• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kReturnRegister2 = {Register::kCode_edi};
20 const Register kJSFunctionRegister = {Register::kCode_edi};
21 const Register kContextRegister = {Register::kCode_esi};
22 const Register kAllocateSizeRegister = {Register::kCode_edx};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
31 
32 // Convenience for platform-independent signatures.  We do not normally
33 // distinguish memory operands from other operands on ia32.
34 typedef Operand MemOperand;
35 
36 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
37 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
38 enum PointersToHereCheck {
39   kPointersToHereMaybeInteresting,
40   kPointersToHereAreAlwaysInteresting
41 };
42 
43 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
44 
45 enum class ReturnAddressState { kOnStack, kNotOnStack };
46 
47 #ifdef DEBUG
48 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
49                 Register reg4 = no_reg, Register reg5 = no_reg,
50                 Register reg6 = no_reg, Register reg7 = no_reg,
51                 Register reg8 = no_reg);
52 #endif
53 
54 // MacroAssembler implements a collection of frequently used macros.
55 class MacroAssembler: public Assembler {
56  public:
57   MacroAssembler(Isolate* isolate, void* buffer, int size,
58                  CodeObjectRequired create_code_object);
59 
60   void Load(Register dst, const Operand& src, Representation r);
61   void Store(Register src, const Operand& dst, Representation r);
62 
63   // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)64   void Set(Register dst, int32_t x) {
65     if (x == 0) {
66       xor_(dst, dst);
67     } else {
68       mov(dst, Immediate(x));
69     }
70   }
Set(const Operand & dst,int32_t x)71   void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
72 
73   // Operations on roots in the root-array.
74   void LoadRoot(Register destination, Heap::RootListIndex index);
75   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
76   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
77   // These methods can only be used with constant roots (i.e. non-writable
78   // and not in new space).
79   void CompareRoot(Register with, Heap::RootListIndex index);
80   void CompareRoot(const Operand& with, Heap::RootListIndex index);
81   void PushRoot(Heap::RootListIndex index);
82 
83   // Compare the object in a register to a value and jump if they are equal.
84   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
85                   Label::Distance if_equal_distance = Label::kFar) {
86     CompareRoot(with, index);
87     j(equal, if_equal, if_equal_distance);
88   }
89   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
90                   Label* if_equal,
91                   Label::Distance if_equal_distance = Label::kFar) {
92     CompareRoot(with, index);
93     j(equal, if_equal, if_equal_distance);
94   }
95 
96   // Compare the object in a register to a value and jump if they are not equal.
97   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
98                      Label* if_not_equal,
99                      Label::Distance if_not_equal_distance = Label::kFar) {
100     CompareRoot(with, index);
101     j(not_equal, if_not_equal, if_not_equal_distance);
102   }
103   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
104                      Label* if_not_equal,
105                      Label::Distance if_not_equal_distance = Label::kFar) {
106     CompareRoot(with, index);
107     j(not_equal, if_not_equal, if_not_equal_distance);
108   }
109 
110   // These functions do not arrange the registers in any particular order so
111   // they are not useful for calls that can cause a GC.  The caller can
112   // exclude up to 3 registers that do not need to be saved and restored.
113   void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
114                        Register exclusion2 = no_reg,
115                        Register exclusion3 = no_reg);
116   void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
117                       Register exclusion2 = no_reg,
118                       Register exclusion3 = no_reg);
119 
120   // ---------------------------------------------------------------------------
121   // GC Support
122   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
123 
124   // Record in the remembered set the fact that we have a pointer to new space
125   // at the address pointed to by the addr register.  Only works if addr is not
126   // in new space.
127   void RememberedSetHelper(Register object,  // Used for debug code.
128                            Register addr, Register scratch,
129                            SaveFPRegsMode save_fp,
130                            RememberedSetFinalAction and_then);
131 
132   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
133                      Label* condition_met,
134                      Label::Distance condition_met_distance = Label::kFar);
135 
136   void CheckPageFlagForMap(
137       Handle<Map> map, int mask, Condition cc, Label* condition_met,
138       Label::Distance condition_met_distance = Label::kFar);
139 
140   // Check if object is in new space.  Jumps if the object is not in new space.
141   // The register scratch can be object itself, but scratch will be clobbered.
142   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
143                            Label::Distance distance = Label::kFar) {
144     InNewSpace(object, scratch, zero, branch, distance);
145   }
146 
147   // Check if object is in new space.  Jumps if the object is in new space.
148   // The register scratch can be object itself, but it will be clobbered.
149   void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
150                         Label::Distance distance = Label::kFar) {
151     InNewSpace(object, scratch, not_zero, branch, distance);
152   }
153 
154   // Check if an object has a given incremental marking color.  Also uses ecx!
155   void HasColor(Register object, Register scratch0, Register scratch1,
156                 Label* has_color, Label::Distance has_color_distance,
157                 int first_bit, int second_bit);
158 
159   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
160                    Label* on_black,
161                    Label::Distance on_black_distance = Label::kFar);
162 
163   // Checks the color of an object.  If the object is white we jump to the
164   // incremental marker.
165   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
166                    Label* value_is_white, Label::Distance distance);
167 
168   // Notify the garbage collector that we wrote a pointer into an object.
169   // |object| is the object being stored into, |value| is the object being
170   // stored.  value and scratch registers are clobbered by the operation.
171   // The offset is the offset from the start of the object, not the offset from
172   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
173   void RecordWriteField(
174       Register object, int offset, Register value, Register scratch,
175       SaveFPRegsMode save_fp,
176       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
177       SmiCheck smi_check = INLINE_SMI_CHECK,
178       PointersToHereCheck pointers_to_here_check_for_value =
179           kPointersToHereMaybeInteresting);
180 
181   // As above, but the offset has the tag presubtracted.  For use with
182   // Operand(reg, off).
183   void RecordWriteContextSlot(
184       Register context, int offset, Register value, Register scratch,
185       SaveFPRegsMode save_fp,
186       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
187       SmiCheck smi_check = INLINE_SMI_CHECK,
188       PointersToHereCheck pointers_to_here_check_for_value =
189           kPointersToHereMaybeInteresting) {
190     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
191                      remembered_set_action, smi_check,
192                      pointers_to_here_check_for_value);
193   }
194 
195   // Notify the garbage collector that we wrote a pointer into a fixed array.
196   // |array| is the array being stored into, |value| is the
197   // object being stored.  |index| is the array index represented as a
198   // Smi. All registers are clobbered by the operation RecordWriteArray
199   // filters out smis so it does not update the write barrier if the
200   // value is a smi.
201   void RecordWriteArray(
202       Register array, Register value, Register index, SaveFPRegsMode save_fp,
203       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
204       SmiCheck smi_check = INLINE_SMI_CHECK,
205       PointersToHereCheck pointers_to_here_check_for_value =
206           kPointersToHereMaybeInteresting);
207 
208   // For page containing |object| mark region covering |address|
209   // dirty. |object| is the object being stored into, |value| is the
210   // object being stored. The address and value registers are clobbered by the
211   // operation. RecordWrite filters out smis so it does not update the
212   // write barrier if the value is a smi.
213   void RecordWrite(
214       Register object, Register address, Register value, SaveFPRegsMode save_fp,
215       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
216       SmiCheck smi_check = INLINE_SMI_CHECK,
217       PointersToHereCheck pointers_to_here_check_for_value =
218           kPointersToHereMaybeInteresting);
219 
220   // Notify the garbage collector that we wrote a code entry into a
221   // JSFunction. Only scratch is clobbered by the operation.
222   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
223                                  Register scratch);
224 
225   // For page containing |object| mark the region covering the object's map
226   // dirty. |object| is the object being stored into, |map| is the Map object
227   // that was stored.
228   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
229                          Register scratch2, SaveFPRegsMode save_fp);
230 
231   // ---------------------------------------------------------------------------
232   // Debugger Support
233 
234   void DebugBreak();
235 
236   // Generates function and stub prologue code.
237   void StubPrologue(StackFrame::Type type);
238   void Prologue(bool code_pre_aging);
239 
240   // Enter specific kind of exit frame. Expects the number of
241   // arguments in register eax and sets up the number of arguments in
242   // register edi and the pointer to the first argument in register
243   // esi.
244   void EnterExitFrame(int argc, bool save_doubles);
245 
246   void EnterApiExitFrame(int argc);
247 
248   // Leave the current exit frame. Expects the return value in
249   // register eax:edx (untouched) and the pointer to the first
250   // argument in register esi (if pop_arguments == true).
251   void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
252 
253   // Leave the current exit frame. Expects the return value in
254   // register eax (untouched).
255   void LeaveApiExitFrame(bool restore_context);
256 
257   // Find the function context up the context chain.
258   void LoadContext(Register dst, int context_chain_length);
259 
260   // Load the global proxy from the current context.
261   void LoadGlobalProxy(Register dst);
262 
263   // Conditionally load the cached Array transitioned map of type
264   // transitioned_kind from the native context if the map in register
265   // map_in_out is the cached Array map in the native context of
266   // expected_kind.
267   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
268                                            ElementsKind transitioned_kind,
269                                            Register map_in_out,
270                                            Register scratch,
271                                            Label* no_map_match);
272 
273   // Load the global function with the given index.
274   void LoadGlobalFunction(int index, Register function);
275 
276   // Load the initial map from the global function. The registers
277   // function and map can be the same.
278   void LoadGlobalFunctionInitialMap(Register function, Register map);
279 
280   // Push and pop the registers that can hold pointers.
PushSafepointRegisters()281   void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()282   void PopSafepointRegisters() { popad(); }
283   // Store the value in register/immediate src in the safepoint
284   // register stack slot for register dst.
285   void StoreToSafepointRegisterSlot(Register dst, Register src);
286   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
287   void LoadFromSafepointRegisterSlot(Register dst, Register src);
288 
289   // Nop, because ia32 does not have a root register.
InitializeRootRegister()290   void InitializeRootRegister() {}
291 
292   void LoadHeapObject(Register result, Handle<HeapObject> object);
293   void CmpHeapObject(Register reg, Handle<HeapObject> object);
294   void PushHeapObject(Handle<HeapObject> object);
295 
LoadObject(Register result,Handle<Object> object)296   void LoadObject(Register result, Handle<Object> object) {
297     AllowDeferredHandleDereference heap_object_check;
298     if (object->IsHeapObject()) {
299       LoadHeapObject(result, Handle<HeapObject>::cast(object));
300     } else {
301       Move(result, Immediate(object));
302     }
303   }
304 
CmpObject(Register reg,Handle<Object> object)305   void CmpObject(Register reg, Handle<Object> object) {
306     AllowDeferredHandleDereference heap_object_check;
307     if (object->IsHeapObject()) {
308       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
309     } else {
310       cmp(reg, Immediate(object));
311     }
312   }
313 
314   // Compare the given value and the value of weak cell.
315   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
316 
317   void GetWeakValue(Register value, Handle<WeakCell> cell);
318 
319   // Load the value of the weak cell in the value register. Branch to the given
320   // miss label if the weak cell was cleared.
321   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
322 
323   // ---------------------------------------------------------------------------
324   // JavaScript invokes
325 
326   // Removes current frame and its arguments from the stack preserving
327   // the arguments and a return address pushed to the stack for the next call.
328   // |ra_state| defines whether return address is already pushed to stack or
329   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
330   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
331   // is trashed. |number_of_temp_values_after_return_address| specifies
332   // the number of words pushed to the stack after the return address. This is
333   // to allow "allocation" of scratch registers that this function requires
334   // by saving their values on the stack.
335   void PrepareForTailCall(const ParameterCount& callee_args_count,
336                           Register caller_args_count_reg, Register scratch0,
337                           Register scratch1, ReturnAddressState ra_state,
338                           int number_of_temp_values_after_return_address);
339 
340   // Invoke the JavaScript function code by either calling or jumping.
341 
342   void InvokeFunctionCode(Register function, Register new_target,
343                           const ParameterCount& expected,
344                           const ParameterCount& actual, InvokeFlag flag,
345                           const CallWrapper& call_wrapper);
346 
347   void FloodFunctionIfStepping(Register fun, Register new_target,
348                                const ParameterCount& expected,
349                                const ParameterCount& actual);
350 
351   // Invoke the JavaScript function in the given register. Changes the
352   // current context to the context in the function before invoking.
353   void InvokeFunction(Register function, Register new_target,
354                       const ParameterCount& actual, InvokeFlag flag,
355                       const CallWrapper& call_wrapper);
356 
357   void InvokeFunction(Register function, const ParameterCount& expected,
358                       const ParameterCount& actual, InvokeFlag flag,
359                       const CallWrapper& call_wrapper);
360 
361   void InvokeFunction(Handle<JSFunction> function,
362                       const ParameterCount& expected,
363                       const ParameterCount& actual, InvokeFlag flag,
364                       const CallWrapper& call_wrapper);
365 
366   // Expression support
367   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
368   // hinders register renaming and makes dependence chains longer. So we use
369   // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)370   void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
371   void Cvtsi2sd(XMMRegister dst, const Operand& src);
372 
373   void Cvtui2ss(XMMRegister dst, Register src, Register tmp);
374 
375   void ShlPair(Register high, Register low, uint8_t imm8);
376   void ShlPair_cl(Register high, Register low);
377   void ShrPair(Register high, Register low, uint8_t imm8);
378   void ShrPair_cl(Register high, Register src);
379   void SarPair(Register high, Register low, uint8_t imm8);
380   void SarPair_cl(Register high, Register low);
381 
382   // Support for constant splitting.
383   bool IsUnsafeImmediate(const Immediate& x);
384   void SafeMove(Register dst, const Immediate& x);
385   void SafePush(const Immediate& x);
386 
387   // Compare object type for heap object.
388   // Incoming register is heap_object and outgoing register is map.
389   void CmpObjectType(Register heap_object, InstanceType type, Register map);
390 
391   // Compare instance type for map.
392   void CmpInstanceType(Register map, InstanceType type);
393 
394   // Check if a map for a JSObject indicates that the object has fast elements.
395   // Jump to the specified label if it does not.
396   void CheckFastElements(Register map, Label* fail,
397                          Label::Distance distance = Label::kFar);
398 
399   // Check if a map for a JSObject indicates that the object can have both smi
400   // and HeapObject elements.  Jump to the specified label if it does not.
401   void CheckFastObjectElements(Register map, Label* fail,
402                                Label::Distance distance = Label::kFar);
403 
404   // Check if a map for a JSObject indicates that the object has fast smi only
405   // elements.  Jump to the specified label if it does not.
406   void CheckFastSmiElements(Register map, Label* fail,
407                             Label::Distance distance = Label::kFar);
408 
409   // Check to see if maybe_number can be stored as a double in
410   // FastDoubleElements. If it can, store it at the index specified by key in
411   // the FastDoubleElements array elements, otherwise jump to fail.
412   void StoreNumberToDoubleElements(Register maybe_number, Register elements,
413                                    Register key, Register scratch1,
414                                    XMMRegister scratch2, Label* fail,
415                                    int offset = 0);
416 
417   // Compare an object's map with the specified map.
418   void CompareMap(Register obj, Handle<Map> map);
419 
420   // Check if the map of an object is equal to a specified map and branch to
421   // label if not. Skip the smi check if not required (object is known to be a
422   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
423   // against maps that are ElementsKind transition maps of the specified map.
424   void CheckMap(Register obj, Handle<Map> map, Label* fail,
425                 SmiCheckType smi_check_type);
426 
427   // Check if the map of an object is equal to a specified weak map and branch
428   // to a specified target if equal. Skip the smi check if not required
429   // (object is known to be a heap object)
430   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
431                        Handle<WeakCell> cell, Handle<Code> success,
432                        SmiCheckType smi_check_type);
433 
434   // Check if the object in register heap_object is a string. Afterwards the
435   // register map contains the object map and the register instance_type
436   // contains the instance_type. The registers map and instance_type can be the
437   // same in which case it contains the instance type afterwards. Either of the
438   // registers map and instance_type can be the same as heap_object.
439   Condition IsObjectStringType(Register heap_object, Register map,
440                                Register instance_type);
441 
442   // Check if the object in register heap_object is a name. Afterwards the
443   // register map contains the object map and the register instance_type
444   // contains the instance_type. The registers map and instance_type can be the
445   // same in which case it contains the instance type afterwards. Either of the
446   // registers map and instance_type can be the same as heap_object.
447   Condition IsObjectNameType(Register heap_object, Register map,
448                              Register instance_type);
449 
450   // FCmp is similar to integer cmp, but requires unsigned
451   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
452   void FCmp();
453 
454   void ClampUint8(Register reg);
455 
456   void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
457                           Register result_reg);
458 
459   void SlowTruncateToI(Register result_reg, Register input_reg,
460       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
461 
462   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
463   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
464 
465   void DoubleToI(Register result_reg, XMMRegister input_reg,
466                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
467                  Label* lost_precision, Label* is_nan, Label* minus_zero,
468                  Label::Distance dst = Label::kFar);
469 
470   // Smi tagging support.
SmiTag(Register reg)471   void SmiTag(Register reg) {
472     STATIC_ASSERT(kSmiTag == 0);
473     STATIC_ASSERT(kSmiTagSize == 1);
474     add(reg, reg);
475   }
SmiUntag(Register reg)476   void SmiUntag(Register reg) {
477     sar(reg, kSmiTagSize);
478   }
479 
480   // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)481   void SmiUntag(Register reg, Label* is_smi) {
482     STATIC_ASSERT(kSmiTagSize == 1);
483     sar(reg, kSmiTagSize);
484     STATIC_ASSERT(kSmiTag == 0);
485     j(not_carry, is_smi);
486   }
487 
LoadUint32(XMMRegister dst,Register src)488   void LoadUint32(XMMRegister dst, Register src) {
489     LoadUint32(dst, Operand(src));
490   }
491   void LoadUint32(XMMRegister dst, const Operand& src);
492 
493   // Jump the register contains a smi.
494   inline void JumpIfSmi(Register value, Label* smi_label,
495                         Label::Distance distance = Label::kFar) {
496     test(value, Immediate(kSmiTagMask));
497     j(zero, smi_label, distance);
498   }
499   // Jump if the operand is a smi.
500   inline void JumpIfSmi(Operand value, Label* smi_label,
501                         Label::Distance distance = Label::kFar) {
502     test(value, Immediate(kSmiTagMask));
503     j(zero, smi_label, distance);
504   }
505   // Jump if register contain a non-smi.
506   inline void JumpIfNotSmi(Register value, Label* not_smi_label,
507                            Label::Distance distance = Label::kFar) {
508     test(value, Immediate(kSmiTagMask));
509     j(not_zero, not_smi_label, distance);
510   }
511 
512   // Jump if the value cannot be represented by a smi.
513   inline void JumpIfNotValidSmiValue(Register value, Register scratch,
514                                      Label* on_invalid,
515                                      Label::Distance distance = Label::kFar) {
516     mov(scratch, value);
517     add(scratch, Immediate(0x40000000U));
518     j(sign, on_invalid, distance);
519   }
520 
521   // Jump if the unsigned integer value cannot be represented by a smi.
522   inline void JumpIfUIntNotValidSmiValue(
523       Register value, Label* on_invalid,
524       Label::Distance distance = Label::kFar) {
525     cmp(value, Immediate(0x40000000U));
526     j(above_equal, on_invalid, distance);
527   }
528 
529   void LoadInstanceDescriptors(Register map, Register descriptors);
530   void EnumLength(Register dst, Register map);
531   void NumberOfOwnDescriptors(Register dst, Register map);
532   void LoadAccessor(Register dst, Register holder, int accessor_index,
533                     AccessorComponent accessor);
534 
535   template<typename Field>
DecodeField(Register reg)536   void DecodeField(Register reg) {
537     static const int shift = Field::kShift;
538     static const int mask = Field::kMask >> Field::kShift;
539     if (shift != 0) {
540       sar(reg, shift);
541     }
542     and_(reg, Immediate(mask));
543   }
544 
545   template<typename Field>
DecodeFieldToSmi(Register reg)546   void DecodeFieldToSmi(Register reg) {
547     static const int shift = Field::kShift;
548     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
549     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
550     STATIC_ASSERT(kSmiTag == 0);
551     if (shift < kSmiTagSize) {
552       shl(reg, kSmiTagSize - shift);
553     } else if (shift > kSmiTagSize) {
554       sar(reg, shift - kSmiTagSize);
555     }
556     and_(reg, Immediate(mask));
557   }
558 
559   void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
560 
561   // Abort execution if argument is not a number, enabled via --debug-code.
562   void AssertNumber(Register object);
563   void AssertNotNumber(Register object);
564 
565   // Abort execution if argument is not a smi, enabled via --debug-code.
566   void AssertSmi(Register object);
567 
568   // Abort execution if argument is a smi, enabled via --debug-code.
569   void AssertNotSmi(Register object);
570 
571   // Abort execution if argument is not a string, enabled via --debug-code.
572   void AssertString(Register object);
573 
574   // Abort execution if argument is not a name, enabled via --debug-code.
575   void AssertName(Register object);
576 
577   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
578   void AssertFunction(Register object);
579 
580   // Abort execution if argument is not a JSBoundFunction,
581   // enabled via --debug-code.
582   void AssertBoundFunction(Register object);
583 
584   // Abort execution if argument is not a JSGeneratorObject,
585   // enabled via --debug-code.
586   void AssertGeneratorObject(Register object);
587 
588   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
589   void AssertReceiver(Register object);
590 
591   // Abort execution if argument is not undefined or an AllocationSite, enabled
592   // via --debug-code.
593   void AssertUndefinedOrAllocationSite(Register object);
594 
595   // ---------------------------------------------------------------------------
596   // Exception handling
597 
598   // Push a new stack handler and link it into stack handler chain.
599   void PushStackHandler();
600 
601   // Unlink the stack handler on top of the stack from the stack handler chain.
602   void PopStackHandler();
603 
604   // ---------------------------------------------------------------------------
605   // Inline caching support
606 
607   // Generate code for checking access rights - used for security checks
608   // on access to global objects across environments. The holder register
609   // is left untouched, but the scratch register is clobbered.
610   void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
611                               Register scratch2, Label* miss);
612 
613   void GetNumberHash(Register r0, Register scratch);
614 
615   void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
616                                 Register r0, Register r1, Register r2,
617                                 Register result);
618 
619   // ---------------------------------------------------------------------------
620   // Allocation support
621 
622   // Allocate an object in new space or old space. If the given space
623   // is exhausted control continues at the gc_required label. The allocated
624   // object is returned in result and end of the new object is returned in
625   // result_end. The register scratch can be passed as no_reg in which case
626   // an additional object reference will be added to the reloc info. The
627   // returned pointers in result and result_end have not yet been tagged as
628   // heap objects. If result_contains_top_on_entry is true the content of
629   // result is known to be the allocation top on entry (could be result_end
630   // from a previous call). If result_contains_top_on_entry is true scratch
631   // should be no_reg as it is never used.
632   void Allocate(int object_size, Register result, Register result_end,
633                 Register scratch, Label* gc_required, AllocationFlags flags);
634 
635   void Allocate(int header_size, ScaleFactor element_size,
636                 Register element_count, RegisterValueType element_count_type,
637                 Register result, Register result_end, Register scratch,
638                 Label* gc_required, AllocationFlags flags);
639 
640   void Allocate(Register object_size, Register result, Register result_end,
641                 Register scratch, Label* gc_required, AllocationFlags flags);
642 
643   // FastAllocate is right now only used for folded allocations. It just
644   // increments the top pointer without checking against limit. This can only
645   // be done if it was proved earlier that the allocation will succeed.
646   void FastAllocate(int object_size, Register result, Register result_end,
647                     AllocationFlags flags);
648   void FastAllocate(Register object_size, Register result, Register result_end,
649                     AllocationFlags flags);
650 
651   // Allocate a heap number in new space with undefined value. The
652   // register scratch2 can be passed as no_reg; the others must be
653   // valid registers. Returns tagged pointer in result register, or
654   // jumps to gc_required if new space is full.
655   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
656                           Label* gc_required, MutableMode mode = IMMUTABLE);
657 
658   // Allocate a sequential string. All the header fields of the string object
659   // are initialized.
660   void AllocateTwoByteString(Register result, Register length,
661                              Register scratch1, Register scratch2,
662                              Register scratch3, Label* gc_required);
663   void AllocateOneByteString(Register result, Register length,
664                              Register scratch1, Register scratch2,
665                              Register scratch3, Label* gc_required);
666   void AllocateOneByteString(Register result, int length, Register scratch1,
667                              Register scratch2, Label* gc_required);
668 
669   // Allocate a raw cons string object. Only the map field of the result is
670   // initialized.
671   void AllocateTwoByteConsString(Register result, Register scratch1,
672                                  Register scratch2, Label* gc_required);
673   void AllocateOneByteConsString(Register result, Register scratch1,
674                                  Register scratch2, Label* gc_required);
675 
676   // Allocate a raw sliced string object. Only the map field of the result is
677   // initialized.
678   void AllocateTwoByteSlicedString(Register result, Register scratch1,
679                                    Register scratch2, Label* gc_required);
680   void AllocateOneByteSlicedString(Register result, Register scratch1,
681                                    Register scratch2, Label* gc_required);
682 
683   // Allocate and initialize a JSValue wrapper with the specified {constructor}
684   // and {value}.
685   void AllocateJSValue(Register result, Register constructor, Register value,
686                        Register scratch, Label* gc_required);
687 
688   // Copy memory, byte-by-byte, from source to destination.  Not optimized for
689   // long or aligned copies.
690   // The contents of index and scratch are destroyed.
691   void CopyBytes(Register source, Register destination, Register length,
692                  Register scratch);
693 
694   // Initialize fields with filler values.  Fields starting at |current_address|
695   // not including |end_address| are overwritten with the value in |filler|.  At
696   // the end the loop, |current_address| takes the value of |end_address|.
697   void InitializeFieldsWithFiller(Register current_address,
698                                   Register end_address, Register filler);
699 
700   // ---------------------------------------------------------------------------
701   // Support functions.
702 
703   // Check a boolean-bit of a Smi field.
704   void BooleanBitTest(Register object, int field_offset, int bit_index);
705 
706   // Check if result is zero and op is negative.
707   void NegativeZeroTest(Register result, Register op, Label* then_label);
708 
709   // Check if result is zero and any of op1 and op2 are negative.
710   // Register scratch is destroyed, and it must be different from op2.
711   void NegativeZeroTest(Register result, Register op1, Register op2,
712                         Register scratch, Label* then_label);
713 
714   // Machine code version of Map::GetConstructor().
715   // |temp| holds |result|'s map when done.
716   void GetMapConstructor(Register result, Register map, Register temp);
717 
718   // Try to get function prototype of a function and puts the value in
719   // the result register. Checks that the function really is a
720   // function and jumps to the miss label if the fast checks fail. The
721   // function register will be untouched; the other registers may be
722   // clobbered.
723   void TryGetFunctionPrototype(Register function, Register result,
724                                Register scratch, Label* miss);
725 
726   // Picks out an array index from the hash field.
727   // Register use:
728   //   hash - holds the index's hash. Clobbered.
729   //   index - holds the overwritten index on exit.
730   void IndexFromHash(Register hash, Register index);
731 
732   // ---------------------------------------------------------------------------
733   // Runtime calls
734 
735   // Call a code stub.  Generate the code if necessary.
736   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
737 
738   // Tail call a code stub (jump).  Generate the code if necessary.
739   void TailCallStub(CodeStub* stub);
740 
741   // Return from a code stub after popping its arguments.
742   void StubReturn(int argc);
743 
744   // Call a runtime routine.
745   void CallRuntime(const Runtime::Function* f, int num_arguments,
746                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)747   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
748     const Runtime::Function* function = Runtime::FunctionForId(fid);
749     CallRuntime(function, function->nargs, kSaveFPRegs);
750   }
751 
752   // Convenience function: Same as above, but takes the fid instead.
753   void CallRuntime(Runtime::FunctionId fid,
754                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
755     const Runtime::Function* function = Runtime::FunctionForId(fid);
756     CallRuntime(function, function->nargs, save_doubles);
757   }
758 
759   // Convenience function: Same as above, but takes the fid instead.
760   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
761                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
762     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
763   }
764 
765   // Convenience function: call an external reference.
766   void CallExternalReference(ExternalReference ref, int num_arguments);
767 
768   // Convenience function: tail call a runtime routine (jump).
769   void TailCallRuntime(Runtime::FunctionId fid);
770 
771   // Before calling a C-function from generated code, align arguments on stack.
772   // After aligning the frame, arguments must be stored in esp[0], esp[4],
773   // etc., not pushed. The argument count assumes all arguments are word sized.
774   // Some compilers/platforms require the stack to be aligned when calling
775   // C++ code.
776   // Needs a scratch register to do some arithmetic. This register will be
777   // trashed.
778   void PrepareCallCFunction(int num_arguments, Register scratch);
779 
780   // Calls a C function and cleans up the space for arguments allocated
781   // by PrepareCallCFunction. The called function is not allowed to trigger a
782   // garbage collection, since that might move the code and invalidate the
783   // return address (unless this is somehow accounted for by the called
784   // function).
785   void CallCFunction(ExternalReference function, int num_arguments);
786   void CallCFunction(Register function, int num_arguments);
787 
788   // Jump to a runtime routine.
789   void JumpToExternalReference(const ExternalReference& ext);
790 
791   // ---------------------------------------------------------------------------
792   // Utilities
793 
794   void Ret();
795 
796   // Return and drop arguments from stack, where the number of arguments
797   // may be bigger than 2^16 - 1.  Requires a scratch register.
798   void Ret(int bytes_dropped, Register scratch);
799 
800   // Emit code to discard a non-negative number of pointer-sized elements
801   // from the stack, clobbering only the esp register.
802   void Drop(int element_count);
803 
Call(Label * target)804   void Call(Label* target) { call(target); }
Call(Handle<Code> target,RelocInfo::Mode rmode)805   void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
Jump(Handle<Code> target,RelocInfo::Mode rmode)806   void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)807   void Push(Register src) { push(src); }
Push(const Operand & src)808   void Push(const Operand& src) { push(src); }
Push(Immediate value)809   void Push(Immediate value) { push(value); }
Pop(Register dst)810   void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)811   void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)812   void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)813   void PopReturnAddressTo(Register dst) { pop(dst); }
814 
815   // Non-SSE2 instructions.
816   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
Pinsrd(XMMRegister dst,Register src,int8_t imm8)817   void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
818     Pinsrd(dst, Operand(src), imm8);
819   }
820   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
821 
Lzcnt(Register dst,Register src)822   void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
823   void Lzcnt(Register dst, const Operand& src);
824 
Tzcnt(Register dst,Register src)825   void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
826   void Tzcnt(Register dst, const Operand& src);
827 
Popcnt(Register dst,Register src)828   void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
829   void Popcnt(Register dst, const Operand& src);
830 
831   // Move if the registers are not identical.
832   void Move(Register target, Register source);
833 
834   // Move a constant into a destination using the most efficient encoding.
835   void Move(Register dst, const Immediate& x);
836   void Move(const Operand& dst, const Immediate& x);
837 
838   // Move an immediate into an XMM register.
839   void Move(XMMRegister dst, uint32_t src);
840   void Move(XMMRegister dst, uint64_t src);
Move(XMMRegister dst,float src)841   void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
Move(XMMRegister dst,double src)842   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
843 
Move(Register dst,Handle<Object> handle)844   void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
Move(Register dst,Smi * source)845   void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
846 
847   // Push a handle value.
Push(Handle<Object> handle)848   void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)849   void Push(Smi* smi) { Push(Immediate(smi)); }
850 
CodeObject()851   Handle<Object> CodeObject() {
852     DCHECK(!code_object_.is_null());
853     return code_object_;
854   }
855 
856   // Emit code for a truncating division by a constant. The dividend register is
857   // unchanged, the result is in edx, and eax gets clobbered.
858   void TruncatingDiv(Register dividend, int32_t divisor);
859 
860   // ---------------------------------------------------------------------------
861   // StatsCounter support
862 
863   void SetCounter(StatsCounter* counter, int value);
864   void IncrementCounter(StatsCounter* counter, int value);
865   void DecrementCounter(StatsCounter* counter, int value);
866   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
867   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
868 
869   // ---------------------------------------------------------------------------
870   // Debugging
871 
872   // Calls Abort(msg) if the condition cc is not satisfied.
873   // Use --debug_code to enable.
874   void Assert(Condition cc, BailoutReason reason);
875 
876   void AssertFastElements(Register elements);
877 
878   // Like Assert(), but always enabled.
879   void Check(Condition cc, BailoutReason reason);
880 
881   // Print a message to stdout and abort execution.
882   void Abort(BailoutReason reason);
883 
884   // Check that the stack is aligned.
885   void CheckStackAlignment();
886 
887   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)888   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()889   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)890   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()891   bool has_frame() { return has_frame_; }
892   inline bool AllowThisStubCall(CodeStub* stub);
893 
894   // ---------------------------------------------------------------------------
895   // String utilities.
896 
897   // Check whether the instance type represents a flat one-byte string. Jump to
898   // the label if not. If the instance type can be scratched specify same
899   // register for both instance type and scratch.
900   void JumpIfInstanceTypeIsNotSequentialOneByte(
901       Register instance_type, Register scratch,
902       Label* on_not_flat_one_byte_string);
903 
904   // Checks if both objects are sequential one-byte strings, and jumps to label
905   // if either is not.
906   void JumpIfNotBothSequentialOneByteStrings(
907       Register object1, Register object2, Register scratch1, Register scratch2,
908       Label* on_not_flat_one_byte_strings);
909 
910   // Checks if the given register or operand is a unique name
911   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
912                                        Label::Distance distance = Label::kFar) {
913     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
914   }
915 
916   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
917                                        Label::Distance distance = Label::kFar);
918 
919   void EmitSeqStringSetCharCheck(Register string, Register index,
920                                  Register value, uint32_t encoding_mask);
921 
SafepointRegisterStackIndex(Register reg)922   static int SafepointRegisterStackIndex(Register reg) {
923     return SafepointRegisterStackIndex(reg.code());
924   }
925 
926   // Load the type feedback vector from a JavaScript frame.
927   void EmitLoadTypeFeedbackVector(Register vector);
928 
929   // Activation support.
930   void EnterFrame(StackFrame::Type type);
931   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
932   void LeaveFrame(StackFrame::Type type);
933 
934   // Expects object in eax and returns map with validated enum cache
935   // in eax.  Assumes that any other register can be used as a scratch.
936   void CheckEnumCache(Label* call_runtime);
937 
938   // AllocationMemento support. Arrays may have an associated
939   // AllocationMemento object that can be checked for in order to pretransition
940   // to another type.
941   // On entry, receiver_reg should point to the array object.
942   // scratch_reg gets clobbered.
943   // If allocation info is present, conditional code is set to equal.
944   void TestJSArrayForAllocationMemento(Register receiver_reg,
945                                        Register scratch_reg,
946                                        Label* no_memento_found);
947 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)948   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
949                                          Register scratch_reg,
950                                          Label* memento_found) {
951     Label no_memento_found;
952     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
953                                     &no_memento_found);
954     j(equal, memento_found);
955     bind(&no_memento_found);
956   }
957 
958   // Jumps to found label if a prototype map has dictionary elements.
959   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
960                                         Register scratch1, Label* found);
961 
962  private:
963   bool generating_stub_;
964   bool has_frame_;
965   // This handle will be patched with the code object on installation.
966   Handle<Object> code_object_;
967 
968   // Helper functions for generating invokes.
969   void InvokePrologue(const ParameterCount& expected,
970                       const ParameterCount& actual, Label* done,
971                       bool* definitely_mismatches, InvokeFlag flag,
972                       Label::Distance done_distance,
973                       const CallWrapper& call_wrapper);
974 
975   void EnterExitFramePrologue();
976   void EnterExitFrameEpilogue(int argc, bool save_doubles);
977 
978   void LeaveExitFrameEpilogue(bool restore_context);
979 
980   // Allocation support helpers.
981   void LoadAllocationTopHelper(Register result, Register scratch,
982                                AllocationFlags flags);
983 
984   void UpdateAllocationTopHelper(Register result_end, Register scratch,
985                                  AllocationFlags flags);
986 
987   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
988   void InNewSpace(Register object, Register scratch, Condition cc,
989                   Label* condition_met,
990                   Label::Distance condition_met_distance = Label::kFar);
991 
992   // Helper for finding the mark bits for an address.  Afterwards, the
993   // bitmap register points at the word with the mark bits and the mask
994   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
995   // unchanged.
996   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
997                           Register mask_reg);
998 
999   // Compute memory operands for safepoint stack slots.
1000   Operand SafepointRegisterSlot(Register reg);
1001   static int SafepointRegisterStackIndex(int reg_code);
1002 
1003   // Needs access to SafepointRegisterStackIndex for compiled frame
1004   // traversal.
1005   friend class StandardFrame;
1006 };
1007 
1008 // The code patcher is used to patch (typically) small parts of code e.g. for
1009 // debugging and other types of instrumentation. When using the code patcher
1010 // the exact number of bytes specified must be emitted. Is not legal to emit
1011 // relocation information. If any of these constraints are violated it causes
1012 // an assertion.
1013 class CodePatcher {
1014  public:
1015   CodePatcher(Isolate* isolate, byte* address, int size);
1016   ~CodePatcher();
1017 
1018   // Macro assembler to emit code.
masm()1019   MacroAssembler* masm() { return &masm_; }
1020 
1021  private:
1022   byte* address_;        // The address of the code being patched.
1023   int size_;             // Number of bytes of the expected patch size.
1024   MacroAssembler masm_;  // Macro assembler used to generate the code.
1025 };
1026 
1027 // -----------------------------------------------------------------------------
1028 // Static helper functions.
1029 
1030 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1031 inline Operand FieldOperand(Register object, int offset) {
1032   return Operand(object, offset - kHeapObjectTag);
1033 }
1034 
1035 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1036 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
1037                             int offset) {
1038   return Operand(object, index, scale, offset - kHeapObjectTag);
1039 }
1040 
1041 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
1042                                         int additional_offset = 0) {
1043   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1044   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1045 }
1046 
ContextOperand(Register context,int index)1047 inline Operand ContextOperand(Register context, int index) {
1048   return Operand(context, Context::SlotOffset(index));
1049 }
1050 
ContextOperand(Register context,Register index)1051 inline Operand ContextOperand(Register context, Register index) {
1052   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
1053 }
1054 
NativeContextOperand()1055 inline Operand NativeContextOperand() {
1056   return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
1057 }
1058 
1059 #ifdef GENERATED_CODE_COVERAGE
1060 extern void LogGeneratedCodeCoverage(const char* file_line);
1061 #define CODE_COVERAGE_STRINGIFY(x) #x
1062 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1063 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1064 #define ACCESS_MASM(masm) {                                               \
1065     byte* ia32_coverage_function =                                        \
1066         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1067     masm->pushfd();                                                       \
1068     masm->pushad();                                                       \
1069     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
1070     masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
1071     masm->pop(eax);                                                       \
1072     masm->popad();                                                        \
1073     masm->popfd();                                                        \
1074   }                                                                       \
1075   masm->
1076 #else
1077 #define ACCESS_MASM(masm) masm->
1078 #endif
1079 
1080 }  // namespace internal
1081 }  // namespace v8
1082 
1083 #endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1084