• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
7 
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/assembler.h"
10 #include "src/debug/debug.h"
11 
12 
13 namespace v8 {
14 namespace internal {
15 
16 
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18 
19 
apply(intptr_t delta)20 void RelocInfo::apply(intptr_t delta) {
21   // On arm64 only internal references need extra work.
22   DCHECK(RelocInfo::IsInternalReference(rmode_));
23 
24   // Absolute code pointer inside code object moves with the code object.
25   intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
26   *p += delta;  // Relocate entry.
27 }
28 
29 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)30 void RelocInfo::set_target_address(Address target,
31                                    WriteBarrierMode write_barrier_mode,
32                                    ICacheFlushMode icache_flush_mode) {
33   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
34   Assembler::set_target_address_at(isolate_, pc_, host_, target,
35                                    icache_flush_mode);
36   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
37       IsCodeTarget(rmode_)) {
38     Object* target_code = Code::GetCodeFromTargetAddress(target);
39     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
40         host(), this, HeapObject::cast(target_code));
41   }
42 }
43 
code()44 inline int CPURegister::code() const {
45   DCHECK(IsValid());
46   return reg_code;
47 }
48 
49 
type()50 inline CPURegister::RegisterType CPURegister::type() const {
51   DCHECK(IsValidOrNone());
52   return reg_type;
53 }
54 
55 
Bit()56 inline RegList CPURegister::Bit() const {
57   DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
58   return IsValid() ? 1UL << reg_code : 0;
59 }
60 
61 
SizeInBits()62 inline int CPURegister::SizeInBits() const {
63   DCHECK(IsValid());
64   return reg_size;
65 }
66 
67 
SizeInBytes()68 inline int CPURegister::SizeInBytes() const {
69   DCHECK(IsValid());
70   DCHECK(SizeInBits() % 8 == 0);
71   return reg_size / 8;
72 }
73 
74 
Is32Bits()75 inline bool CPURegister::Is32Bits() const {
76   DCHECK(IsValid());
77   return reg_size == 32;
78 }
79 
80 
Is64Bits()81 inline bool CPURegister::Is64Bits() const {
82   DCHECK(IsValid());
83   return reg_size == 64;
84 }
85 
86 
IsValid()87 inline bool CPURegister::IsValid() const {
88   if (IsValidRegister() || IsValidFPRegister()) {
89     DCHECK(!IsNone());
90     return true;
91   } else {
92     DCHECK(IsNone());
93     return false;
94   }
95 }
96 
97 
IsValidRegister()98 inline bool CPURegister::IsValidRegister() const {
99   return IsRegister() &&
100          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
101          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
102 }
103 
104 
IsValidFPRegister()105 inline bool CPURegister::IsValidFPRegister() const {
106   return IsFPRegister() &&
107          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
108          (reg_code < kNumberOfFPRegisters);
109 }
110 
111 
IsNone()112 inline bool CPURegister::IsNone() const {
113   // kNoRegister types should always have size 0 and code 0.
114   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
115   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
116 
117   return reg_type == kNoRegister;
118 }
119 
120 
Is(const CPURegister & other)121 inline bool CPURegister::Is(const CPURegister& other) const {
122   DCHECK(IsValidOrNone() && other.IsValidOrNone());
123   return Aliases(other) && (reg_size == other.reg_size);
124 }
125 
126 
Aliases(const CPURegister & other)127 inline bool CPURegister::Aliases(const CPURegister& other) const {
128   DCHECK(IsValidOrNone() && other.IsValidOrNone());
129   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
130 }
131 
132 
IsRegister()133 inline bool CPURegister::IsRegister() const {
134   return reg_type == kRegister;
135 }
136 
137 
IsFPRegister()138 inline bool CPURegister::IsFPRegister() const {
139   return reg_type == kFPRegister;
140 }
141 
142 
IsSameSizeAndType(const CPURegister & other)143 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
144   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
145 }
146 
147 
IsValidOrNone()148 inline bool CPURegister::IsValidOrNone() const {
149   return IsValid() || IsNone();
150 }
151 
152 
IsZero()153 inline bool CPURegister::IsZero() const {
154   DCHECK(IsValid());
155   return IsRegister() && (reg_code == kZeroRegCode);
156 }
157 
158 
IsSP()159 inline bool CPURegister::IsSP() const {
160   DCHECK(IsValid());
161   return IsRegister() && (reg_code == kSPRegInternalCode);
162 }
163 
164 
Combine(const CPURegList & other)165 inline void CPURegList::Combine(const CPURegList& other) {
166   DCHECK(IsValid());
167   DCHECK(other.type() == type_);
168   DCHECK(other.RegisterSizeInBits() == size_);
169   list_ |= other.list();
170 }
171 
172 
Remove(const CPURegList & other)173 inline void CPURegList::Remove(const CPURegList& other) {
174   DCHECK(IsValid());
175   if (other.type() == type_) {
176     list_ &= ~other.list();
177   }
178 }
179 
180 
Combine(const CPURegister & other)181 inline void CPURegList::Combine(const CPURegister& other) {
182   DCHECK(other.type() == type_);
183   DCHECK(other.SizeInBits() == size_);
184   Combine(other.code());
185 }
186 
187 
Remove(const CPURegister & other1,const CPURegister & other2,const CPURegister & other3,const CPURegister & other4)188 inline void CPURegList::Remove(const CPURegister& other1,
189                                const CPURegister& other2,
190                                const CPURegister& other3,
191                                const CPURegister& other4) {
192   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
193   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
194   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
195   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
196 }
197 
198 
Combine(int code)199 inline void CPURegList::Combine(int code) {
200   DCHECK(IsValid());
201   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
202   list_ |= (1UL << code);
203 }
204 
205 
Remove(int code)206 inline void CPURegList::Remove(int code) {
207   DCHECK(IsValid());
208   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
209   list_ &= ~(1UL << code);
210 }
211 
212 
XRegFromCode(unsigned code)213 inline Register Register::XRegFromCode(unsigned code) {
214   if (code == kSPRegInternalCode) {
215     return csp;
216   } else {
217     DCHECK(code < kNumberOfRegisters);
218     return Register::Create(code, kXRegSizeInBits);
219   }
220 }
221 
222 
WRegFromCode(unsigned code)223 inline Register Register::WRegFromCode(unsigned code) {
224   if (code == kSPRegInternalCode) {
225     return wcsp;
226   } else {
227     DCHECK(code < kNumberOfRegisters);
228     return Register::Create(code, kWRegSizeInBits);
229   }
230 }
231 
232 
SRegFromCode(unsigned code)233 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
234   DCHECK(code < kNumberOfFPRegisters);
235   return FPRegister::Create(code, kSRegSizeInBits);
236 }
237 
238 
DRegFromCode(unsigned code)239 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
240   DCHECK(code < kNumberOfFPRegisters);
241   return FPRegister::Create(code, kDRegSizeInBits);
242 }
243 
244 
W()245 inline Register CPURegister::W() const {
246   DCHECK(IsValidRegister());
247   return Register::WRegFromCode(reg_code);
248 }
249 
250 
X()251 inline Register CPURegister::X() const {
252   DCHECK(IsValidRegister());
253   return Register::XRegFromCode(reg_code);
254 }
255 
256 
S()257 inline FPRegister CPURegister::S() const {
258   DCHECK(IsValidFPRegister());
259   return FPRegister::SRegFromCode(reg_code);
260 }
261 
262 
D()263 inline FPRegister CPURegister::D() const {
264   DCHECK(IsValidFPRegister());
265   return FPRegister::DRegFromCode(reg_code);
266 }
267 
268 
269 // Immediate.
270 // Default initializer is for int types
271 template<typename T>
272 struct ImmediateInitializer {
273   static const bool kIsIntType = true;
rmode_forImmediateInitializer274   static inline RelocInfo::Mode rmode_for(T) {
275     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
276   }
immediate_forImmediateInitializer277   static inline int64_t immediate_for(T t) {
278     STATIC_ASSERT(sizeof(T) <= 8);
279     return t;
280   }
281 };
282 
283 
284 template<>
285 struct ImmediateInitializer<Smi*> {
286   static const bool kIsIntType = false;
287   static inline RelocInfo::Mode rmode_for(Smi* t) {
288     return RelocInfo::NONE64;
289   }
290   static inline int64_t immediate_for(Smi* t) {;
291     return reinterpret_cast<int64_t>(t);
292   }
293 };
294 
295 
296 template<>
297 struct ImmediateInitializer<ExternalReference> {
298   static const bool kIsIntType = false;
299   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
300     return RelocInfo::EXTERNAL_REFERENCE;
301   }
302   static inline int64_t immediate_for(ExternalReference t) {;
303     return reinterpret_cast<int64_t>(t.address());
304   }
305 };
306 
307 
308 template<typename T>
309 Immediate::Immediate(Handle<T> value) {
310   InitializeHandle(value);
311 }
312 
313 
314 template<typename T>
315 Immediate::Immediate(T t)
316     : value_(ImmediateInitializer<T>::immediate_for(t)),
317       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
318 
319 
320 template<typename T>
321 Immediate::Immediate(T t, RelocInfo::Mode rmode)
322     : value_(ImmediateInitializer<T>::immediate_for(t)),
323       rmode_(rmode) {
324   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
325 }
326 
327 
328 // Operand.
329 template<typename T>
330 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
331 
332 
333 template<typename T>
334 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
335 
336 
337 template<typename T>
338 Operand::Operand(T t, RelocInfo::Mode rmode)
339     : immediate_(t, rmode),
340       reg_(NoReg) {}
341 
342 
343 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
344     : immediate_(0),
345       reg_(reg),
346       shift_(shift),
347       extend_(NO_EXTEND),
348       shift_amount_(shift_amount) {
349   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
350   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
351   DCHECK(!reg.IsSP());
352 }
353 
354 
355 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
356     : immediate_(0),
357       reg_(reg),
358       shift_(NO_SHIFT),
359       extend_(extend),
360       shift_amount_(shift_amount) {
361   DCHECK(reg.IsValid());
362   DCHECK(shift_amount <= 4);
363   DCHECK(!reg.IsSP());
364 
365   // Extend modes SXTX and UXTX require a 64-bit register.
366   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
367 }
368 
369 
370 bool Operand::IsImmediate() const {
371   return reg_.Is(NoReg);
372 }
373 
374 
375 bool Operand::IsShiftedRegister() const {
376   return reg_.IsValid() && (shift_ != NO_SHIFT);
377 }
378 
379 
380 bool Operand::IsExtendedRegister() const {
381   return reg_.IsValid() && (extend_ != NO_EXTEND);
382 }
383 
384 
385 bool Operand::IsZero() const {
386   if (IsImmediate()) {
387     return ImmediateValue() == 0;
388   } else {
389     return reg().IsZero();
390   }
391 }
392 
393 
394 Operand Operand::ToExtendedRegister() const {
395   DCHECK(IsShiftedRegister());
396   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
397   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
398 }
399 
400 
401 Immediate Operand::immediate() const {
402   DCHECK(IsImmediate());
403   return immediate_;
404 }
405 
406 
407 int64_t Operand::ImmediateValue() const {
408   DCHECK(IsImmediate());
409   return immediate_.value();
410 }
411 
412 
413 Register Operand::reg() const {
414   DCHECK(IsShiftedRegister() || IsExtendedRegister());
415   return reg_;
416 }
417 
418 
419 Shift Operand::shift() const {
420   DCHECK(IsShiftedRegister());
421   return shift_;
422 }
423 
424 
425 Extend Operand::extend() const {
426   DCHECK(IsExtendedRegister());
427   return extend_;
428 }
429 
430 
431 unsigned Operand::shift_amount() const {
432   DCHECK(IsShiftedRegister() || IsExtendedRegister());
433   return shift_amount_;
434 }
435 
436 
437 Operand Operand::UntagSmi(Register smi) {
438   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
439                                                          kSmiValueSize));
440   DCHECK(smi.Is64Bits());
441   return Operand(smi, ASR, kSmiShift);
442 }
443 
444 
445 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
446   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
447                                                          kSmiValueSize));
448   DCHECK(smi.Is64Bits());
449   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
450   if (scale > kSmiShift) {
451     return Operand(smi, LSL, scale - kSmiShift);
452   } else if (scale < kSmiShift) {
453     return Operand(smi, ASR, kSmiShift - scale);
454   }
455   return Operand(smi);
456 }
457 
458 
459 MemOperand::MemOperand()
460   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
461     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
462 }
463 
464 
465 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
466   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
467     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
468   DCHECK(base.Is64Bits() && !base.IsZero());
469 }
470 
471 
472 MemOperand::MemOperand(Register base,
473                        Register regoffset,
474                        Extend extend,
475                        unsigned shift_amount)
476   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
477     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
478   DCHECK(base.Is64Bits() && !base.IsZero());
479   DCHECK(!regoffset.IsSP());
480   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
481 
482   // SXTX extend mode requires a 64-bit offset register.
483   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
484 }
485 
486 
487 MemOperand::MemOperand(Register base,
488                        Register regoffset,
489                        Shift shift,
490                        unsigned shift_amount)
491   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
492     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
493   DCHECK(base.Is64Bits() && !base.IsZero());
494   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
495   DCHECK(shift == LSL);
496 }
497 
498 
499 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
500   : base_(base), addrmode_(addrmode) {
501   DCHECK(base.Is64Bits() && !base.IsZero());
502 
503   if (offset.IsImmediate()) {
504     offset_ = offset.ImmediateValue();
505 
506     regoffset_ = NoReg;
507   } else if (offset.IsShiftedRegister()) {
508     DCHECK(addrmode == Offset);
509 
510     regoffset_ = offset.reg();
511     shift_ = offset.shift();
512     shift_amount_ = offset.shift_amount();
513 
514     extend_ = NO_EXTEND;
515     offset_ = 0;
516 
517     // These assertions match those in the shifted-register constructor.
518     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
519     DCHECK(shift_ == LSL);
520   } else {
521     DCHECK(offset.IsExtendedRegister());
522     DCHECK(addrmode == Offset);
523 
524     regoffset_ = offset.reg();
525     extend_ = offset.extend();
526     shift_amount_ = offset.shift_amount();
527 
528     shift_ = NO_SHIFT;
529     offset_ = 0;
530 
531     // These assertions match those in the extended-register constructor.
532     DCHECK(!regoffset_.IsSP());
533     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
534     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
535   }
536 }
537 
538 bool MemOperand::IsImmediateOffset() const {
539   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
540 }
541 
542 
543 bool MemOperand::IsRegisterOffset() const {
544   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
545 }
546 
547 
548 bool MemOperand::IsPreIndex() const {
549   return addrmode_ == PreIndex;
550 }
551 
552 
553 bool MemOperand::IsPostIndex() const {
554   return addrmode_ == PostIndex;
555 }
556 
557 Operand MemOperand::OffsetAsOperand() const {
558   if (IsImmediateOffset()) {
559     return offset();
560   } else {
561     DCHECK(IsRegisterOffset());
562     if (extend() == NO_EXTEND) {
563       return Operand(regoffset(), shift(), shift_amount());
564     } else {
565       return Operand(regoffset(), extend(), shift_amount());
566     }
567   }
568 }
569 
570 
571 void Assembler::Unreachable() {
572 #ifdef USE_SIMULATOR
573   debug("UNREACHABLE", __LINE__, BREAK);
574 #else
575   // Crash by branching to 0. lr now points near the fault.
576   Emit(BLR | Rn(xzr));
577 #endif
578 }
579 
580 
581 Address Assembler::target_pointer_address_at(Address pc) {
582   Instruction* instr = reinterpret_cast<Instruction*>(pc);
583   DCHECK(instr->IsLdrLiteralX());
584   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
585 }
586 
587 
588 // Read/Modify the code target address in the branch/call instruction at pc.
589 Address Assembler::target_address_at(Address pc, Address constant_pool) {
590   return Memory::Address_at(target_pointer_address_at(pc));
591 }
592 
593 
594 Address Assembler::target_address_at(Address pc, Code* code) {
595   Address constant_pool = code ? code->constant_pool() : NULL;
596   return target_address_at(pc, constant_pool);
597 }
598 
599 
600 Address Assembler::target_address_from_return_address(Address pc) {
601   // Returns the address of the call target from the return address that will
602   // be returned to after a call.
603   // Call sequence on ARM64 is:
604   //  ldr ip0, #... @ load from literal pool
605   //  blr ip0
606   Address candidate = pc - 2 * kInstructionSize;
607   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
608   USE(instr);
609   DCHECK(instr->IsLdrLiteralX());
610   return candidate;
611 }
612 
613 
614 Address Assembler::return_address_from_call_start(Address pc) {
615   // The call, generated by MacroAssembler::Call, is one of two possible
616   // sequences:
617   //
618   // Without relocation:
619   //  movz  temp, #(target & 0x000000000000ffff)
620   //  movk  temp, #(target & 0x00000000ffff0000)
621   //  movk  temp, #(target & 0x0000ffff00000000)
622   //  blr   temp
623   //
624   // With relocation:
625   //  ldr   temp, =target
626   //  blr   temp
627   //
628   // The return address is immediately after the blr instruction in both cases,
629   // so it can be found by adding the call size to the address at the start of
630   // the call sequence.
631   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
632   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
633 
634   Instruction* instr = reinterpret_cast<Instruction*>(pc);
635   if (instr->IsMovz()) {
636     // Verify the instruction sequence.
637     DCHECK(instr->following(1)->IsMovk());
638     DCHECK(instr->following(2)->IsMovk());
639     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
640     return pc + Assembler::kCallSizeWithoutRelocation;
641   } else {
642     // Verify the instruction sequence.
643     DCHECK(instr->IsLdrLiteralX());
644     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
645     return pc + Assembler::kCallSizeWithRelocation;
646   }
647 }
648 
649 
650 void Assembler::deserialization_set_special_target_at(
651     Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
652   Memory::Address_at(constant_pool_entry) = target;
653 }
654 
655 
656 void Assembler::deserialization_set_target_internal_reference_at(
657     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
658   Memory::Address_at(pc) = target;
659 }
660 
661 
662 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
663                                       Address constant_pool, Address target,
664                                       ICacheFlushMode icache_flush_mode) {
665   Memory::Address_at(target_pointer_address_at(pc)) = target;
666   // Intuitively, we would think it is necessary to always flush the
667   // instruction cache after patching a target address in the code as follows:
668   //   Assembler::FlushICache(isolate(), pc, sizeof(target));
669   // However, on ARM, an instruction is actually patched in the case of
670   // embedded constants of the form:
671   // ldr   ip, [pc, #...]
672   // since the instruction accessing this address in the constant pool remains
673   // unchanged, a flush is not required.
674 }
675 
676 
677 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
678                                       Address target,
679                                       ICacheFlushMode icache_flush_mode) {
680   Address constant_pool = code ? code->constant_pool() : NULL;
681   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
682 }
683 
684 
685 int RelocInfo::target_address_size() {
686   return kPointerSize;
687 }
688 
689 
690 Address RelocInfo::target_address() {
691   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
692   return Assembler::target_address_at(pc_, host_);
693 }
694 
695 Address RelocInfo::target_address_address() {
696   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
697                               || rmode_ == EMBEDDED_OBJECT
698                               || rmode_ == EXTERNAL_REFERENCE);
699   return Assembler::target_pointer_address_at(pc_);
700 }
701 
702 
703 Address RelocInfo::constant_pool_entry_address() {
704   DCHECK(IsInConstantPool());
705   return Assembler::target_pointer_address_at(pc_);
706 }
707 
708 
709 Object* RelocInfo::target_object() {
710   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
711   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
712 }
713 
714 
715 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
716   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
717   return Handle<Object>(reinterpret_cast<Object**>(
718       Assembler::target_address_at(pc_, host_)));
719 }
720 
721 
722 void RelocInfo::set_target_object(Object* target,
723                                   WriteBarrierMode write_barrier_mode,
724                                   ICacheFlushMode icache_flush_mode) {
725   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
726   Assembler::set_target_address_at(isolate_, pc_, host_,
727                                    reinterpret_cast<Address>(target),
728                                    icache_flush_mode);
729   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
730       host() != NULL &&
731       target->IsHeapObject()) {
732     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
733         host(), this, HeapObject::cast(target));
734   }
735 }
736 
737 
738 Address RelocInfo::target_external_reference() {
739   DCHECK(rmode_ == EXTERNAL_REFERENCE);
740   return Assembler::target_address_at(pc_, host_);
741 }
742 
743 
744 Address RelocInfo::target_internal_reference() {
745   DCHECK(rmode_ == INTERNAL_REFERENCE);
746   return Memory::Address_at(pc_);
747 }
748 
749 
750 Address RelocInfo::target_internal_reference_address() {
751   DCHECK(rmode_ == INTERNAL_REFERENCE);
752   return reinterpret_cast<Address>(pc_);
753 }
754 
755 
756 Address RelocInfo::target_runtime_entry(Assembler* origin) {
757   DCHECK(IsRuntimeEntry(rmode_));
758   return target_address();
759 }
760 
761 
762 void RelocInfo::set_target_runtime_entry(Address target,
763                                          WriteBarrierMode write_barrier_mode,
764                                          ICacheFlushMode icache_flush_mode) {
765   DCHECK(IsRuntimeEntry(rmode_));
766   if (target_address() != target) {
767     set_target_address(target, write_barrier_mode, icache_flush_mode);
768   }
769 }
770 
771 
772 Handle<Cell> RelocInfo::target_cell_handle() {
773   UNIMPLEMENTED();
774   Cell *null_cell = NULL;
775   return Handle<Cell>(null_cell);
776 }
777 
778 
779 Cell* RelocInfo::target_cell() {
780   DCHECK(rmode_ == RelocInfo::CELL);
781   return Cell::FromValueAddress(Memory::Address_at(pc_));
782 }
783 
784 
785 void RelocInfo::set_target_cell(Cell* cell,
786                                 WriteBarrierMode write_barrier_mode,
787                                 ICacheFlushMode icache_flush_mode) {
788   UNIMPLEMENTED();
789 }
790 
791 
792 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
793 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
794 
795 
796 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
797   UNREACHABLE();  // This should never be reached on ARM64.
798   return Handle<Object>();
799 }
800 
801 
802 Code* RelocInfo::code_age_stub() {
803   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
804   // Read the stub entry point from the code age sequence.
805   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
806   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
807 }
808 
809 
810 void RelocInfo::set_code_age_stub(Code* stub,
811                                   ICacheFlushMode icache_flush_mode) {
812   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
813   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
814   // Overwrite the stub entry point in the code age sequence. This is loaded as
815   // a literal so there is no need to call FlushICache here.
816   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
817   Memory::Address_at(stub_entry_address) = stub->instruction_start();
818 }
819 
820 
821 Address RelocInfo::debug_call_address() {
822   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
823   // For the above sequences the Relocinfo points to the load literal loading
824   // the call address.
825   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
826   return Assembler::target_address_at(pc_, host_);
827 }
828 
829 
830 void RelocInfo::set_debug_call_address(Address target) {
831   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
832   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
833   Assembler::set_target_address_at(isolate_, pc_, host_, target);
834   if (host() != NULL) {
835     Object* target_code = Code::GetCodeFromTargetAddress(target);
836     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
837         host(), this, HeapObject::cast(target_code));
838   }
839 }
840 
841 
842 void RelocInfo::WipeOut() {
843   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
844          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
845          IsInternalReference(rmode_));
846   if (IsInternalReference(rmode_)) {
847     Memory::Address_at(pc_) = NULL;
848   } else {
849     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
850   }
851 }
852 
853 template <typename ObjectVisitor>
854 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
855   RelocInfo::Mode mode = rmode();
856   if (mode == RelocInfo::EMBEDDED_OBJECT) {
857     visitor->VisitEmbeddedPointer(this);
858   } else if (RelocInfo::IsCodeTarget(mode)) {
859     visitor->VisitCodeTarget(this);
860   } else if (mode == RelocInfo::CELL) {
861     visitor->VisitCell(this);
862   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
863     visitor->VisitExternalReference(this);
864   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
865     visitor->VisitInternalReference(this);
866   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
867              IsPatchedDebugBreakSlotSequence()) {
868     visitor->VisitDebugTarget(this);
869   } else if (RelocInfo::IsRuntimeEntry(mode)) {
870     visitor->VisitRuntimeEntry(this);
871   }
872 }
873 
874 
875 template<typename StaticVisitor>
876 void RelocInfo::Visit(Heap* heap) {
877   RelocInfo::Mode mode = rmode();
878   if (mode == RelocInfo::EMBEDDED_OBJECT) {
879     StaticVisitor::VisitEmbeddedPointer(heap, this);
880   } else if (RelocInfo::IsCodeTarget(mode)) {
881     StaticVisitor::VisitCodeTarget(heap, this);
882   } else if (mode == RelocInfo::CELL) {
883     StaticVisitor::VisitCell(heap, this);
884   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
885     StaticVisitor::VisitExternalReference(this);
886   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
887     StaticVisitor::VisitInternalReference(this);
888   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
889              IsPatchedDebugBreakSlotSequence()) {
890     StaticVisitor::VisitDebugTarget(heap, this);
891   } else if (RelocInfo::IsRuntimeEntry(mode)) {
892     StaticVisitor::VisitRuntimeEntry(this);
893   }
894 }
895 
896 
897 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
898   DCHECK(rt.IsValid());
899   if (rt.IsRegister()) {
900     return rt.Is64Bits() ? LDR_x : LDR_w;
901   } else {
902     DCHECK(rt.IsFPRegister());
903     return rt.Is64Bits() ? LDR_d : LDR_s;
904   }
905 }
906 
907 
908 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
909                                          const CPURegister& rt2) {
910   DCHECK(AreSameSizeAndType(rt, rt2));
911   USE(rt2);
912   if (rt.IsRegister()) {
913     return rt.Is64Bits() ? LDP_x : LDP_w;
914   } else {
915     DCHECK(rt.IsFPRegister());
916     return rt.Is64Bits() ? LDP_d : LDP_s;
917   }
918 }
919 
920 
921 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
922   DCHECK(rt.IsValid());
923   if (rt.IsRegister()) {
924     return rt.Is64Bits() ? STR_x : STR_w;
925   } else {
926     DCHECK(rt.IsFPRegister());
927     return rt.Is64Bits() ? STR_d : STR_s;
928   }
929 }
930 
931 
932 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
933                                           const CPURegister& rt2) {
934   DCHECK(AreSameSizeAndType(rt, rt2));
935   USE(rt2);
936   if (rt.IsRegister()) {
937     return rt.Is64Bits() ? STP_x : STP_w;
938   } else {
939     DCHECK(rt.IsFPRegister());
940     return rt.Is64Bits() ? STP_d : STP_s;
941   }
942 }
943 
944 
945 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
946   if (rt.IsRegister()) {
947     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
948   } else {
949     DCHECK(rt.IsFPRegister());
950     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
951   }
952 }
953 
954 
955 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
956   DCHECK(kStartOfLabelLinkChain == 0);
957   int offset = LinkAndGetByteOffsetTo(label);
958   DCHECK(IsAligned(offset, kInstructionSize));
959   return offset >> kInstructionSizeLog2;
960 }
961 
962 
963 Instr Assembler::Flags(FlagsUpdate S) {
964   if (S == SetFlags) {
965     return 1 << FlagsUpdate_offset;
966   } else if (S == LeaveFlags) {
967     return 0 << FlagsUpdate_offset;
968   }
969   UNREACHABLE();
970   return 0;
971 }
972 
973 
974 Instr Assembler::Cond(Condition cond) {
975   return cond << Condition_offset;
976 }
977 
978 
979 Instr Assembler::ImmPCRelAddress(int imm21) {
980   CHECK(is_int21(imm21));
981   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
982   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
983   Instr immlo = imm << ImmPCRelLo_offset;
984   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
985 }
986 
987 
988 Instr Assembler::ImmUncondBranch(int imm26) {
989   CHECK(is_int26(imm26));
990   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
991 }
992 
993 
994 Instr Assembler::ImmCondBranch(int imm19) {
995   CHECK(is_int19(imm19));
996   return truncate_to_int19(imm19) << ImmCondBranch_offset;
997 }
998 
999 
1000 Instr Assembler::ImmCmpBranch(int imm19) {
1001   CHECK(is_int19(imm19));
1002   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
1003 }
1004 
1005 
1006 Instr Assembler::ImmTestBranch(int imm14) {
1007   CHECK(is_int14(imm14));
1008   return truncate_to_int14(imm14) << ImmTestBranch_offset;
1009 }
1010 
1011 
1012 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
1013   DCHECK(is_uint6(bit_pos));
1014   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
1015   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
1016   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
1017   b5 &= ImmTestBranchBit5_mask;
1018   b40 &= ImmTestBranchBit40_mask;
1019   return b5 | b40;
1020 }
1021 
1022 
1023 Instr Assembler::SF(Register rd) {
1024     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
1025 }
1026 
1027 
1028 Instr Assembler::ImmAddSub(int imm) {
1029   DCHECK(IsImmAddSub(imm));
1030   if (is_uint12(imm)) {  // No shift required.
1031     imm <<= ImmAddSub_offset;
1032   } else {
1033     imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
1034   }
1035   return imm;
1036 }
1037 
1038 
1039 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
1040   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
1041          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
1042   USE(reg_size);
1043   return imms << ImmS_offset;
1044 }
1045 
1046 
1047 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
1048   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1049          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1050   USE(reg_size);
1051   DCHECK(is_uint6(immr));
1052   return immr << ImmR_offset;
1053 }
1054 
1055 
1056 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
1057   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1058   DCHECK(is_uint6(imms));
1059   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
1060   USE(reg_size);
1061   return imms << ImmSetBits_offset;
1062 }
1063 
1064 
1065 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
1066   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1067   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1068          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1069   USE(reg_size);
1070   return immr << ImmRotate_offset;
1071 }
1072 
1073 
1074 Instr Assembler::ImmLLiteral(int imm19) {
1075   CHECK(is_int19(imm19));
1076   return truncate_to_int19(imm19) << ImmLLiteral_offset;
1077 }
1078 
1079 
1080 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
1081   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1082   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
1083   USE(reg_size);
1084   return bitn << BitN_offset;
1085 }
1086 
1087 
1088 Instr Assembler::ShiftDP(Shift shift) {
1089   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
1090   return shift << ShiftDP_offset;
1091 }
1092 
1093 
1094 Instr Assembler::ImmDPShift(unsigned amount) {
1095   DCHECK(is_uint6(amount));
1096   return amount << ImmDPShift_offset;
1097 }
1098 
1099 
1100 Instr Assembler::ExtendMode(Extend extend) {
1101   return extend << ExtendMode_offset;
1102 }
1103 
1104 
1105 Instr Assembler::ImmExtendShift(unsigned left_shift) {
1106   DCHECK(left_shift <= 4);
1107   return left_shift << ImmExtendShift_offset;
1108 }
1109 
1110 
1111 Instr Assembler::ImmCondCmp(unsigned imm) {
1112   DCHECK(is_uint5(imm));
1113   return imm << ImmCondCmp_offset;
1114 }
1115 
1116 
1117 Instr Assembler::Nzcv(StatusFlags nzcv) {
1118   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
1119 }
1120 
1121 
1122 Instr Assembler::ImmLSUnsigned(int imm12) {
1123   DCHECK(is_uint12(imm12));
1124   return imm12 << ImmLSUnsigned_offset;
1125 }
1126 
1127 
1128 Instr Assembler::ImmLS(int imm9) {
1129   DCHECK(is_int9(imm9));
1130   return truncate_to_int9(imm9) << ImmLS_offset;
1131 }
1132 
1133 
1134 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
1135   DCHECK(((imm7 >> size) << size) == imm7);
1136   int scaled_imm7 = imm7 >> size;
1137   DCHECK(is_int7(scaled_imm7));
1138   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
1139 }
1140 
1141 
1142 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
1143   DCHECK(is_uint1(shift_amount));
1144   return shift_amount << ImmShiftLS_offset;
1145 }
1146 
1147 
1148 Instr Assembler::ImmException(int imm16) {
1149   DCHECK(is_uint16(imm16));
1150   return imm16 << ImmException_offset;
1151 }
1152 
1153 
1154 Instr Assembler::ImmSystemRegister(int imm15) {
1155   DCHECK(is_uint15(imm15));
1156   return imm15 << ImmSystemRegister_offset;
1157 }
1158 
1159 
1160 Instr Assembler::ImmHint(int imm7) {
1161   DCHECK(is_uint7(imm7));
1162   return imm7 << ImmHint_offset;
1163 }
1164 
1165 
1166 Instr Assembler::ImmBarrierDomain(int imm2) {
1167   DCHECK(is_uint2(imm2));
1168   return imm2 << ImmBarrierDomain_offset;
1169 }
1170 
1171 
1172 Instr Assembler::ImmBarrierType(int imm2) {
1173   DCHECK(is_uint2(imm2));
1174   return imm2 << ImmBarrierType_offset;
1175 }
1176 
1177 
1178 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
1179   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
1180   return static_cast<LSDataSize>(op >> SizeLS_offset);
1181 }
1182 
1183 
1184 Instr Assembler::ImmMoveWide(int imm) {
1185   DCHECK(is_uint16(imm));
1186   return imm << ImmMoveWide_offset;
1187 }
1188 
1189 
1190 Instr Assembler::ShiftMoveWide(int shift) {
1191   DCHECK(is_uint2(shift));
1192   return shift << ShiftMoveWide_offset;
1193 }
1194 
1195 
1196 Instr Assembler::FPType(FPRegister fd) {
1197   return fd.Is64Bits() ? FP64 : FP32;
1198 }
1199 
1200 
1201 Instr Assembler::FPScale(unsigned scale) {
1202   DCHECK(is_uint6(scale));
1203   return scale << FPScale_offset;
1204 }
1205 
1206 
1207 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
1208   return reg.Is64Bits() ? xzr : wzr;
1209 }
1210 
1211 
1212 inline void Assembler::CheckBufferSpace() {
1213   DCHECK(pc_ < (buffer_ + buffer_size_));
1214   if (buffer_space() < kGap) {
1215     GrowBuffer();
1216   }
1217 }
1218 
1219 
1220 inline void Assembler::CheckBuffer() {
1221   CheckBufferSpace();
1222   if (pc_offset() >= next_veneer_pool_check_) {
1223     CheckVeneerPool(false, true);
1224   }
1225   if (pc_offset() >= next_constant_pool_check_) {
1226     CheckConstPool(false, true);
1227   }
1228 }
1229 
1230 
1231 TypeFeedbackId Assembler::RecordedAstId() {
1232   DCHECK(!recorded_ast_id_.IsNone());
1233   return recorded_ast_id_;
1234 }
1235 
1236 
1237 void Assembler::ClearRecordedAstId() {
1238   recorded_ast_id_ = TypeFeedbackId::None();
1239 }
1240 
1241 
1242 }  // namespace internal
1243 }  // namespace v8
1244 
1245 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
1246