• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_BASE_MACROS_H_
6 #define V8_BASE_MACROS_H_
7 
8 #include "src/base/compiler-specific.h"
9 #include "src/base/format-macros.h"
10 #include "src/base/logging.h"
11 
12 
13 // TODO(all) Replace all uses of this macro with C++'s offsetof. To do that, we
14 // have to make sure that only standard-layout types and simple field
15 // designators are used.
16 #define OFFSET_OF(type, field) \
17   (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(16)->field)) - 16)
18 
19 
20 #if V8_OS_NACL
21 
22 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
23 // but can be used on anonymous types or types defined inside
24 // functions.  It's less safe than arraysize as it accepts some
25 // (although not all) pointers.  Therefore, you should use arraysize
26 // whenever possible.
27 //
28 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
29 // size_t.
30 //
31 // ARRAYSIZE_UNSAFE catches a few type errors.  If you see a compiler error
32 //
33 //   "warning: division by zero in ..."
34 //
35 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
36 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
37 //
38 // The following comments are on the implementation details, and can
39 // be ignored by the users.
40 //
41 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
42 // the array) and sizeof(*(arr)) (the # of bytes in one array
43 // element).  If the former is divisible by the latter, perhaps arr is
44 // indeed an array, in which case the division result is the # of
45 // elements in the array.  Otherwise, arr cannot possibly be an array,
46 // and we generate a compiler error to prevent the code from
47 // compiling.
48 //
49 // Since the size of bool is implementation-defined, we need to cast
50 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
51 // result has type size_t.
52 //
53 // This macro is not perfect as it wrongfully accepts certain
54 // pointers, namely where the pointer size is divisible by the pointee
55 // size.  Since all our code has to go through a 32-bit compiler,
56 // where a pointer is 4 bytes, this means all pointers to a type whose
57 // size is 3 or greater than 4 will be (righteously) rejected.
58 #define ARRAYSIZE_UNSAFE(a)     \
59   ((sizeof(a) / sizeof(*(a))) / \
60    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))  // NOLINT
61 
62 // TODO(bmeurer): For some reason, the NaCl toolchain cannot handle the correct
63 // definition of arraysize() below, so we have to use the unsafe version for
64 // now.
65 #define arraysize ARRAYSIZE_UNSAFE
66 
67 #else  // V8_OS_NACL
68 
69 // The arraysize(arr) macro returns the # of elements in an array arr.
70 // The expression is a compile-time constant, and therefore can be
71 // used in defining new arrays, for example.  If you use arraysize on
72 // a pointer by mistake, you will get a compile-time error.
73 //
74 // One caveat is that arraysize() doesn't accept any array of an
75 // anonymous type or a type defined inside a function.  In these rare
76 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below.  This is
77 // due to a limitation in C++'s template system.  The limitation might
78 // eventually be removed, but it hasn't happened yet.
79 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
80 
81 
82 // This template function declaration is used in defining arraysize.
83 // Note that the function doesn't need an implementation, as we only
84 // use its type.
85 template <typename T, size_t N>
86 char (&ArraySizeHelper(T (&array)[N]))[N];
87 
88 
89 #if !V8_CC_MSVC
90 // That gcc wants both of these prototypes seems mysterious. VC, for
91 // its part, can't decide which to use (another mystery). Matching of
92 // template overloads: the final frontier.
93 template <typename T, size_t N>
94 char (&ArraySizeHelper(const T (&array)[N]))[N];
95 #endif
96 
97 #endif  // V8_OS_NACL
98 
99 
100 // bit_cast<Dest,Source> is a template function that implements the
101 // equivalent of "*reinterpret_cast<Dest*>(&source)".  We need this in
102 // very low-level functions like the protobuf library and fast math
103 // support.
104 //
105 //   float f = 3.14159265358979;
106 //   int i = bit_cast<int32>(f);
107 //   // i = 0x40490fdb
108 //
109 // The classical address-casting method is:
110 //
111 //   // WRONG
112 //   float f = 3.14159265358979;            // WRONG
113 //   int i = * reinterpret_cast<int*>(&f);  // WRONG
114 //
115 // The address-casting method actually produces undefined behavior
116 // according to ISO C++ specification section 3.10 -15 -.  Roughly, this
117 // section says: if an object in memory has one type, and a program
118 // accesses it with a different type, then the result is undefined
119 // behavior for most values of "different type".
120 //
121 // This is true for any cast syntax, either *(int*)&f or
122 // *reinterpret_cast<int*>(&f).  And it is particularly true for
123 // conversions between integral lvalues and floating-point lvalues.
124 //
125 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
126 // that expressions with different types refer to different memory.  gcc
127 // 4.0.1 has an optimizer that takes advantage of this.  So a
128 // non-conforming program quietly produces wildly incorrect output.
129 //
130 // The problem is not the use of reinterpret_cast.  The problem is type
131 // punning: holding an object in memory of one type and reading its bits
132 // back using a different type.
133 //
134 // The C++ standard is more subtle and complex than this, but that
135 // is the basic idea.
136 //
137 // Anyways ...
138 //
139 // bit_cast<> calls memcpy() which is blessed by the standard,
140 // especially by the example in section 3.9 .  Also, of course,
141 // bit_cast<> wraps up the nasty logic in one place.
142 //
143 // Fortunately memcpy() is very fast.  In optimized mode, with a
144 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
145 // code with the minimal amount of data movement.  On a 32-bit system,
146 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
147 // compiles to two loads and two stores.
148 //
149 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
150 //
151 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
152 // is likely to surprise you.
153 template <class Dest, class Source>
bit_cast(Source const & source)154 V8_INLINE Dest bit_cast(Source const& source) {
155   static_assert(sizeof(Dest) == sizeof(Source),
156                 "source and dest must be same size");
157   Dest dest;
158   memcpy(&dest, &source, sizeof(dest));
159   return dest;
160 }
161 
162 
163 // Put this in the private: declarations for a class to be unassignable.
164 #define DISALLOW_ASSIGN(TypeName) void operator=(const TypeName&)
165 
166 
167 // A macro to disallow the evil copy constructor and operator= functions
168 // This should be used in the private: declarations for a class
169 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
170   TypeName(const TypeName&) = delete;      \
171   void operator=(const TypeName&) = delete
172 
173 
174 // A macro to disallow all the implicit constructors, namely the
175 // default constructor, copy constructor and operator= functions.
176 //
177 // This should be used in the private: declarations for a class
178 // that wants to prevent anyone from instantiating it. This is
179 // especially useful for classes containing only static methods.
180 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
181   TypeName() = delete;                           \
182   DISALLOW_COPY_AND_ASSIGN(TypeName)
183 
184 
185 // Newly written code should use V8_INLINE and V8_NOINLINE directly.
186 #define INLINE(declarator)    V8_INLINE declarator
187 #define NO_INLINE(declarator) V8_NOINLINE declarator
188 
189 
190 // Newly written code should use WARN_UNUSED_RESULT.
191 #define MUST_USE_RESULT WARN_UNUSED_RESULT
192 
193 
194 // Define V8_USE_ADDRESS_SANITIZER macros.
195 #if defined(__has_feature)
196 #if __has_feature(address_sanitizer)
197 #define V8_USE_ADDRESS_SANITIZER 1
198 #endif
199 #endif
200 
201 // Define DISABLE_ASAN macros.
202 #ifdef V8_USE_ADDRESS_SANITIZER
203 #define DISABLE_ASAN __attribute__((no_sanitize_address))
204 #else
205 #define DISABLE_ASAN
206 #endif
207 
208 
209 #if V8_CC_GNU
210 #define V8_IMMEDIATE_CRASH() __builtin_trap()
211 #else
212 #define V8_IMMEDIATE_CRASH() ((void(*)())0)()
213 #endif
214 
215 
216 // TODO(all) Replace all uses of this macro with static_assert, remove macro.
217 #define STATIC_ASSERT(test) static_assert(test, #test)
218 
219 
220 // The USE(x) template is used to silence C++ compiler warnings
221 // issued for (yet) unused variables (typically parameters).
222 template <typename T>
USE(T)223 inline void USE(T) { }
224 
225 
226 #define IS_POWER_OF_TWO(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
227 
228 
229 // Define our own macros for writing 64-bit constants.  This is less fragile
230 // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
231 // works on compilers that don't have it (like MSVC).
232 #if V8_CC_MSVC
233 # define V8_UINT64_C(x)   (x ## UI64)
234 # define V8_INT64_C(x)    (x ## I64)
235 # if V8_HOST_ARCH_64_BIT
236 #  define V8_INTPTR_C(x)  (x ## I64)
237 #  define V8_PTR_PREFIX   "ll"
238 # else
239 #  define V8_INTPTR_C(x)  (x)
240 #  define V8_PTR_PREFIX   ""
241 # endif  // V8_HOST_ARCH_64_BIT
242 #elif V8_CC_MINGW64
243 # define V8_UINT64_C(x)   (x ## ULL)
244 # define V8_INT64_C(x)    (x ## LL)
245 # define V8_INTPTR_C(x)   (x ## LL)
246 # define V8_PTR_PREFIX    "I64"
247 #elif V8_HOST_ARCH_64_BIT
248 # if V8_OS_MACOSX || V8_OS_OPENBSD
249 #  define V8_UINT64_C(x)   (x ## ULL)
250 #  define V8_INT64_C(x)    (x ## LL)
251 # else
252 #  define V8_UINT64_C(x)   (x ## UL)
253 #  define V8_INT64_C(x)    (x ## L)
254 # endif
255 # define V8_INTPTR_C(x)   (x ## L)
256 # define V8_PTR_PREFIX    "l"
257 #else
258 # define V8_UINT64_C(x)   (x ## ULL)
259 # define V8_INT64_C(x)    (x ## LL)
260 # define V8_INTPTR_C(x)   (x)
261 #if V8_OS_AIX
262 #define V8_PTR_PREFIX "l"
263 #else
264 # define V8_PTR_PREFIX    ""
265 #endif
266 #endif
267 
268 #define V8PRIxPTR V8_PTR_PREFIX "x"
269 #define V8PRIdPTR V8_PTR_PREFIX "d"
270 #define V8PRIuPTR V8_PTR_PREFIX "u"
271 
272 // ptrdiff_t is 't' according to the standard, but MSVC uses 'I'.
273 #if V8_CC_MSVC
274 #define V8PRIxPTRDIFF "Ix"
275 #define V8PRIdPTRDIFF "Id"
276 #define V8PRIuPTRDIFF "Iu"
277 #else
278 #define V8PRIxPTRDIFF "tx"
279 #define V8PRIdPTRDIFF "td"
280 #define V8PRIuPTRDIFF "tu"
281 #endif
282 
283 // Fix for Mac OS X defining uintptr_t as "unsigned long":
284 #if V8_OS_MACOSX
285 #undef V8PRIxPTR
286 #define V8PRIxPTR "lx"
287 #undef V8PRIdPTR
288 #define V8PRIdPTR "ld"
289 #undef V8PRIuPTR
290 #define V8PRIuPTR "lxu"
291 #endif
292 
293 // The following macro works on both 32 and 64-bit platforms.
294 // Usage: instead of writing 0x1234567890123456
295 //      write V8_2PART_UINT64_C(0x12345678,90123456);
296 #define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
297 
298 
299 // Compute the 0-relative offset of some absolute value x of type T.
300 // This allows conversion of Addresses and integral types into
301 // 0-relative int offsets.
302 template <typename T>
OffsetFrom(T x)303 inline intptr_t OffsetFrom(T x) {
304   return x - static_cast<T>(0);
305 }
306 
307 
308 // Compute the absolute value of type T for some 0-relative offset x.
309 // This allows conversion of 0-relative int offsets into Addresses and
310 // integral types.
311 template <typename T>
AddressFrom(intptr_t x)312 inline T AddressFrom(intptr_t x) {
313   return static_cast<T>(static_cast<T>(0) + x);
314 }
315 
316 
317 // Return the largest multiple of m which is <= x.
318 template <typename T>
RoundDown(T x,intptr_t m)319 inline T RoundDown(T x, intptr_t m) {
320   DCHECK(IS_POWER_OF_TWO(m));
321   return AddressFrom<T>(OffsetFrom(x) & -m);
322 }
323 
324 
325 // Return the smallest multiple of m which is >= x.
326 template <typename T>
RoundUp(T x,intptr_t m)327 inline T RoundUp(T x, intptr_t m) {
328   return RoundDown<T>(static_cast<T>(x + m - 1), m);
329 }
330 
331 
332 namespace v8 {
333 namespace base {
334 
335 // TODO(yangguo): This is a poor man's replacement for std::is_fundamental,
336 // which requires C++11. Switch to std::is_fundamental once possible.
337 template <typename T>
is_fundamental()338 inline bool is_fundamental() {
339   return false;
340 }
341 
342 template <>
343 inline bool is_fundamental<uint8_t>() {
344   return true;
345 }
346 
347 }  // namespace base
348 }  // namespace v8
349 
350 #endif   // V8_BASE_MACROS_H_
351