• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright (c) 1994-2006 Sun Microsystems Inc.
2  // All Rights Reserved.
3  //
4  // Redistribution and use in source and binary forms, with or without
5  // modification, are permitted provided that the following conditions are
6  // met:
7  //
8  // - Redistributions of source code must retain the above copyright notice,
9  // this list of conditions and the following disclaimer.
10  //
11  // - Redistribution in binary form must reproduce the above copyright
12  // notice, this list of conditions and the following disclaimer in the
13  // documentation and/or other materials provided with the distribution.
14  //
15  // - Neither the name of Sun Microsystems or the names of contributors may
16  // be used to endorse or promote products derived from this software without
17  // specific prior written permission.
18  //
19  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20  // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21  // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23  // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24  // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26  // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27  // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  
31  // The original source code covered by the above license above has been
32  // modified significantly by Google Inc.
33  // Copyright 2012 the V8 project authors. All rights reserved.
34  
35  #ifndef V8_ASSEMBLER_H_
36  #define V8_ASSEMBLER_H_
37  
38  #include "src/allocation.h"
39  #include "src/builtins.h"
40  #include "src/isolate.h"
41  #include "src/log.h"
42  #include "src/register-configuration.h"
43  #include "src/runtime/runtime.h"
44  
45  namespace v8 {
46  
47  // Forward declarations.
48  class ApiFunction;
49  
50  namespace internal {
51  
52  // Forward declarations.
53  class StatsCounter;
54  
55  // -----------------------------------------------------------------------------
56  // Platform independent assembler base class.
57  
58  enum class CodeObjectRequired { kNo, kYes };
59  
60  
61  class AssemblerBase: public Malloced {
62   public:
63    AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
64    virtual ~AssemblerBase();
65  
isolate()66    Isolate* isolate() const { return isolate_; }
jit_cookie()67    int jit_cookie() const { return jit_cookie_; }
68  
emit_debug_code()69    bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)70    void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
71  
serializer_enabled()72    bool serializer_enabled() const { return serializer_enabled_; }
enable_serializer()73    void enable_serializer() { serializer_enabled_ = true; }
74  
predictable_code_size()75    bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)76    void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
77  
enabled_cpu_features()78    uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)79    void set_enabled_cpu_features(uint64_t features) {
80      enabled_cpu_features_ = features;
81    }
IsEnabled(CpuFeature f)82    bool IsEnabled(CpuFeature f) {
83      return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
84    }
85  
is_constant_pool_available()86    bool is_constant_pool_available() const {
87      if (FLAG_enable_embedded_constant_pool) {
88        return constant_pool_available_;
89      } else {
90        // Embedded constant pool not supported on this architecture.
91        UNREACHABLE();
92        return false;
93      }
94    }
95  
96    // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
97    // cross-snapshotting.
QuietNaN(HeapObject * nan)98    static void QuietNaN(HeapObject* nan) { }
99  
pc_offset()100    int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
101  
102    // This function is called when code generation is aborted, so that
103    // the assembler could clean up internal data structures.
AbortedCodeGeneration()104    virtual void AbortedCodeGeneration() { }
105  
106    // Debugging
107    void Print();
108  
109    static const int kMinimalBufferSize = 4*KB;
110  
111    static void FlushICache(Isolate* isolate, void* start, size_t size);
112  
113   protected:
114    // The buffer into which code and relocation info are generated. It could
115    // either be owned by the assembler or be provided externally.
116    byte* buffer_;
117    int buffer_size_;
118    bool own_buffer_;
119  
set_constant_pool_available(bool available)120    void set_constant_pool_available(bool available) {
121      if (FLAG_enable_embedded_constant_pool) {
122        constant_pool_available_ = available;
123      } else {
124        // Embedded constant pool not supported on this architecture.
125        UNREACHABLE();
126      }
127    }
128  
129    // The program counter, which points into the buffer above and moves forward.
130    byte* pc_;
131  
132   private:
133    Isolate* isolate_;
134    int jit_cookie_;
135    uint64_t enabled_cpu_features_;
136    bool emit_debug_code_;
137    bool predictable_code_size_;
138    bool serializer_enabled_;
139  
140    // Indicates whether the constant pool can be accessed, which is only possible
141    // if the pp register points to the current code object's constant pool.
142    bool constant_pool_available_;
143  
144    // Constant pool.
145    friend class FrameAndConstantPoolScope;
146    friend class ConstantPoolUnavailableScope;
147  };
148  
149  
150  // Avoids emitting debug code during the lifetime of this scope object.
151  class DontEmitDebugCodeScope BASE_EMBEDDED {
152   public:
DontEmitDebugCodeScope(AssemblerBase * assembler)153    explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
154        : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
155      assembler_->set_emit_debug_code(false);
156    }
~DontEmitDebugCodeScope()157    ~DontEmitDebugCodeScope() {
158      assembler_->set_emit_debug_code(old_value_);
159    }
160   private:
161    AssemblerBase* assembler_;
162    bool old_value_;
163  };
164  
165  
166  // Avoids using instructions that vary in size in unpredictable ways between the
167  // snapshot and the running VM.
168  class PredictableCodeSizeScope {
169   public:
170    explicit PredictableCodeSizeScope(AssemblerBase* assembler);
171    PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
172    ~PredictableCodeSizeScope();
ExpectSize(int expected_size)173    void ExpectSize(int expected_size) { expected_size_ = expected_size; }
174  
175   private:
176    AssemblerBase* assembler_;
177    int expected_size_;
178    int start_offset_;
179    bool old_value_;
180  };
181  
182  
183  // Enable a specified feature within a scope.
184  class CpuFeatureScope BASE_EMBEDDED {
185   public:
186  #ifdef DEBUG
187    CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
188    ~CpuFeatureScope();
189  
190   private:
191    AssemblerBase* assembler_;
192    uint64_t old_enabled_;
193  #else
194    CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
195  #endif
196  };
197  
198  
199  // CpuFeatures keeps track of which features are supported by the target CPU.
200  // Supported features must be enabled by a CpuFeatureScope before use.
201  // Example:
202  //   if (assembler->IsSupported(SSE3)) {
203  //     CpuFeatureScope fscope(assembler, SSE3);
204  //     // Generate code containing SSE3 instructions.
205  //   } else {
206  //     // Generate alternative code.
207  //   }
208  class CpuFeatures : public AllStatic {
209   public:
Probe(bool cross_compile)210    static void Probe(bool cross_compile) {
211      STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
212      if (initialized_) return;
213      initialized_ = true;
214      ProbeImpl(cross_compile);
215    }
216  
SupportedFeatures()217    static unsigned SupportedFeatures() {
218      Probe(false);
219      return supported_;
220    }
221  
IsSupported(CpuFeature f)222    static bool IsSupported(CpuFeature f) {
223      return (supported_ & (1u << f)) != 0;
224    }
225  
226    static inline bool SupportsCrankshaft();
227  
icache_line_size()228    static inline unsigned icache_line_size() {
229      DCHECK(icache_line_size_ != 0);
230      return icache_line_size_;
231    }
232  
dcache_line_size()233    static inline unsigned dcache_line_size() {
234      DCHECK(dcache_line_size_ != 0);
235      return dcache_line_size_;
236    }
237  
238    static void PrintTarget();
239    static void PrintFeatures();
240  
241   private:
242    friend class ExternalReference;
243    friend class AssemblerBase;
244    // Flush instruction cache.
245    static void FlushICache(void* start, size_t size);
246  
247    // Platform-dependent implementation.
248    static void ProbeImpl(bool cross_compile);
249  
250    static unsigned supported_;
251    static unsigned icache_line_size_;
252    static unsigned dcache_line_size_;
253    static bool initialized_;
254    DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
255  };
256  
257  
258  // -----------------------------------------------------------------------------
259  // Labels represent pc locations; they are typically jump or call targets.
260  // After declaration, a label can be freely used to denote known or (yet)
261  // unknown pc location. Assembler::bind() is used to bind a label to the
262  // current pc. A label can be bound only once.
263  
264  class Label {
265   public:
266    enum Distance {
267      kNear, kFar
268    };
269  
INLINE(Label ())270    INLINE(Label()) {
271      Unuse();
272      UnuseNear();
273    }
274  
INLINE(~Label ())275    INLINE(~Label()) {
276      DCHECK(!is_linked());
277      DCHECK(!is_near_linked());
278    }
279  
INLINE(void Unuse ())280    INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())281    INLINE(void UnuseNear()) { near_link_pos_ = 0; }
282  
INLINE(bool is_bound ()const)283    INLINE(bool is_bound() const) { return pos_ <  0; }
INLINE(bool is_unused ()const)284    INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)285    INLINE(bool is_linked() const) { return pos_ >  0; }
INLINE(bool is_near_linked ()const)286    INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
287  
288    // Returns the position of bound or linked labels. Cannot be used
289    // for unused labels.
290    int pos() const;
near_link_pos()291    int near_link_pos() const { return near_link_pos_ - 1; }
292  
293   private:
294    // pos_ encodes both the binding state (via its sign)
295    // and the binding position (via its value) of a label.
296    //
297    // pos_ <  0  bound label, pos() returns the jump target position
298    // pos_ == 0  unused label
299    // pos_ >  0  linked label, pos() returns the last reference position
300    int pos_;
301  
302    // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
303    int near_link_pos_;
304  
bind_to(int pos)305    void bind_to(int pos)  {
306      pos_ = -pos - 1;
307      DCHECK(is_bound());
308    }
309    void link_to(int pos, Distance distance = kFar) {
310      if (distance == kNear) {
311        near_link_pos_ = pos + 1;
312        DCHECK(is_near_linked());
313      } else {
314        pos_ = pos + 1;
315        DCHECK(is_linked());
316      }
317    }
318  
319    friend class Assembler;
320    friend class Displacement;
321    friend class RegExpMacroAssemblerIrregexp;
322  
323  #if V8_TARGET_ARCH_ARM64
324    // On ARM64, the Assembler keeps track of pointers to Labels to resolve
325    // branches to distant targets. Copying labels would confuse the Assembler.
326    DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
327  #endif
328  };
329  
330  
331  enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
332  
333  enum ArgvMode { kArgvOnStack, kArgvInRegister };
334  
335  // Specifies whether to perform icache flush operations on RelocInfo updates.
336  // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
337  // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
338  // skipped (only use this if you will flush the icache manually before it is
339  // executed).
340  enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
341  
342  // -----------------------------------------------------------------------------
343  // Relocation information
344  
345  
346  // Relocation information consists of the address (pc) of the datum
347  // to which the relocation information applies, the relocation mode
348  // (rmode), and an optional data field. The relocation mode may be
349  // "descriptive" and not indicate a need for relocation, but simply
350  // describe a property of the datum. Such rmodes are useful for GC
351  // and nice disassembly output.
352  
353  class RelocInfo {
354   public:
355    // The constant kNoPosition is used with the collecting of source positions
356    // in the relocation information. Two types of source positions are collected
357    // "position" (RelocMode position) and "statement position" (RelocMode
358    // statement_position). The "position" is collected at places in the source
359    // code which are of interest when making stack traces to pin-point the source
360    // location of a stack frame as close as possible. The "statement position" is
361    // collected at the beginning at each statement, and is used to indicate
362    // possible break locations. kNoPosition is used to indicate an
363    // invalid/uninitialized position value.
364    static const int kNoPosition = -1;
365  
366    // This string is used to add padding comments to the reloc info in cases
367    // where we are not sure to have enough space for patching in during
368    // lazy deoptimization. This is the case if we have indirect calls for which
369    // we do not normally record relocation info.
370    static const char* const kFillerCommentString;
371  
372    // The minimum size of a comment is equal to two bytes for the extra tagged
373    // pc and kPointerSize for the actual pointer to the comment.
374    static const int kMinRelocCommentSize = 2 + kPointerSize;
375  
376    // The maximum size for a call instruction including pc-jump.
377    static const int kMaxCallSize = 6;
378  
379    // The maximum pc delta that will use the short encoding.
380    static const int kMaxSmallPCDelta;
381  
382    enum Mode {
383      // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
384      CODE_TARGET,  // Code target which is not any of the above.
385      CODE_TARGET_WITH_ID,
386      DEBUGGER_STATEMENT,  // Code target for the debugger statement.
387      EMBEDDED_OBJECT,
388      // To relocate pointers into the wasm memory embedded in wasm code
389      WASM_MEMORY_REFERENCE,
390      WASM_GLOBAL_REFERENCE,
391      WASM_MEMORY_SIZE_REFERENCE,
392      CELL,
393  
394      // Everything after runtime_entry (inclusive) is not GC'ed.
395      RUNTIME_ENTRY,
396      COMMENT,
397      POSITION,            // See comment for kNoPosition above.
398      STATEMENT_POSITION,  // See comment for kNoPosition above.
399  
400      // Additional code inserted for debug break slot.
401      DEBUG_BREAK_SLOT_AT_POSITION,
402      DEBUG_BREAK_SLOT_AT_RETURN,
403      DEBUG_BREAK_SLOT_AT_CALL,
404      DEBUG_BREAK_SLOT_AT_TAIL_CALL,
405  
406      EXTERNAL_REFERENCE,  // The address of an external C++ function.
407      INTERNAL_REFERENCE,  // An address inside the same function.
408  
409      // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
410      INTERNAL_REFERENCE_ENCODED,
411  
412      // Continuation points for a generator yield.
413      GENERATOR_CONTINUATION,
414  
415      // Marks constant and veneer pools. Only used on ARM and ARM64.
416      // They use a custom noncompact encoding.
417      CONST_POOL,
418      VENEER_POOL,
419  
420      DEOPT_REASON,  // Deoptimization reason index.
421      DEOPT_ID,      // Deoptimization inlining id.
422  
423      // This is not an actual reloc mode, but used to encode a long pc jump that
424      // cannot be encoded as part of another record.
425      PC_JUMP,
426  
427      // Pseudo-types
428      NUMBER_OF_MODES,
429      NONE32,             // never recorded 32-bit value
430      NONE64,             // never recorded 64-bit value
431      CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
432                          // code aging.
433  
434      FIRST_REAL_RELOC_MODE = CODE_TARGET,
435      LAST_REAL_RELOC_MODE = VENEER_POOL,
436      LAST_CODE_ENUM = DEBUGGER_STATEMENT,
437      LAST_GCED_ENUM = WASM_MEMORY_SIZE_REFERENCE,
438      FIRST_SHAREABLE_RELOC_MODE = CELL,
439    };
440  
441    STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);
442  
RelocInfo(Isolate * isolate)443    explicit RelocInfo(Isolate* isolate) : isolate_(isolate) {
444      DCHECK_NOT_NULL(isolate);
445    }
446  
RelocInfo(Isolate * isolate,byte * pc,Mode rmode,intptr_t data,Code * host)447    RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host)
448        : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) {
449      DCHECK_NOT_NULL(isolate);
450    }
451  
IsRealRelocMode(Mode mode)452    static inline bool IsRealRelocMode(Mode mode) {
453      return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE;
454    }
IsCodeTarget(Mode mode)455    static inline bool IsCodeTarget(Mode mode) {
456      return mode <= LAST_CODE_ENUM;
457    }
IsEmbeddedObject(Mode mode)458    static inline bool IsEmbeddedObject(Mode mode) {
459      return mode == EMBEDDED_OBJECT;
460    }
IsCell(Mode mode)461    static inline bool IsCell(Mode mode) { return mode == CELL; }
IsRuntimeEntry(Mode mode)462    static inline bool IsRuntimeEntry(Mode mode) {
463      return mode == RUNTIME_ENTRY;
464    }
465    // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)466    static inline bool IsGCRelocMode(Mode mode) {
467      return mode <= LAST_GCED_ENUM;
468    }
IsComment(Mode mode)469    static inline bool IsComment(Mode mode) {
470      return mode == COMMENT;
471    }
IsConstPool(Mode mode)472    static inline bool IsConstPool(Mode mode) {
473      return mode == CONST_POOL;
474    }
IsVeneerPool(Mode mode)475    static inline bool IsVeneerPool(Mode mode) {
476      return mode == VENEER_POOL;
477    }
IsDeoptReason(Mode mode)478    static inline bool IsDeoptReason(Mode mode) {
479      return mode == DEOPT_REASON;
480    }
IsDeoptId(Mode mode)481    static inline bool IsDeoptId(Mode mode) {
482      return mode == DEOPT_ID;
483    }
IsPosition(Mode mode)484    static inline bool IsPosition(Mode mode) {
485      return mode == POSITION || mode == STATEMENT_POSITION;
486    }
IsStatementPosition(Mode mode)487    static inline bool IsStatementPosition(Mode mode) {
488      return mode == STATEMENT_POSITION;
489    }
IsExternalReference(Mode mode)490    static inline bool IsExternalReference(Mode mode) {
491      return mode == EXTERNAL_REFERENCE;
492    }
IsInternalReference(Mode mode)493    static inline bool IsInternalReference(Mode mode) {
494      return mode == INTERNAL_REFERENCE;
495    }
IsInternalReferenceEncoded(Mode mode)496    static inline bool IsInternalReferenceEncoded(Mode mode) {
497      return mode == INTERNAL_REFERENCE_ENCODED;
498    }
IsDebugBreakSlot(Mode mode)499    static inline bool IsDebugBreakSlot(Mode mode) {
500      return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) ||
501             IsDebugBreakSlotAtCall(mode) || IsDebugBreakSlotAtTailCall(mode);
502    }
IsDebugBreakSlotAtPosition(Mode mode)503    static inline bool IsDebugBreakSlotAtPosition(Mode mode) {
504      return mode == DEBUG_BREAK_SLOT_AT_POSITION;
505    }
IsDebugBreakSlotAtReturn(Mode mode)506    static inline bool IsDebugBreakSlotAtReturn(Mode mode) {
507      return mode == DEBUG_BREAK_SLOT_AT_RETURN;
508    }
IsDebugBreakSlotAtCall(Mode mode)509    static inline bool IsDebugBreakSlotAtCall(Mode mode) {
510      return mode == DEBUG_BREAK_SLOT_AT_CALL;
511    }
IsDebugBreakSlotAtTailCall(Mode mode)512    static inline bool IsDebugBreakSlotAtTailCall(Mode mode) {
513      return mode == DEBUG_BREAK_SLOT_AT_TAIL_CALL;
514    }
IsDebuggerStatement(Mode mode)515    static inline bool IsDebuggerStatement(Mode mode) {
516      return mode == DEBUGGER_STATEMENT;
517    }
IsNone(Mode mode)518    static inline bool IsNone(Mode mode) {
519      return mode == NONE32 || mode == NONE64;
520    }
IsCodeAgeSequence(Mode mode)521    static inline bool IsCodeAgeSequence(Mode mode) {
522      return mode == CODE_AGE_SEQUENCE;
523    }
IsGeneratorContinuation(Mode mode)524    static inline bool IsGeneratorContinuation(Mode mode) {
525      return mode == GENERATOR_CONTINUATION;
526    }
IsWasmMemoryReference(Mode mode)527    static inline bool IsWasmMemoryReference(Mode mode) {
528      return mode == WASM_MEMORY_REFERENCE;
529    }
IsWasmMemorySizeReference(Mode mode)530    static inline bool IsWasmMemorySizeReference(Mode mode) {
531      return mode == WASM_MEMORY_SIZE_REFERENCE;
532    }
IsWasmGlobalReference(Mode mode)533    static inline bool IsWasmGlobalReference(Mode mode) {
534      return mode == WASM_GLOBAL_REFERENCE;
535    }
ModeMask(Mode mode)536    static inline int ModeMask(Mode mode) { return 1 << mode; }
537  
538    // Accessors
isolate()539    Isolate* isolate() const { return isolate_; }
pc()540    byte* pc() const { return pc_; }
set_pc(byte * pc)541    void set_pc(byte* pc) { pc_ = pc; }
rmode()542    Mode rmode() const {  return rmode_; }
data()543    intptr_t data() const { return data_; }
host()544    Code* host() const { return host_; }
set_host(Code * host)545    void set_host(Code* host) { host_ = host; }
546  
547    // Apply a relocation by delta bytes. When the code object is moved, PC
548    // relative addresses have to be updated as well as absolute addresses
549    // inside the code (internal references).
550    // Do not forget to flush the icache afterwards!
551    INLINE(void apply(intptr_t delta));
552  
553    // Is the pointer this relocation info refers to coded like a plain pointer
554    // or is it strange in some way (e.g. relative or patched into a series of
555    // instructions).
556    bool IsCodedSpecially();
557  
558    // If true, the pointer this relocation info refers to is an entry in the
559    // constant pool, otherwise the pointer is embedded in the instruction stream.
560    bool IsInConstantPool();
561  
562    Address wasm_memory_reference();
563    Address wasm_global_reference();
564    uint32_t wasm_memory_size_reference();
565    void update_wasm_memory_reference(
566        Address old_base, Address new_base, uint32_t old_size, uint32_t new_size,
567        ICacheFlushMode icache_flush_mode = SKIP_ICACHE_FLUSH);
568    void update_wasm_global_reference(
569        Address old_base, Address new_base,
570        ICacheFlushMode icache_flush_mode = SKIP_ICACHE_FLUSH);
571  
572    // this relocation applies to;
573    // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
574    INLINE(Address target_address());
575    INLINE(void set_target_address(
576        Address target,
577        WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
578        ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
579    INLINE(Object* target_object());
580    INLINE(Handle<Object> target_object_handle(Assembler* origin));
581    INLINE(void set_target_object(
582        Object* target,
583        WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
584        ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
585    INLINE(Address target_runtime_entry(Assembler* origin));
586    INLINE(void set_target_runtime_entry(
587        Address target,
588        WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
589        ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
590    INLINE(Cell* target_cell());
591    INLINE(Handle<Cell> target_cell_handle());
592    INLINE(void set_target_cell(
593        Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
594        ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
595    INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
596    INLINE(Code* code_age_stub());
597    INLINE(void set_code_age_stub(
598        Code* stub, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
599  
600    // Returns the address of the constant pool entry where the target address
601    // is held.  This should only be called if IsInConstantPool returns true.
602    INLINE(Address constant_pool_entry_address());
603  
604    // Read the address of the word containing the target_address in an
605    // instruction stream.  What this means exactly is architecture-independent.
606    // The only architecture-independent user of this function is the serializer.
607    // The serializer uses it to find out how many raw bytes of instruction to
608    // output before the next target.  Architecture-independent code shouldn't
609    // dereference the pointer it gets back from this.
610    INLINE(Address target_address_address());
611  
612    // This indicates how much space a target takes up when deserializing a code
613    // stream.  For most architectures this is just the size of a pointer.  For
614    // an instruction like movw/movt where the target bits are mixed into the
615    // instruction bits the size of the target will be zero, indicating that the
616    // serializer should not step forwards in memory after a target is resolved
617    // and written.  In this case the target_address_address function above
618    // should return the end of the instructions to be patched, allowing the
619    // deserializer to deserialize the instructions as raw bytes and put them in
620    // place, ready to be patched with the target.
621    INLINE(int target_address_size());
622  
623    // Read the reference in the instruction this relocation
624    // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
625    INLINE(Address target_external_reference());
626  
627    // Read the reference in the instruction this relocation
628    // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
629    INLINE(Address target_internal_reference());
630  
631    // Return the reference address this relocation applies to;
632    // can only be called if rmode_ is INTERNAL_REFERENCE.
633    INLINE(Address target_internal_reference_address());
634  
635    // Read/modify the address of a call instruction. This is used to relocate
636    // the break points where straight-line code is patched with a call
637    // instruction.
638    INLINE(Address debug_call_address());
639    INLINE(void set_debug_call_address(Address target));
640  
641    // Wipe out a relocation to a fixed value, used for making snapshots
642    // reproducible.
643    INLINE(void WipeOut());
644  
645    template<typename StaticVisitor> inline void Visit(Heap* heap);
646  
647    template <typename ObjectVisitor>
648    inline void Visit(Isolate* isolate, ObjectVisitor* v);
649  
650    // Check whether this debug break slot has been patched with a call to the
651    // debugger.
652    bool IsPatchedDebugBreakSlotSequence();
653  
654  #ifdef DEBUG
655    // Check whether the given code contains relocation information that
656    // either is position-relative or movable by the garbage collector.
657    static bool RequiresRelocation(const CodeDesc& desc);
658  #endif
659  
660  #ifdef ENABLE_DISASSEMBLER
661    // Printing
662    static const char* RelocModeName(Mode rmode);
663    void Print(Isolate* isolate, std::ostream& os);  // NOLINT
664  #endif  // ENABLE_DISASSEMBLER
665  #ifdef VERIFY_HEAP
666    void Verify(Isolate* isolate);
667  #endif
668  
669    static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
670    static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
671    static const int kDataMask =
672        (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
673    static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION |
674                                           1 << DEBUG_BREAK_SLOT_AT_RETURN |
675                                           1 << DEBUG_BREAK_SLOT_AT_CALL;
676    static const int kApplyMask;  // Modes affected by apply.  Depends on arch.
677  
678   private:
679    void unchecked_update_wasm_memory_reference(Address address,
680                                                ICacheFlushMode flush_mode);
681    void unchecked_update_wasm_memory_size(uint32_t size,
682                                           ICacheFlushMode flush_mode);
683  
684    Isolate* isolate_;
685    // On ARM, note that pc_ is the address of the constant pool entry
686    // to be relocated and not the address of the instruction
687    // referencing the constant pool entry (except when rmode_ ==
688    // comment).
689    byte* pc_;
690    Mode rmode_;
691    intptr_t data_;
692    Code* host_;
693    friend class RelocIterator;
694  };
695  
696  
697  // RelocInfoWriter serializes a stream of relocation info. It writes towards
698  // lower addresses.
699  class RelocInfoWriter BASE_EMBEDDED {
700   public:
RelocInfoWriter()701    RelocInfoWriter()
702        : pos_(NULL),
703          last_pc_(NULL),
704          last_id_(0),
705          last_position_(0),
706          last_mode_(RelocInfo::NUMBER_OF_MODES),
707          next_position_candidate_pos_delta_(0),
708          next_position_candidate_pc_delta_(0),
709          next_position_candidate_flushed_(true) {}
RelocInfoWriter(byte * pos,byte * pc)710    RelocInfoWriter(byte* pos, byte* pc)
711        : pos_(pos),
712          last_pc_(pc),
713          last_id_(0),
714          last_position_(0),
715          last_mode_(RelocInfo::NUMBER_OF_MODES),
716          next_position_candidate_pos_delta_(0),
717          next_position_candidate_pc_delta_(0),
718          next_position_candidate_flushed_(true) {}
719  
pos()720    byte* pos() const { return pos_; }
last_pc()721    byte* last_pc() const { return last_pc_; }
722  
723    void Write(const RelocInfo* rinfo);
724  
725    // Update the state of the stream after reloc info buffer
726    // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)727    void Reposition(byte* pos, byte* pc) {
728      pos_ = pos;
729      last_pc_ = pc;
730    }
731  
Finish()732    void Finish() { FlushPosition(); }
733  
734    // Max size (bytes) of a written RelocInfo. Longest encoding is
735    // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
736    // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11.
737    // On x64 this is 1 + 4 + 1 + 1 + 8 == 15;
738    // Here we use the maximum of the two.
739    static const int kMaxSize = 15;
740  
741   private:
742    inline uint32_t WriteLongPCJump(uint32_t pc_delta);
743  
744    inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
745    inline void WriteShortTaggedData(intptr_t data_delta, int tag);
746  
747    inline void WriteMode(RelocInfo::Mode rmode);
748    inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
749    inline void WriteIntData(int data_delta);
750    inline void WriteData(intptr_t data_delta);
751    inline void WritePosition(int pc_delta, int pos_delta, RelocInfo::Mode rmode);
752  
753    void FlushPosition();
754  
755    byte* pos_;
756    byte* last_pc_;
757    int last_id_;
758    int last_position_;
759    RelocInfo::Mode last_mode_;
760    int next_position_candidate_pos_delta_;
761    uint32_t next_position_candidate_pc_delta_;
762    bool next_position_candidate_flushed_;
763  
764    DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
765  };
766  
767  
768  // A RelocIterator iterates over relocation information.
769  // Typical use:
770  //
771  //   for (RelocIterator it(code); !it.done(); it.next()) {
772  //     // do something with it.rinfo() here
773  //   }
774  //
775  // A mask can be specified to skip unwanted modes.
776  class RelocIterator: public Malloced {
777   public:
778    // Create a new iterator positioned at
779    // the beginning of the reloc info.
780    // Relocation information with mode k is included in the
781    // iteration iff bit k of mode_mask is set.
782    explicit RelocIterator(Code* code, int mode_mask = -1);
783    explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
784  
785    // Iteration
done()786    bool done() const { return done_; }
787    void next();
788  
789    // Return pointer valid until next next().
rinfo()790    RelocInfo* rinfo() {
791      DCHECK(!done());
792      return &rinfo_;
793    }
794  
795   private:
796    // Advance* moves the position before/after reading.
797    // *Read* reads from current byte(s) into rinfo_.
798    // *Get* just reads and returns info on current byte.
799    void Advance(int bytes = 1) { pos_ -= bytes; }
800    int AdvanceGetTag();
801    RelocInfo::Mode GetMode();
802  
803    void AdvanceReadLongPCJump();
804  
805    int GetShortDataTypeTag();
806    void ReadShortTaggedPC();
807    void ReadShortTaggedId();
808    void ReadShortTaggedPosition();
809    void ReadShortTaggedData();
810  
811    void AdvanceReadPC();
812    void AdvanceReadId();
813    void AdvanceReadInt();
814    void AdvanceReadPosition();
815    void AdvanceReadData();
816  
817    // If the given mode is wanted, set it in rinfo_ and return true.
818    // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)819    bool SetMode(RelocInfo::Mode mode) {
820      return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
821    }
822  
823    byte* pos_;
824    byte* end_;
825    byte* code_age_sequence_;
826    RelocInfo rinfo_;
827    bool done_;
828    int mode_mask_;
829    int last_id_;
830    int last_position_;
831    DISALLOW_COPY_AND_ASSIGN(RelocIterator);
832  };
833  
834  
835  //------------------------------------------------------------------------------
836  // External function
837  
838  //----------------------------------------------------------------------------
839  class SCTableReference;
840  class Debug_Address;
841  
842  
843  // An ExternalReference represents a C++ address used in the generated
844  // code. All references to C++ functions and variables must be encapsulated in
845  // an ExternalReference instance. This is done in order to track the origin of
846  // all external references in the code so that they can be bound to the correct
847  // addresses when deserializing a heap.
848  class ExternalReference BASE_EMBEDDED {
849   public:
850    // Used in the simulator to support different native api calls.
851    enum Type {
852      // Builtin call.
853      // Object* f(v8::internal::Arguments).
854      BUILTIN_CALL,  // default
855  
856      // Builtin call returning object pair.
857      // ObjectPair f(v8::internal::Arguments).
858      BUILTIN_CALL_PAIR,
859  
860      // Builtin call that returns .
861      // ObjectTriple f(v8::internal::Arguments).
862      BUILTIN_CALL_TRIPLE,
863  
864      // Builtin that takes float arguments and returns an int.
865      // int f(double, double).
866      BUILTIN_COMPARE_CALL,
867  
868      // Builtin call that returns floating point.
869      // double f(double, double).
870      BUILTIN_FP_FP_CALL,
871  
872      // Builtin call that returns floating point.
873      // double f(double).
874      BUILTIN_FP_CALL,
875  
876      // Builtin call that returns floating point.
877      // double f(double, int).
878      BUILTIN_FP_INT_CALL,
879  
880      // Direct call to API function callback.
881      // void f(v8::FunctionCallbackInfo&)
882      DIRECT_API_CALL,
883  
884      // Call to function callback via InvokeFunctionCallback.
885      // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
886      PROFILING_API_CALL,
887  
888      // Direct call to accessor getter callback.
889      // void f(Local<Name> property, PropertyCallbackInfo& info)
890      DIRECT_GETTER_CALL,
891  
892      // Call to accessor getter callback via InvokeAccessorGetterCallback.
893      // void f(Local<Name> property, PropertyCallbackInfo& info,
894      //     AccessorNameGetterCallback callback)
895      PROFILING_GETTER_CALL
896    };
897  
898    static void SetUp();
899  
900    typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original,
901                                              Type type);
902  
ExternalReference()903    ExternalReference() : address_(NULL) {}
904  
905    ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
906  
907    ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
908  
909    ExternalReference(Builtins::Name name, Isolate* isolate);
910  
911    ExternalReference(Runtime::FunctionId id, Isolate* isolate);
912  
913    ExternalReference(const Runtime::Function* f, Isolate* isolate);
914  
915    explicit ExternalReference(StatsCounter* counter);
916  
917    ExternalReference(Isolate::AddressId id, Isolate* isolate);
918  
919    explicit ExternalReference(const SCTableReference& table_ref);
920  
921    // Isolate as an external reference.
922    static ExternalReference isolate_address(Isolate* isolate);
923  
924    // One-of-a-kind references. These references are not part of a general
925    // pattern. This means that they have to be added to the
926    // ExternalReferenceTable in serialize.cc manually.
927  
928    static ExternalReference interpreter_dispatch_table_address(Isolate* isolate);
929    static ExternalReference interpreter_dispatch_counters(Isolate* isolate);
930  
931    static ExternalReference incremental_marking_record_write_function(
932        Isolate* isolate);
933    static ExternalReference incremental_marking_record_write_code_entry_function(
934        Isolate* isolate);
935    static ExternalReference store_buffer_overflow_function(
936        Isolate* isolate);
937    static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
938  
939    static ExternalReference get_date_field_function(Isolate* isolate);
940    static ExternalReference date_cache_stamp(Isolate* isolate);
941  
942    static ExternalReference get_make_code_young_function(Isolate* isolate);
943    static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
944  
945    // Deoptimization support.
946    static ExternalReference new_deoptimizer_function(Isolate* isolate);
947    static ExternalReference compute_output_frames_function(Isolate* isolate);
948  
949    static ExternalReference wasm_f32_trunc(Isolate* isolate);
950    static ExternalReference wasm_f32_floor(Isolate* isolate);
951    static ExternalReference wasm_f32_ceil(Isolate* isolate);
952    static ExternalReference wasm_f32_nearest_int(Isolate* isolate);
953    static ExternalReference wasm_f64_trunc(Isolate* isolate);
954    static ExternalReference wasm_f64_floor(Isolate* isolate);
955    static ExternalReference wasm_f64_ceil(Isolate* isolate);
956    static ExternalReference wasm_f64_nearest_int(Isolate* isolate);
957    static ExternalReference wasm_int64_to_float32(Isolate* isolate);
958    static ExternalReference wasm_uint64_to_float32(Isolate* isolate);
959    static ExternalReference wasm_int64_to_float64(Isolate* isolate);
960    static ExternalReference wasm_uint64_to_float64(Isolate* isolate);
961    static ExternalReference wasm_float32_to_int64(Isolate* isolate);
962    static ExternalReference wasm_float32_to_uint64(Isolate* isolate);
963    static ExternalReference wasm_float64_to_int64(Isolate* isolate);
964    static ExternalReference wasm_float64_to_uint64(Isolate* isolate);
965    static ExternalReference wasm_int64_div(Isolate* isolate);
966    static ExternalReference wasm_int64_mod(Isolate* isolate);
967    static ExternalReference wasm_uint64_div(Isolate* isolate);
968    static ExternalReference wasm_uint64_mod(Isolate* isolate);
969    static ExternalReference wasm_word32_ctz(Isolate* isolate);
970    static ExternalReference wasm_word64_ctz(Isolate* isolate);
971    static ExternalReference wasm_word32_popcnt(Isolate* isolate);
972    static ExternalReference wasm_word64_popcnt(Isolate* isolate);
973  
974    static ExternalReference f64_acos_wrapper_function(Isolate* isolate);
975    static ExternalReference f64_asin_wrapper_function(Isolate* isolate);
976    static ExternalReference f64_pow_wrapper_function(Isolate* isolate);
977    static ExternalReference f64_mod_wrapper_function(Isolate* isolate);
978  
979    // Log support.
980    static ExternalReference log_enter_external_function(Isolate* isolate);
981    static ExternalReference log_leave_external_function(Isolate* isolate);
982  
983    // Static data in the keyed lookup cache.
984    static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
985    static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
986  
987    // Static variable Heap::roots_array_start()
988    static ExternalReference roots_array_start(Isolate* isolate);
989  
990    // Static variable Heap::allocation_sites_list_address()
991    static ExternalReference allocation_sites_list_address(Isolate* isolate);
992  
993    // Static variable StackGuard::address_of_jslimit()
994    static ExternalReference address_of_stack_limit(Isolate* isolate);
995  
996    // Static variable StackGuard::address_of_real_jslimit()
997    static ExternalReference address_of_real_stack_limit(Isolate* isolate);
998  
999    // Static variable RegExpStack::limit_address()
1000    static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
1001  
1002    // Static variables for RegExp.
1003    static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
1004    static ExternalReference address_of_regexp_stack_memory_address(
1005        Isolate* isolate);
1006    static ExternalReference address_of_regexp_stack_memory_size(
1007        Isolate* isolate);
1008  
1009    // Write barrier.
1010    static ExternalReference store_buffer_top(Isolate* isolate);
1011  
1012    // Used for fast allocation in generated code.
1013    static ExternalReference new_space_allocation_top_address(Isolate* isolate);
1014    static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
1015    static ExternalReference old_space_allocation_top_address(Isolate* isolate);
1016    static ExternalReference old_space_allocation_limit_address(Isolate* isolate);
1017  
1018    static ExternalReference mod_two_doubles_operation(Isolate* isolate);
1019    static ExternalReference power_double_double_function(Isolate* isolate);
1020    static ExternalReference power_double_int_function(Isolate* isolate);
1021  
1022    static ExternalReference handle_scope_next_address(Isolate* isolate);
1023    static ExternalReference handle_scope_limit_address(Isolate* isolate);
1024    static ExternalReference handle_scope_level_address(Isolate* isolate);
1025  
1026    static ExternalReference scheduled_exception_address(Isolate* isolate);
1027    static ExternalReference address_of_pending_message_obj(Isolate* isolate);
1028  
1029    // Static variables containing common double constants.
1030    static ExternalReference address_of_min_int();
1031    static ExternalReference address_of_one_half();
1032    static ExternalReference address_of_minus_one_half();
1033    static ExternalReference address_of_negative_infinity();
1034    static ExternalReference address_of_the_hole_nan();
1035    static ExternalReference address_of_uint32_bias();
1036  
1037    // IEEE 754 functions.
1038    static ExternalReference ieee754_atan_function(Isolate* isolate);
1039    static ExternalReference ieee754_atan2_function(Isolate* isolate);
1040    static ExternalReference ieee754_atanh_function(Isolate* isolate);
1041    static ExternalReference ieee754_cbrt_function(Isolate* isolate);
1042    static ExternalReference ieee754_cos_function(Isolate* isolate);
1043    static ExternalReference ieee754_exp_function(Isolate* isolate);
1044    static ExternalReference ieee754_expm1_function(Isolate* isolate);
1045    static ExternalReference ieee754_log_function(Isolate* isolate);
1046    static ExternalReference ieee754_log1p_function(Isolate* isolate);
1047    static ExternalReference ieee754_log10_function(Isolate* isolate);
1048    static ExternalReference ieee754_log2_function(Isolate* isolate);
1049    static ExternalReference ieee754_sin_function(Isolate* isolate);
1050    static ExternalReference ieee754_tan_function(Isolate* isolate);
1051  
1052    static ExternalReference page_flags(Page* page);
1053  
1054    static ExternalReference ForDeoptEntry(Address entry);
1055  
1056    static ExternalReference cpu_features();
1057  
1058    static ExternalReference is_tail_call_elimination_enabled_address(
1059        Isolate* isolate);
1060  
1061    static ExternalReference debug_is_active_address(Isolate* isolate);
1062    static ExternalReference debug_after_break_target_address(Isolate* isolate);
1063  
1064    static ExternalReference is_profiling_address(Isolate* isolate);
1065    static ExternalReference invoke_function_callback(Isolate* isolate);
1066    static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
1067  
1068    static ExternalReference virtual_handler_register(Isolate* isolate);
1069    static ExternalReference virtual_slot_register(Isolate* isolate);
1070  
1071    static ExternalReference runtime_function_table_address(Isolate* isolate);
1072  
address()1073    Address address() const { return reinterpret_cast<Address>(address_); }
1074  
1075    // Used to read out the last step action of the debugger.
1076    static ExternalReference debug_last_step_action_address(Isolate* isolate);
1077  
1078    // Used to check for suspended generator, used for stepping across await call.
1079    static ExternalReference debug_suspended_generator_address(Isolate* isolate);
1080  
1081  #ifndef V8_INTERPRETED_REGEXP
1082    // C functions called from RegExp generated code.
1083  
1084    // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
1085    static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
1086  
1087    // Function RegExpMacroAssembler*::CheckStackGuardState()
1088    static ExternalReference re_check_stack_guard_state(Isolate* isolate);
1089  
1090    // Function NativeRegExpMacroAssembler::GrowStack()
1091    static ExternalReference re_grow_stack(Isolate* isolate);
1092  
1093    // byte NativeRegExpMacroAssembler::word_character_bitmap
1094    static ExternalReference re_word_character_map();
1095  
1096  #endif
1097  
1098    // This lets you register a function that rewrites all external references.
1099    // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)1100    static void set_redirector(Isolate* isolate,
1101                               ExternalReferenceRedirector* redirector) {
1102      // We can't stack them.
1103      DCHECK(isolate->external_reference_redirector() == NULL);
1104      isolate->set_external_reference_redirector(
1105          reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
1106    }
1107  
1108    static ExternalReference stress_deopt_count(Isolate* isolate);
1109  
1110    static ExternalReference fixed_typed_array_base_data_offset();
1111  
1112   private:
ExternalReference(void * address)1113    explicit ExternalReference(void* address)
1114        : address_(address) {}
1115  
1116    static void* Redirect(Isolate* isolate,
1117                          Address address_arg,
1118                          Type type = ExternalReference::BUILTIN_CALL) {
1119      ExternalReferenceRedirector* redirector =
1120          reinterpret_cast<ExternalReferenceRedirector*>(
1121              isolate->external_reference_redirector());
1122      void* address = reinterpret_cast<void*>(address_arg);
1123      void* answer =
1124          (redirector == NULL) ? address : (*redirector)(isolate, address, type);
1125      return answer;
1126    }
1127  
1128    void* address_;
1129  };
1130  
1131  bool operator==(ExternalReference, ExternalReference);
1132  bool operator!=(ExternalReference, ExternalReference);
1133  
1134  size_t hash_value(ExternalReference);
1135  
1136  std::ostream& operator<<(std::ostream&, ExternalReference);
1137  
1138  
1139  // -----------------------------------------------------------------------------
1140  // Position recording support
1141  
1142  class AssemblerPositionsRecorder : public PositionsRecorder {
1143   public:
AssemblerPositionsRecorder(Assembler * assembler)1144    explicit AssemblerPositionsRecorder(Assembler* assembler)
1145        : assembler_(assembler),
1146          current_position_(RelocInfo::kNoPosition),
1147          written_position_(RelocInfo::kNoPosition),
1148          current_statement_position_(RelocInfo::kNoPosition),
1149          written_statement_position_(RelocInfo::kNoPosition) {}
1150  
1151    // Set current position to pos.
1152    void RecordPosition(int pos);
1153  
1154    // Set current statement position to pos.
1155    void RecordStatementPosition(int pos);
1156  
1157   private:
1158    // Write recorded positions to relocation information.
1159    void WriteRecordedPositions();
1160  
1161    Assembler* assembler_;
1162  
1163    int current_position_;
1164    int written_position_;
1165  
1166    int current_statement_position_;
1167    int written_statement_position_;
1168  
1169    DISALLOW_COPY_AND_ASSIGN(AssemblerPositionsRecorder);
1170  };
1171  
1172  
1173  // -----------------------------------------------------------------------------
1174  // Utility functions
1175  
NumberOfBitsSet(uint32_t x)1176  inline int NumberOfBitsSet(uint32_t x) {
1177    unsigned int num_bits_set;
1178    for (num_bits_set = 0; x; x >>= 1) {
1179      num_bits_set += x & 1;
1180    }
1181    return num_bits_set;
1182  }
1183  
1184  // Computes pow(x, y) with the special cases in the spec for Math.pow.
1185  double power_helper(Isolate* isolate, double x, double y);
1186  double power_double_int(double x, int y);
1187  double power_double_double(double x, double y);
1188  
1189  // Helper class for generating code or data associated with the code
1190  // right after a call instruction. As an example this can be used to
1191  // generate safepoint data after calls for crankshaft.
1192  class CallWrapper {
1193   public:
CallWrapper()1194    CallWrapper() { }
~CallWrapper()1195    virtual ~CallWrapper() { }
1196    // Called just before emitting a call. Argument is the size of the generated
1197    // call code.
1198    virtual void BeforeCall(int call_size) const = 0;
1199    // Called just after emitting a call, i.e., at the return site for the call.
1200    virtual void AfterCall() const = 0;
1201    // Return whether call needs to check for debug stepping.
NeedsDebugStepCheck()1202    virtual bool NeedsDebugStepCheck() const { return false; }
1203  };
1204  
1205  
1206  class NullCallWrapper : public CallWrapper {
1207   public:
NullCallWrapper()1208    NullCallWrapper() { }
~NullCallWrapper()1209    virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1210    virtual void BeforeCall(int call_size) const { }
AfterCall()1211    virtual void AfterCall() const { }
1212  };
1213  
1214  
1215  class CheckDebugStepCallWrapper : public CallWrapper {
1216   public:
CheckDebugStepCallWrapper()1217    CheckDebugStepCallWrapper() {}
~CheckDebugStepCallWrapper()1218    virtual ~CheckDebugStepCallWrapper() {}
BeforeCall(int call_size)1219    virtual void BeforeCall(int call_size) const {}
AfterCall()1220    virtual void AfterCall() const {}
NeedsDebugStepCheck()1221    virtual bool NeedsDebugStepCheck() const { return true; }
1222  };
1223  
1224  
1225  // -----------------------------------------------------------------------------
1226  // Constant pool support
1227  
1228  class ConstantPoolEntry {
1229   public:
ConstantPoolEntry()1230    ConstantPoolEntry() {}
ConstantPoolEntry(int position,intptr_t value,bool sharing_ok)1231    ConstantPoolEntry(int position, intptr_t value, bool sharing_ok)
1232        : position_(position),
1233          merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
1234          value_(value) {}
ConstantPoolEntry(int position,double value)1235    ConstantPoolEntry(int position, double value)
1236        : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {}
1237  
position()1238    int position() const { return position_; }
sharing_ok()1239    bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
is_merged()1240    bool is_merged() const { return merged_index_ >= 0; }
merged_index(void)1241    int merged_index(void) const {
1242      DCHECK(is_merged());
1243      return merged_index_;
1244    }
set_merged_index(int index)1245    void set_merged_index(int index) {
1246      merged_index_ = index;
1247      DCHECK(is_merged());
1248    }
offset(void)1249    int offset(void) const {
1250      DCHECK(merged_index_ >= 0);
1251      return merged_index_;
1252    }
set_offset(int offset)1253    void set_offset(int offset) {
1254      DCHECK(offset >= 0);
1255      merged_index_ = offset;
1256    }
value()1257    intptr_t value() const { return value_; }
value64()1258    uint64_t value64() const { return bit_cast<uint64_t>(value64_); }
1259  
1260    enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };
1261  
size(Type type)1262    static int size(Type type) {
1263      return (type == INTPTR) ? kPointerSize : kDoubleSize;
1264    }
1265  
1266    enum Access { REGULAR, OVERFLOWED };
1267  
1268   private:
1269    int position_;
1270    int merged_index_;
1271    union {
1272      intptr_t value_;
1273      double value64_;
1274    };
1275    enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
1276  };
1277  
1278  
1279  // -----------------------------------------------------------------------------
1280  // Embedded constant pool support
1281  
1282  class ConstantPoolBuilder BASE_EMBEDDED {
1283   public:
1284    ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);
1285  
1286    // Add pointer-sized constant to the embedded constant pool
AddEntry(int position,intptr_t value,bool sharing_ok)1287    ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
1288                                       bool sharing_ok) {
1289      ConstantPoolEntry entry(position, value, sharing_ok);
1290      return AddEntry(entry, ConstantPoolEntry::INTPTR);
1291    }
1292  
1293    // Add double constant to the embedded constant pool
AddEntry(int position,double value)1294    ConstantPoolEntry::Access AddEntry(int position, double value) {
1295      ConstantPoolEntry entry(position, value);
1296      return AddEntry(entry, ConstantPoolEntry::DOUBLE);
1297    }
1298  
1299    // Previews the access type required for the next new entry to be added.
1300    ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;
1301  
IsEmpty()1302    bool IsEmpty() {
1303      return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
1304             info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
1305             info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
1306             info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
1307    }
1308  
1309    // Emit the constant pool.  Invoke only after all entries have been
1310    // added and all instructions have been emitted.
1311    // Returns position of the emitted pool (zero implies no constant pool).
1312    int Emit(Assembler* assm);
1313  
1314    // Returns the label associated with the start of the constant pool.
1315    // Linking to this label in the function prologue may provide an
1316    // efficient means of constant pool pointer register initialization
1317    // on some architectures.
EmittedPosition()1318    inline Label* EmittedPosition() { return &emitted_label_; }
1319  
1320   private:
1321    ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
1322                                       ConstantPoolEntry::Type type);
1323    void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
1324    void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
1325                   ConstantPoolEntry::Type type);
1326  
1327    struct PerTypeEntryInfo {
PerTypeEntryInfoPerTypeEntryInfo1328      PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
overflowPerTypeEntryInfo1329      bool overflow() const {
1330        return (overflow_start >= 0 &&
1331                overflow_start < static_cast<int>(entries.size()));
1332      }
1333      int regular_reach_bits;
1334      int regular_count;
1335      int overflow_start;
1336      std::vector<ConstantPoolEntry> entries;
1337      std::vector<ConstantPoolEntry> shared_entries;
1338    };
1339  
1340    Label emitted_label_;  // Records pc_offset of emitted pool
1341    PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
1342  };
1343  
1344  }  // namespace internal
1345  }  // namespace v8
1346  #endif  // V8_ASSEMBLER_H_
1347