1412     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1413     STATIC_ASSERT(kSmiTag == 0);
1414     if (shift < kSmiTagSize) {
1415       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
1416       and_(dst, dst, Operand(mask));
1417     } else if (shift > kSmiTagSize) {
1418       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
1419       and_(dst, dst, Operand(mask));
1420     } else {
1421       and_(dst, src, Operand(mask));
1422     }
1423   }
1424 
1425   template<typename Field>
DecodeFieldToSmi(Register reg)1426   void DecodeFieldToSmi(Register reg) {
1427     DecodeField<Field>(reg, reg);
1428   }
1429 
1430   // Load the type feedback vector from a JavaScript frame.
1431   void EmitLoadTypeFeedbackVector(Register vector);
1432 
1433   // Activation support.
1434   void EnterFrame(StackFrame::Type type,
1435                   bool load_constant_pool_pointer_reg = false);
1436   // Returns the pc offset at which the frame ends.
1437   int LeaveFrame(StackFrame::Type type);
1438 
1439   // Expects object in r0 and returns map with validated enum cache
1440   // in r0.  Assumes that any other register can be used as a scratch.
1441   void CheckEnumCache(Label* call_runtime);
1442 
1443   // AllocationMemento support. Arrays may have an associated
1444   // AllocationMemento object that can be checked for in order to pretransition
1445   // to another type.
1446   // On entry, receiver_reg should point to the array object.
1447   // scratch_reg gets clobbered.
1448   // If allocation info is present, condition flags are set to eq.
1449   void TestJSArrayForAllocationMemento(Register receiver_reg,
1450                                        Register scratch_reg,
1451                                        Label* no_memento_found);
1452 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1453   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1454                                          Register scratch_reg,
1455                                          Label* memento_found) {
1456     Label no_memento_found;
1457     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1458                                     &no_memento_found);
1459     b(eq, memento_found);
1460     bind(&no_memento_found);
1461   }
1462 
1463   // Jumps to found label if a prototype map has dictionary elements.
1464   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1465                                         Register scratch1, Label* found);
1466 
1467   // Loads the constant pool pointer (pp) register.
1468   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
1469       Register code_target_address);
1470   void LoadConstantPoolPointerRegister();
1471 
1472  private:
1473   void CallCFunctionHelper(Register function,
1474                            int num_reg_arguments,
1475                            int num_double_arguments);
1476 
1477   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1478 
1479   // Helper functions for generating invokes.
1480   void InvokePrologue(const ParameterCount& expected,
1481                       const ParameterCount& actual,
1482                       Label* done,
1483                       bool* definitely_mismatches,
1484                       InvokeFlag flag,
1485                       const CallWrapper& call_wrapper);
1486 
1487   void InitializeNewString(Register string,
1488                            Register length,
1489                            Heap::RootListIndex map_index,
1490                            Register scratch1,
1491                            Register scratch2);
1492 
1493   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1494   void InNewSpace(Register object,
1495                   Register scratch,
1496                   Condition cond,  // eq for new space, ne otherwise.
1497                   Label* branch);
1498 
1499   // Helper for finding the mark bits for an address.  Afterwards, the
1500   // bitmap register points at the word with the mark bits and the mask
1501   // the position of the first bit.  Leaves addr_reg unchanged.
1502   inline void GetMarkBits(Register addr_reg,
1503                           Register bitmap_reg,
1504                           Register mask_reg);
1505 
1506   // Compute memory operands for safepoint stack slots.
1507   static int SafepointRegisterStackIndex(int reg_code);
1508   MemOperand SafepointRegisterSlot(Register reg);
1509   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1510 
1511   bool generating_stub_;
1512   bool has_frame_;
1513   // This handle will be patched with the code object on installation.
1514   Handle<Object> code_object_;
1515 
1516   // Needs access to SafepointRegisterStackIndex for compiled frame
1517   // traversal.
1518   friend class StandardFrame;
1519 };
1520 
1521 
1522 // The code patcher is used to patch (typically) small parts of code e.g. for
1523 // debugging and other types of instrumentation. When using the code patcher
1524 // the exact number of bytes specified must be emitted. It is not legal to emit
1525 // relocation information. If any of these constraints are violated it causes
1526 // an assertion to fail.
1527 class CodePatcher {
1528  public:
1529   enum FlushICache {
1530     FLUSH,
1531     DONT_FLUSH
1532   };
1533 
1534   CodePatcher(Isolate* isolate, byte* address, int instructions,
1535               FlushICache flush_cache = FLUSH);
1536   ~CodePatcher();
1537 
1538   // Macro assembler to emit code.
masm()1539   MacroAssembler* masm() { return &masm_; }
1540 
1541   // Emit an instruction directly.
1542   void Emit(Instr instr);
1543 
1544   // Emit an address directly.
1545   void Emit(Address addr);
1546 
1547   // Emit the condition part of an instruction leaving the rest of the current
1548   // instruction unchanged.
1549   void EmitCondition(Condition cond);
1550 
1551  private:
1552   byte* address_;  // The address of the code being patched.
1553   int size_;  // Number of bytes of the expected patch size.
1554   MacroAssembler masm_;  // Macro assembler used to generate the code.
1555   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1556 };
1557 
1558 
1559 // -----------------------------------------------------------------------------
1560 // Static helper functions.
1561 
1562 inline MemOperand ContextMemOperand(Register context, int index = 0) {
1563   return MemOperand(context, Context::SlotOffset(index));
1564 }
1565 
1566 
NativeContextMemOperand()1567 inline MemOperand NativeContextMemOperand() {
1568   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1569 }
1570 
1571 
1572 #ifdef GENERATED_CODE_COVERAGE
1573 #define CODE_COVERAGE_STRINGIFY(x) #x
1574 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1575 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1576 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1577 #else
1578 #define ACCESS_MASM(masm) masm->
1579 #endif
1580 
1581 
1582 }  // namespace internal
1583 }  // namespace v8
1584 
1585 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
1586