1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // The reason we write our own hash map instead of using unordered_map in STL,
6 // is that STL containers use a mutex pool on debug build, which will lead to
7 // deadlock when we are using async signal handler.
8
9 #ifndef V8_BASE_HASHMAP_H_
10 #define V8_BASE_HASHMAP_H_
11
12 #include <stdlib.h>
13
14 #include "src/base/bits.h"
15 #include "src/base/logging.h"
16
17 namespace v8 {
18 namespace base {
19
20 class DefaultAllocationPolicy {
21 public:
New(size_t size)22 V8_INLINE void* New(size_t size) { return malloc(size); }
Delete(void * p)23 V8_INLINE static void Delete(void* p) { free(p); }
24 };
25
26 template <class AllocationPolicy>
27 class TemplateHashMapImpl {
28 public:
29 typedef bool (*MatchFun)(void* key1, void* key2);
30
31 // The default capacity. This is used by the call sites which want
32 // to pass in a non-default AllocationPolicy but want to use the
33 // default value of capacity specified by the implementation.
34 static const uint32_t kDefaultHashMapCapacity = 8;
35
36 // initial_capacity is the size of the initial hash map;
37 // it must be a power of 2 (and thus must not be 0).
38 TemplateHashMapImpl(MatchFun match,
39 uint32_t capacity = kDefaultHashMapCapacity,
40 AllocationPolicy allocator = AllocationPolicy());
41
42 ~TemplateHashMapImpl();
43
44 // HashMap entries are (key, value, hash) triplets.
45 // Some clients may not need to use the value slot
46 // (e.g. implementers of sets, where the key is the value).
47 struct Entry {
48 void* key;
49 void* value;
50 uint32_t hash; // The full hash value for key
51 int order; // If you never remove entries this is the insertion order.
52 };
53
54 // If an entry with matching key is found, returns that entry.
55 // Otherwise, NULL is returned.
56 Entry* Lookup(void* key, uint32_t hash) const;
57
58 // If an entry with matching key is found, returns that entry.
59 // If no matching entry is found, a new entry is inserted with
60 // corresponding key, key hash, and NULL value.
61 Entry* LookupOrInsert(void* key, uint32_t hash,
62 AllocationPolicy allocator = AllocationPolicy());
63
64 // Removes the entry with matching key.
65 // It returns the value of the deleted entry
66 // or null if there is no value for such key.
67 void* Remove(void* key, uint32_t hash);
68
69 // Empties the hash map (occupancy() == 0).
70 void Clear();
71
72 // The number of (non-empty) entries in the table.
occupancy()73 uint32_t occupancy() const { return occupancy_; }
74
75 // The capacity of the table. The implementation
76 // makes sure that occupancy is at most 80% of
77 // the table capacity.
capacity()78 uint32_t capacity() const { return capacity_; }
79
80 // Iteration
81 //
82 // for (Entry* p = map.Start(); p != NULL; p = map.Next(p)) {
83 // ...
84 // }
85 //
86 // If entries are inserted during iteration, the effect of
87 // calling Next() is undefined.
88 Entry* Start() const;
89 Entry* Next(Entry* p) const;
90
91 // Some match functions defined for convenience.
PointersMatch(void * key1,void * key2)92 static bool PointersMatch(void* key1, void* key2) { return key1 == key2; }
93
94 private:
95 MatchFun match_;
96 Entry* map_;
97 uint32_t capacity_;
98 uint32_t occupancy_;
99
map_end()100 Entry* map_end() const { return map_ + capacity_; }
101 Entry* Probe(void* key, uint32_t hash) const;
102 void Initialize(uint32_t capacity, AllocationPolicy allocator);
103 void Resize(AllocationPolicy allocator);
104 };
105
106 typedef TemplateHashMapImpl<DefaultAllocationPolicy> HashMap;
107
108 template <class AllocationPolicy>
TemplateHashMapImpl(MatchFun match,uint32_t initial_capacity,AllocationPolicy allocator)109 TemplateHashMapImpl<AllocationPolicy>::TemplateHashMapImpl(
110 MatchFun match, uint32_t initial_capacity, AllocationPolicy allocator) {
111 match_ = match;
112 Initialize(initial_capacity, allocator);
113 }
114
115 template <class AllocationPolicy>
~TemplateHashMapImpl()116 TemplateHashMapImpl<AllocationPolicy>::~TemplateHashMapImpl() {
117 AllocationPolicy::Delete(map_);
118 }
119
120 template <class AllocationPolicy>
121 typename TemplateHashMapImpl<AllocationPolicy>::Entry*
Lookup(void * key,uint32_t hash)122 TemplateHashMapImpl<AllocationPolicy>::Lookup(void* key, uint32_t hash) const {
123 Entry* p = Probe(key, hash);
124 return p->key != NULL ? p : NULL;
125 }
126
127 template <class AllocationPolicy>
128 typename TemplateHashMapImpl<AllocationPolicy>::Entry*
LookupOrInsert(void * key,uint32_t hash,AllocationPolicy allocator)129 TemplateHashMapImpl<AllocationPolicy>::LookupOrInsert(
130 void* key, uint32_t hash, AllocationPolicy allocator) {
131 // Find a matching entry.
132 Entry* p = Probe(key, hash);
133 if (p->key != NULL) {
134 return p;
135 }
136
137 // No entry found; insert one.
138 p->key = key;
139 p->value = NULL;
140 p->hash = hash;
141 p->order = occupancy_;
142 occupancy_++;
143
144 // Grow the map if we reached >= 80% occupancy.
145 if (occupancy_ + occupancy_ / 4 >= capacity_) {
146 Resize(allocator);
147 p = Probe(key, hash);
148 }
149
150 return p;
151 }
152
153 template <class AllocationPolicy>
Remove(void * key,uint32_t hash)154 void* TemplateHashMapImpl<AllocationPolicy>::Remove(void* key, uint32_t hash) {
155 // Lookup the entry for the key to remove.
156 Entry* p = Probe(key, hash);
157 if (p->key == NULL) {
158 // Key not found nothing to remove.
159 return NULL;
160 }
161
162 void* value = p->value;
163 // To remove an entry we need to ensure that it does not create an empty
164 // entry that will cause the search for another entry to stop too soon. If all
165 // the entries between the entry to remove and the next empty slot have their
166 // initial position inside this interval, clearing the entry to remove will
167 // not break the search. If, while searching for the next empty entry, an
168 // entry is encountered which does not have its initial position between the
169 // entry to remove and the position looked at, then this entry can be moved to
170 // the place of the entry to remove without breaking the search for it. The
171 // entry made vacant by this move is now the entry to remove and the process
172 // starts over.
173 // Algorithm from http://en.wikipedia.org/wiki/Open_addressing.
174
175 // This guarantees loop termination as there is at least one empty entry so
176 // eventually the removed entry will have an empty entry after it.
177 DCHECK(occupancy_ < capacity_);
178
179 // p is the candidate entry to clear. q is used to scan forwards.
180 Entry* q = p; // Start at the entry to remove.
181 while (true) {
182 // Move q to the next entry.
183 q = q + 1;
184 if (q == map_end()) {
185 q = map_;
186 }
187
188 // All entries between p and q have their initial position between p and q
189 // and the entry p can be cleared without breaking the search for these
190 // entries.
191 if (q->key == NULL) {
192 break;
193 }
194
195 // Find the initial position for the entry at position q.
196 Entry* r = map_ + (q->hash & (capacity_ - 1));
197
198 // If the entry at position q has its initial position outside the range
199 // between p and q it can be moved forward to position p and will still be
200 // found. There is now a new candidate entry for clearing.
201 if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) {
202 *p = *q;
203 p = q;
204 }
205 }
206
207 // Clear the entry which is allowed to en emptied.
208 p->key = NULL;
209 occupancy_--;
210 return value;
211 }
212
213 template <class AllocationPolicy>
Clear()214 void TemplateHashMapImpl<AllocationPolicy>::Clear() {
215 // Mark all entries as empty.
216 const Entry* end = map_end();
217 for (Entry* p = map_; p < end; p++) {
218 p->key = NULL;
219 }
220 occupancy_ = 0;
221 }
222
223 template <class AllocationPolicy>
224 typename TemplateHashMapImpl<AllocationPolicy>::Entry*
Start()225 TemplateHashMapImpl<AllocationPolicy>::Start() const {
226 return Next(map_ - 1);
227 }
228
229 template <class AllocationPolicy>
230 typename TemplateHashMapImpl<AllocationPolicy>::Entry*
Next(Entry * p)231 TemplateHashMapImpl<AllocationPolicy>::Next(Entry* p) const {
232 const Entry* end = map_end();
233 DCHECK(map_ - 1 <= p && p < end);
234 for (p++; p < end; p++) {
235 if (p->key != NULL) {
236 return p;
237 }
238 }
239 return NULL;
240 }
241
242 template <class AllocationPolicy>
243 typename TemplateHashMapImpl<AllocationPolicy>::Entry*
Probe(void * key,uint32_t hash)244 TemplateHashMapImpl<AllocationPolicy>::Probe(void* key, uint32_t hash) const {
245 DCHECK(key != NULL);
246
247 DCHECK(base::bits::IsPowerOfTwo32(capacity_));
248 Entry* p = map_ + (hash & (capacity_ - 1));
249 const Entry* end = map_end();
250 DCHECK(map_ <= p && p < end);
251
252 DCHECK(occupancy_ < capacity_); // Guarantees loop termination.
253 while (p->key != NULL && (hash != p->hash || !match_(key, p->key))) {
254 p++;
255 if (p >= end) {
256 p = map_;
257 }
258 }
259
260 return p;
261 }
262
263 template <class AllocationPolicy>
Initialize(uint32_t capacity,AllocationPolicy allocator)264 void TemplateHashMapImpl<AllocationPolicy>::Initialize(
265 uint32_t capacity, AllocationPolicy allocator) {
266 DCHECK(base::bits::IsPowerOfTwo32(capacity));
267 map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry)));
268 if (map_ == NULL) {
269 FATAL("Out of memory: HashMap::Initialize");
270 return;
271 }
272 capacity_ = capacity;
273 Clear();
274 }
275
276 template <class AllocationPolicy>
Resize(AllocationPolicy allocator)277 void TemplateHashMapImpl<AllocationPolicy>::Resize(AllocationPolicy allocator) {
278 Entry* map = map_;
279 uint32_t n = occupancy_;
280
281 // Allocate larger map.
282 Initialize(capacity_ * 2, allocator);
283
284 // Rehash all current entries.
285 for (Entry* p = map; n > 0; p++) {
286 if (p->key != NULL) {
287 Entry* entry = LookupOrInsert(p->key, p->hash, allocator);
288 entry->value = p->value;
289 entry->order = p->order;
290 n--;
291 }
292 }
293
294 // Delete old map.
295 AllocationPolicy::Delete(map);
296 }
297
298 // A hash map for pointer keys and values with an STL-like interface.
299 template <class Key, class Value, class AllocationPolicy>
300 class TemplateHashMap : private TemplateHashMapImpl<AllocationPolicy> {
301 public:
302 STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT
303 STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT
304 struct value_type {
305 Key* first;
306 Value* second;
307 };
308
309 class Iterator {
310 public:
311 Iterator& operator++() {
312 entry_ = map_->Next(entry_);
313 return *this;
314 }
315
316 value_type* operator->() { return reinterpret_cast<value_type*>(entry_); }
317 bool operator!=(const Iterator& other) { return entry_ != other.entry_; }
318
319 private:
Iterator(const TemplateHashMapImpl<AllocationPolicy> * map,typename TemplateHashMapImpl<AllocationPolicy>::Entry * entry)320 Iterator(const TemplateHashMapImpl<AllocationPolicy>* map,
321 typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry)
322 : map_(map), entry_(entry) {}
323
324 const TemplateHashMapImpl<AllocationPolicy>* map_;
325 typename TemplateHashMapImpl<AllocationPolicy>::Entry* entry_;
326
327 friend class TemplateHashMap;
328 };
329
330 TemplateHashMap(
331 typename TemplateHashMapImpl<AllocationPolicy>::MatchFun match,
332 AllocationPolicy allocator = AllocationPolicy())
333 : TemplateHashMapImpl<AllocationPolicy>(
334 match,
335 TemplateHashMapImpl<AllocationPolicy>::kDefaultHashMapCapacity,
336 allocator) {}
337
begin()338 Iterator begin() const { return Iterator(this, this->Start()); }
end()339 Iterator end() const { return Iterator(this, NULL); }
340 Iterator find(Key* key, bool insert = false,
341 AllocationPolicy allocator = AllocationPolicy()) {
342 if (insert) {
343 return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator));
344 }
345 return Iterator(this, this->Lookup(key, key->Hash()));
346 }
347 };
348
349 } // namespace base
350 } // namespace v8
351
352 #endif // V8_BASE_HASHMAP_H_
353