• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2011 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #ifndef V8_HANDLES_H_
6  #define V8_HANDLES_H_
7  
8  #include "include/v8.h"
9  #include "src/base/functional.h"
10  #include "src/base/macros.h"
11  #include "src/checks.h"
12  #include "src/globals.h"
13  #include "src/zone.h"
14  
15  namespace v8 {
16  namespace internal {
17  
18  // Forward declarations.
19  class DeferredHandles;
20  class HandleScopeImplementer;
21  class Isolate;
22  class Object;
23  
24  
25  // ----------------------------------------------------------------------------
26  // Base class for Handle instantiations.  Don't use directly.
27  class HandleBase {
28   public:
HandleBase(Object ** location)29    V8_INLINE explicit HandleBase(Object** location) : location_(location) {}
30    V8_INLINE explicit HandleBase(Object* object, Isolate* isolate);
31  
32    // Check if this handle refers to the exact same object as the other handle.
is_identical_to(const HandleBase that)33    V8_INLINE bool is_identical_to(const HandleBase that) const {
34      // Dereferencing deferred handles to check object equality is safe.
35      SLOW_DCHECK((this->location_ == nullptr ||
36                   this->IsDereferenceAllowed(NO_DEFERRED_CHECK)) &&
37                  (that.location_ == nullptr ||
38                   that.IsDereferenceAllowed(NO_DEFERRED_CHECK)));
39      if (this->location_ == that.location_) return true;
40      if (this->location_ == NULL || that.location_ == NULL) return false;
41      return *this->location_ == *that.location_;
42    }
43  
is_null()44    V8_INLINE bool is_null() const { return location_ == nullptr; }
45  
46    // Returns the raw address where this handle is stored. This should only be
47    // used for hashing handles; do not ever try to dereference it.
address()48    V8_INLINE Address address() const { return bit_cast<Address>(location_); }
49  
50   protected:
51    // Provides the C++ dereference operator.
52    V8_INLINE Object* operator*() const {
53      SLOW_DCHECK(IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
54      return *location_;
55    }
56  
57    // Returns the address to where the raw pointer is stored.
location()58    V8_INLINE Object** location() const {
59      SLOW_DCHECK(location_ == nullptr ||
60                  IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
61      return location_;
62    }
63  
64    enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK };
65  #ifdef DEBUG
66    bool IsDereferenceAllowed(DereferenceCheckMode mode) const;
67  #else
68    V8_INLINE
IsDereferenceAllowed(DereferenceCheckMode mode)69    bool IsDereferenceAllowed(DereferenceCheckMode mode) const { return true; }
70  #endif  // DEBUG
71  
72    Object** location_;
73  };
74  
75  
76  // ----------------------------------------------------------------------------
77  // A Handle provides a reference to an object that survives relocation by
78  // the garbage collector.
79  //
80  // Handles are only valid within a HandleScope. When a handle is created
81  // for an object a cell is allocated in the current HandleScope.
82  //
83  // Also note that Handles do not provide default equality comparison or hashing
84  // operators on purpose. Such operators would be misleading, because intended
85  // semantics is ambiguous between Handle location and object identity. Instead
86  // use either {is_identical_to} or {location} explicitly.
87  template <typename T>
88  class Handle final : public HandleBase {
89   public:
90    V8_INLINE explicit Handle(T** location = nullptr)
HandleBase(reinterpret_cast<Object ** > (location))91        : HandleBase(reinterpret_cast<Object**>(location)) {
92      Object* a = nullptr;
93      T* b = nullptr;
94      a = b;  // Fake assignment to enforce type checks.
95      USE(a);
96    }
Handle(T * object)97    V8_INLINE explicit Handle(T* object) : Handle(object, object->GetIsolate()) {}
Handle(T * object,Isolate * isolate)98    V8_INLINE Handle(T* object, Isolate* isolate) : HandleBase(object, isolate) {}
99  
100    // Allocate a new handle for the object, do not canonicalize.
101    V8_INLINE static Handle<T> New(T* object, Isolate* isolate);
102  
103    // Constructor for handling automatic up casting.
104    // Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
105    template <typename S>
Handle(Handle<S> handle)106    V8_INLINE Handle(Handle<S> handle)
107        : HandleBase(handle) {
108      T* a = nullptr;
109      S* b = nullptr;
110      a = b;  // Fake assignment to enforce type checks.
111      USE(a);
112    }
113  
114    V8_INLINE T* operator->() const { return operator*(); }
115  
116    // Provides the C++ dereference operator.
117    V8_INLINE T* operator*() const {
118      return reinterpret_cast<T*>(HandleBase::operator*());
119    }
120  
121    // Returns the address to where the raw pointer is stored.
location()122    V8_INLINE T** location() const {
123      return reinterpret_cast<T**>(HandleBase::location());
124    }
125  
126    template <typename S>
cast(Handle<S> that)127    static const Handle<T> cast(Handle<S> that) {
128      T::cast(*reinterpret_cast<T**>(that.location_));
129      return Handle<T>(reinterpret_cast<T**>(that.location_));
130    }
131  
132    // TODO(yangguo): Values that contain empty handles should be declared as
133    // MaybeHandle to force validation before being used as handles.
null()134    static const Handle<T> null() { return Handle<T>(); }
135  
136    // Provide function object for location equality comparison.
137    struct equal_to : public std::binary_function<Handle<T>, Handle<T>, bool> {
operatorequal_to138      V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const {
139        return lhs.address() == rhs.address();
140      }
141    };
142  
143    // Provide function object for location hashing.
144    struct hash : public std::unary_function<Handle<T>, size_t> {
operatorhash145      V8_INLINE size_t operator()(Handle<T> const& handle) const {
146        return base::hash<void*>()(handle.address());
147      }
148    };
149  
150   private:
151    // Handles of different classes are allowed to access each other's location_.
152    template <typename>
153    friend class Handle;
154    // MaybeHandle is allowed to access location_.
155    template <typename>
156    friend class MaybeHandle;
157  };
158  
159  template <typename T>
160  inline std::ostream& operator<<(std::ostream& os, Handle<T> handle);
161  
162  template <typename T>
handle(T * object,Isolate * isolate)163  V8_INLINE Handle<T> handle(T* object, Isolate* isolate) {
164    return Handle<T>(object, isolate);
165  }
166  
167  template <typename T>
handle(T * object)168  V8_INLINE Handle<T> handle(T* object) {
169    return Handle<T>(object);
170  }
171  
172  
173  // ----------------------------------------------------------------------------
174  // A Handle can be converted into a MaybeHandle. Converting a MaybeHandle
175  // into a Handle requires checking that it does not point to NULL.  This
176  // ensures NULL checks before use.
177  //
178  // Also note that Handles do not provide default equality comparison or hashing
179  // operators on purpose. Such operators would be misleading, because intended
180  // semantics is ambiguous between Handle location and object identity.
181  template <typename T>
182  class MaybeHandle final {
183   public:
MaybeHandle()184    V8_INLINE MaybeHandle() {}
~MaybeHandle()185    V8_INLINE ~MaybeHandle() {}
186  
187    // Constructor for handling automatic up casting from Handle.
188    // Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected.
189    template <typename S>
MaybeHandle(Handle<S> handle)190    V8_INLINE MaybeHandle(Handle<S> handle)
191        : location_(reinterpret_cast<T**>(handle.location_)) {
192      T* a = nullptr;
193      S* b = nullptr;
194      a = b;  // Fake assignment to enforce type checks.
195      USE(a);
196    }
197  
198    // Constructor for handling automatic up casting.
199    // Ex. MaybeHandle<JSArray> can be passed when Handle<Object> is expected.
200    template <typename S>
MaybeHandle(MaybeHandle<S> maybe_handle)201    V8_INLINE MaybeHandle(MaybeHandle<S> maybe_handle)
202        : location_(reinterpret_cast<T**>(maybe_handle.location_)) {
203      T* a = nullptr;
204      S* b = nullptr;
205      a = b;  // Fake assignment to enforce type checks.
206      USE(a);
207    }
208  
Assert()209    V8_INLINE void Assert() const { DCHECK_NOT_NULL(location_); }
Check()210    V8_INLINE void Check() const { CHECK_NOT_NULL(location_); }
211  
ToHandleChecked()212    V8_INLINE Handle<T> ToHandleChecked() const {
213      Check();
214      return Handle<T>(location_);
215    }
216  
217    // Convert to a Handle with a type that can be upcasted to.
218    template <typename S>
ToHandle(Handle<S> * out)219    V8_INLINE bool ToHandle(Handle<S>* out) const {
220      if (location_ == nullptr) {
221        *out = Handle<T>::null();
222        return false;
223      } else {
224        *out = Handle<T>(location_);
225        return true;
226      }
227    }
228  
is_null()229    bool is_null() const { return location_ == nullptr; }
230  
231   protected:
232    T** location_ = nullptr;
233  
234    // MaybeHandles of different classes are allowed to access each
235    // other's location_.
236    template <typename>
237    friend class MaybeHandle;
238  };
239  
240  
241  // ----------------------------------------------------------------------------
242  // A stack-allocated class that governs a number of local handles.
243  // After a handle scope has been created, all local handles will be
244  // allocated within that handle scope until either the handle scope is
245  // deleted or another handle scope is created.  If there is already a
246  // handle scope and a new one is created, all allocations will take
247  // place in the new handle scope until it is deleted.  After that,
248  // new handles will again be allocated in the original handle scope.
249  //
250  // After the handle scope of a local handle has been deleted the
251  // garbage collector will no longer track the object stored in the
252  // handle and may deallocate it.  The behavior of accessing a handle
253  // for which the handle scope has been deleted is undefined.
254  class HandleScope {
255   public:
256    explicit inline HandleScope(Isolate* isolate);
257  
258    inline ~HandleScope();
259  
260    // Counts the number of allocated handles.
261    static int NumberOfHandles(Isolate* isolate);
262  
263    // Create a new handle or lookup a canonical handle.
264    V8_INLINE static Object** GetHandle(Isolate* isolate, Object* value);
265  
266    // Creates a new handle with the given value.
267    V8_INLINE static Object** CreateHandle(Isolate* isolate, Object* value);
268  
269    // Deallocates any extensions used by the current scope.
270    static void DeleteExtensions(Isolate* isolate);
271  
272    static Address current_next_address(Isolate* isolate);
273    static Address current_limit_address(Isolate* isolate);
274    static Address current_level_address(Isolate* isolate);
275  
276    // Closes the HandleScope (invalidating all handles
277    // created in the scope of the HandleScope) and returns
278    // a Handle backed by the parent scope holding the
279    // value of the argument handle.
280    template <typename T>
281    Handle<T> CloseAndEscape(Handle<T> handle_value);
282  
isolate()283    Isolate* isolate() { return isolate_; }
284  
285    // Limit for number of handles with --check-handle-count. This is
286    // large enough to compile natives and pass unit tests with some
287    // slack for future changes to natives.
288    static const int kCheckHandleThreshold = 30 * 1024;
289  
290   private:
291    // Prevent heap allocation or illegal handle scopes.
292    HandleScope(const HandleScope&);
293    void operator=(const HandleScope&);
294    void* operator new(size_t size);
295    void operator delete(void* size_t);
296  
297    Isolate* isolate_;
298    Object** prev_next_;
299    Object** prev_limit_;
300  
301    // Close the handle scope resetting limits to a previous state.
302    static inline void CloseScope(Isolate* isolate,
303                                  Object** prev_next,
304                                  Object** prev_limit);
305  
306    // Extend the handle scope making room for more handles.
307    static Object** Extend(Isolate* isolate);
308  
309  #ifdef ENABLE_HANDLE_ZAPPING
310    // Zaps the handles in the half-open interval [start, end).
311    static void ZapRange(Object** start, Object** end);
312  #endif
313  
314    friend class v8::HandleScope;
315    friend class DeferredHandles;
316    friend class DeferredHandleScope;
317    friend class HandleScopeImplementer;
318    friend class Isolate;
319  };
320  
321  
322  // Forward declarations for CanonicalHandleScope.
323  template <typename V>
324  class IdentityMap;
325  class RootIndexMap;
326  
327  
328  // A CanonicalHandleScope does not open a new HandleScope. It changes the
329  // existing HandleScope so that Handles created within are canonicalized.
330  // This does not apply to nested inner HandleScopes unless a nested
331  // CanonicalHandleScope is introduced. Handles are only canonicalized within
332  // the same CanonicalHandleScope, but not across nested ones.
333  class CanonicalHandleScope final {
334   public:
335    explicit CanonicalHandleScope(Isolate* isolate);
336    ~CanonicalHandleScope();
337  
338   private:
339    Object** Lookup(Object* object);
340  
341    Isolate* isolate_;
342    Zone zone_;
343    RootIndexMap* root_index_map_;
344    IdentityMap<Object**>* identity_map_;
345    // Ordinary nested handle scopes within the current one are not canonical.
346    int canonical_level_;
347    // We may have nested canonical scopes. Handles are canonical within each one.
348    CanonicalHandleScope* prev_canonical_scope_;
349  
350    friend class HandleScope;
351  };
352  
353  
354  class DeferredHandleScope final {
355   public:
356    explicit DeferredHandleScope(Isolate* isolate);
357    // The DeferredHandles object returned stores the Handles created
358    // since the creation of this DeferredHandleScope.  The Handles are
359    // alive as long as the DeferredHandles object is alive.
360    DeferredHandles* Detach();
361    ~DeferredHandleScope();
362  
363   private:
364    Object** prev_limit_;
365    Object** prev_next_;
366    HandleScopeImplementer* impl_;
367  
368  #ifdef DEBUG
369    bool handles_detached_;
370    int prev_level_;
371  #endif
372  
373    friend class HandleScopeImplementer;
374  };
375  
376  
377  // Seal off the current HandleScope so that new handles can only be created
378  // if a new HandleScope is entered.
379  class SealHandleScope final {
380   public:
381  #ifndef DEBUG
SealHandleScope(Isolate * isolate)382    explicit SealHandleScope(Isolate* isolate) {}
~SealHandleScope()383    ~SealHandleScope() {}
384  #else
385    explicit inline SealHandleScope(Isolate* isolate);
386    inline ~SealHandleScope();
387   private:
388    Isolate* isolate_;
389    Object** prev_limit_;
390    int prev_sealed_level_;
391  #endif
392  };
393  
394  
395  struct HandleScopeData final {
396    Object** next;
397    Object** limit;
398    int level;
399    int sealed_level;
400    CanonicalHandleScope* canonical_scope;
401  
Initializefinal402    void Initialize() {
403      next = limit = NULL;
404      sealed_level = level = 0;
405      canonical_scope = NULL;
406    }
407  };
408  
409  }  // namespace internal
410  }  // namespace v8
411  
412  #endif  // V8_HANDLES_H_
413