• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2012 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #ifndef V8_STUB_CACHE_H_
6  #define V8_STUB_CACHE_H_
7  
8  #include "src/macro-assembler.h"
9  
10  namespace v8 {
11  namespace internal {
12  
13  
14  // The stub cache is used for megamorphic property accesses.
15  // It maps (map, name, type) to property access handlers. The cache does not
16  // need explicit invalidation when a prototype chain is modified, since the
17  // handlers verify the chain.
18  
19  
20  class SCTableReference {
21   public:
address()22    Address address() const { return address_; }
23  
24   private:
SCTableReference(Address address)25    explicit SCTableReference(Address address) : address_(address) {}
26  
27    Address address_;
28  
29    friend class StubCache;
30  };
31  
32  
33  class StubCache {
34   public:
35    struct Entry {
36      Name* key;
37      Code* value;
38      Map* map;
39    };
40  
41    void Initialize();
42    // Access cache for entry hash(name, map).
43    Code* Set(Name* name, Map* map, Code* code);
44    Code* Get(Name* name, Map* map, Code::Flags flags);
45    // Clear the lookup table (@ mark compact collection).
46    void Clear();
47    // Collect all maps that match the name and flags.
48    void CollectMatchingMaps(SmallMapList* types, Handle<Name> name,
49                             Code::Flags flags, Handle<Context> native_context,
50                             Zone* zone);
51    // Generate code for probing the stub cache table.
52    // Arguments extra, extra2 and extra3 may be used to pass additional scratch
53    // registers. Set to no_reg if not needed.
54    // If leave_frame is true, then exit a frame before the tail call.
55    void GenerateProbe(MacroAssembler* masm, Code::Kind ic_kind,
56                       Code::Flags flags, Register receiver, Register name,
57                       Register scratch, Register extra, Register extra2 = no_reg,
58                       Register extra3 = no_reg);
59  
60    enum Table { kPrimary, kSecondary };
61  
key_reference(StubCache::Table table)62    SCTableReference key_reference(StubCache::Table table) {
63      return SCTableReference(
64          reinterpret_cast<Address>(&first_entry(table)->key));
65    }
66  
map_reference(StubCache::Table table)67    SCTableReference map_reference(StubCache::Table table) {
68      return SCTableReference(
69          reinterpret_cast<Address>(&first_entry(table)->map));
70    }
71  
value_reference(StubCache::Table table)72    SCTableReference value_reference(StubCache::Table table) {
73      return SCTableReference(
74          reinterpret_cast<Address>(&first_entry(table)->value));
75    }
76  
first_entry(StubCache::Table table)77    StubCache::Entry* first_entry(StubCache::Table table) {
78      switch (table) {
79        case StubCache::kPrimary:
80          return StubCache::primary_;
81        case StubCache::kSecondary:
82          return StubCache::secondary_;
83      }
84      UNREACHABLE();
85      return NULL;
86    }
87  
isolate()88    Isolate* isolate() { return isolate_; }
89  
90    // Setting the entry size such that the index is shifted by Name::kHashShift
91    // is convenient; shifting down the length field (to extract the hash code)
92    // automatically discards the hash bit field.
93    static const int kCacheIndexShift = Name::kHashShift;
94  
95    static const int kPrimaryTableBits = 11;
96    static const int kPrimaryTableSize = (1 << kPrimaryTableBits);
97    static const int kSecondaryTableBits = 9;
98    static const int kSecondaryTableSize = (1 << kSecondaryTableBits);
99  
PrimaryOffsetForTesting(Name * name,Code::Flags flags,Map * map)100    static int PrimaryOffsetForTesting(Name* name, Code::Flags flags, Map* map) {
101      return PrimaryOffset(name, flags, map);
102    }
103  
SecondaryOffsetForTesting(Name * name,Code::Flags flags,int seed)104    static int SecondaryOffsetForTesting(Name* name, Code::Flags flags,
105                                         int seed) {
106      return SecondaryOffset(name, flags, seed);
107    }
108  
109    // The constructor is made public only for the purposes of testing.
110    explicit StubCache(Isolate* isolate);
111  
112   private:
113    // The stub cache has a primary and secondary level.  The two levels have
114    // different hashing algorithms in order to avoid simultaneous collisions
115    // in both caches.  Unlike a probing strategy (quadratic or otherwise) the
116    // update strategy on updates is fairly clear and simple:  Any existing entry
117    // in the primary cache is moved to the secondary cache, and secondary cache
118    // entries are overwritten.
119  
120    // Hash algorithm for the primary table.  This algorithm is replicated in
121    // assembler for every architecture.  Returns an index into the table that
122    // is scaled by 1 << kCacheIndexShift.
PrimaryOffset(Name * name,Code::Flags flags,Map * map)123    static int PrimaryOffset(Name* name, Code::Flags flags, Map* map) {
124      STATIC_ASSERT(kCacheIndexShift == Name::kHashShift);
125      // Compute the hash of the name (use entire hash field).
126      DCHECK(name->HasHashCode());
127      uint32_t field = name->hash_field();
128      // Using only the low bits in 64-bit mode is unlikely to increase the
129      // risk of collision even if the heap is spread over an area larger than
130      // 4Gb (and not at all if it isn't).
131      uint32_t map_low32bits =
132          static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
133      // We always set the in_loop bit to zero when generating the lookup code
134      // so do it here too so the hash codes match.
135      uint32_t iflags =
136          (static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
137      // Base the offset on a simple combination of name, flags, and map.
138      uint32_t key = (map_low32bits + field) ^ iflags;
139      return key & ((kPrimaryTableSize - 1) << kCacheIndexShift);
140    }
141  
142    // Hash algorithm for the secondary table.  This algorithm is replicated in
143    // assembler for every architecture.  Returns an index into the table that
144    // is scaled by 1 << kCacheIndexShift.
SecondaryOffset(Name * name,Code::Flags flags,int seed)145    static int SecondaryOffset(Name* name, Code::Flags flags, int seed) {
146      // Use the seed from the primary cache in the secondary cache.
147      uint32_t name_low32bits =
148          static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
149      // We always set the in_loop bit to zero when generating the lookup code
150      // so do it here too so the hash codes match.
151      uint32_t iflags =
152          (static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
153      uint32_t key = (seed - name_low32bits) + iflags;
154      return key & ((kSecondaryTableSize - 1) << kCacheIndexShift);
155    }
156  
157    // Compute the entry for a given offset in exactly the same way as
158    // we do in generated code.  We generate an hash code that already
159    // ends in Name::kHashShift 0s.  Then we multiply it so it is a multiple
160    // of sizeof(Entry).  This makes it easier to avoid making mistakes
161    // in the hashed offset computations.
entry(Entry * table,int offset)162    static Entry* entry(Entry* table, int offset) {
163      const int multiplier = sizeof(*table) >> Name::kHashShift;
164      return reinterpret_cast<Entry*>(reinterpret_cast<Address>(table) +
165                                      offset * multiplier);
166    }
167  
168   private:
169    Entry primary_[kPrimaryTableSize];
170    Entry secondary_[kSecondaryTableSize];
171    Isolate* isolate_;
172  
173    friend class Isolate;
174    friend class SCTableReference;
175  
176    DISALLOW_COPY_AND_ASSIGN(StubCache);
177  };
178  }  // namespace internal
179  }  // namespace v8
180  
181  #endif  // V8_STUB_CACHE_H_
182