• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips64/assembler-mips64.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
52 
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55 
Operand(int64_t immediate,RelocInfo::Mode rmode)56 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
57   rm_ = no_reg;
58   imm64_ = immediate;
59   rmode_ = rmode;
60 }
61 
62 
Operand(const ExternalReference & f)63 Operand::Operand(const ExternalReference& f)  {
64   rm_ = no_reg;
65   imm64_ = reinterpret_cast<int64_t>(f.address());
66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67 }
68 
69 
Operand(Smi * value)70 Operand::Operand(Smi* value) {
71   rm_ = no_reg;
72   imm64_ =  reinterpret_cast<intptr_t>(value);
73   rmode_ = RelocInfo::NONE32;
74 }
75 
76 
Operand(Register rm)77 Operand::Operand(Register rm) {
78   rm_ = rm;
79 }
80 
81 
is_reg()82 bool Operand::is_reg() const {
83   return rm_.is_valid();
84 }
85 
86 
87 // -----------------------------------------------------------------------------
88 // RelocInfo.
89 
apply(intptr_t delta)90 void RelocInfo::apply(intptr_t delta) {
91   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
92     // Absolute code pointer inside code object moves with the code object.
93     byte* p = reinterpret_cast<byte*>(pc_);
94     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
95     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
96   }
97 }
98 
99 
target_address()100 Address RelocInfo::target_address() {
101   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
102   return Assembler::target_address_at(pc_, host_);
103 }
104 
target_address_address()105 Address RelocInfo::target_address_address() {
106   DCHECK(IsCodeTarget(rmode_) ||
107          IsRuntimeEntry(rmode_) ||
108          rmode_ == EMBEDDED_OBJECT ||
109          rmode_ == EXTERNAL_REFERENCE);
110   // Read the address of the word containing the target_address in an
111   // instruction stream.
112   // The only architecture-independent user of this function is the serializer.
113   // The serializer uses it to find out how many raw bytes of instruction to
114   // output before the next target.
115   // For an instruction like LUI/ORI where the target bits are mixed into the
116   // instruction bits, the size of the target will be zero, indicating that the
117   // serializer should not step forward in memory after a target is resolved
118   // and written. In this case the target_address_address function should
119   // return the end of the instructions to be patched, allowing the
120   // deserializer to deserialize the instructions as raw bytes and put them in
121   // place, ready to be patched with the target. After jump optimization,
122   // that is the address of the instruction that follows J/JAL/JR/JALR
123   // instruction.
124   // return reinterpret_cast<Address>(
125   //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
126   return reinterpret_cast<Address>(
127     pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
128 }
129 
130 
constant_pool_entry_address()131 Address RelocInfo::constant_pool_entry_address() {
132   UNREACHABLE();
133   return NULL;
134 }
135 
136 
target_address_size()137 int RelocInfo::target_address_size() {
138   return Assembler::kSpecialTargetSize;
139 }
140 
141 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)142 void RelocInfo::set_target_address(Address target,
143                                    WriteBarrierMode write_barrier_mode,
144                                    ICacheFlushMode icache_flush_mode) {
145   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
146   Assembler::set_target_address_at(isolate_, pc_, host_, target,
147                                    icache_flush_mode);
148   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
149       host() != NULL && IsCodeTarget(rmode_)) {
150     Object* target_code = Code::GetCodeFromTargetAddress(target);
151     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
152         host(), this, HeapObject::cast(target_code));
153   }
154 }
155 
target_address_from_return_address(Address pc)156 Address Assembler::target_address_from_return_address(Address pc) {
157   return pc - kCallTargetAddressOffset;
158 }
159 
160 
set_target_internal_reference_encoded_at(Address pc,Address target)161 void Assembler::set_target_internal_reference_encoded_at(Address pc,
162                                                          Address target) {
163   // Encoded internal references are j/jal instructions.
164   Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
165 
166   uint64_t imm28 =
167       (reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask));
168 
169   instr &= ~kImm26Mask;
170   uint64_t imm26 = imm28 >> 2;
171   DCHECK(is_uint26(imm26));
172 
173   instr_at_put(pc, instr | (imm26 & kImm26Mask));
174   // Currently used only by deserializer, and all code will be flushed
175   // after complete deserialization, no need to flush on each reference.
176 }
177 
178 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)179 void Assembler::deserialization_set_target_internal_reference_at(
180     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
181   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
182     DCHECK(IsJ(instr_at(pc)));
183     set_target_internal_reference_encoded_at(pc, target);
184   } else {
185     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
186     Memory::Address_at(pc) = target;
187   }
188 }
189 
190 
target_object()191 Object* RelocInfo::target_object() {
192   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
193   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
194 }
195 
196 
target_object_handle(Assembler * origin)197 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
198   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
199   return Handle<Object>(reinterpret_cast<Object**>(
200       Assembler::target_address_at(pc_, host_)));
201 }
202 
203 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)204 void RelocInfo::set_target_object(Object* target,
205                                   WriteBarrierMode write_barrier_mode,
206                                   ICacheFlushMode icache_flush_mode) {
207   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
208   Assembler::set_target_address_at(isolate_, pc_, host_,
209                                    reinterpret_cast<Address>(target),
210                                    icache_flush_mode);
211   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
212       host() != NULL &&
213       target->IsHeapObject()) {
214     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
215         host(), this, HeapObject::cast(target));
216   }
217 }
218 
219 
target_external_reference()220 Address RelocInfo::target_external_reference() {
221   DCHECK(rmode_ == EXTERNAL_REFERENCE);
222   return Assembler::target_address_at(pc_, host_);
223 }
224 
225 
target_internal_reference()226 Address RelocInfo::target_internal_reference() {
227   if (rmode_ == INTERNAL_REFERENCE) {
228     return Memory::Address_at(pc_);
229   } else {
230     // Encoded internal references are j/jal instructions.
231     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
232     Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
233     instr &= kImm26Mask;
234     uint64_t imm28 = instr << 2;
235     uint64_t segment =
236         (reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask));
237     return reinterpret_cast<Address>(segment | imm28);
238   }
239 }
240 
241 
target_internal_reference_address()242 Address RelocInfo::target_internal_reference_address() {
243   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
244   return reinterpret_cast<Address>(pc_);
245 }
246 
247 
target_runtime_entry(Assembler * origin)248 Address RelocInfo::target_runtime_entry(Assembler* origin) {
249   DCHECK(IsRuntimeEntry(rmode_));
250   return target_address();
251 }
252 
253 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)254 void RelocInfo::set_target_runtime_entry(Address target,
255                                          WriteBarrierMode write_barrier_mode,
256                                          ICacheFlushMode icache_flush_mode) {
257   DCHECK(IsRuntimeEntry(rmode_));
258   if (target_address() != target)
259     set_target_address(target, write_barrier_mode, icache_flush_mode);
260 }
261 
262 
target_cell_handle()263 Handle<Cell> RelocInfo::target_cell_handle() {
264   DCHECK(rmode_ == RelocInfo::CELL);
265   Address address = Memory::Address_at(pc_);
266   return Handle<Cell>(reinterpret_cast<Cell**>(address));
267 }
268 
269 
target_cell()270 Cell* RelocInfo::target_cell() {
271   DCHECK(rmode_ == RelocInfo::CELL);
272   return Cell::FromValueAddress(Memory::Address_at(pc_));
273 }
274 
275 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)276 void RelocInfo::set_target_cell(Cell* cell,
277                                 WriteBarrierMode write_barrier_mode,
278                                 ICacheFlushMode icache_flush_mode) {
279   DCHECK(rmode_ == RelocInfo::CELL);
280   Address address = cell->address() + Cell::kValueOffset;
281   Memory::Address_at(pc_) = address;
282   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
283     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
284                                                                   cell);
285   }
286 }
287 
288 
289 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
290 
291 
code_age_stub_handle(Assembler * origin)292 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
293   UNREACHABLE();  // This should never be reached on Arm.
294   return Handle<Object>();
295 }
296 
297 
code_age_stub()298 Code* RelocInfo::code_age_stub() {
299   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
300   return Code::GetCodeFromTargetAddress(
301       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
302 }
303 
304 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)305 void RelocInfo::set_code_age_stub(Code* stub,
306                                   ICacheFlushMode icache_flush_mode) {
307   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
308   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
309                                    stub->instruction_start());
310 }
311 
312 
debug_call_address()313 Address RelocInfo::debug_call_address() {
314   // The pc_ offset of 0 assumes patched debug break slot or return
315   // sequence.
316   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
317   return Assembler::target_address_at(pc_, host_);
318 }
319 
320 
set_debug_call_address(Address target)321 void RelocInfo::set_debug_call_address(Address target) {
322   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
323   // The pc_ offset of 0 assumes patched debug break slot or return
324   // sequence.
325   Assembler::set_target_address_at(isolate_, pc_, host_, target);
326   if (host() != NULL) {
327     Object* target_code = Code::GetCodeFromTargetAddress(target);
328     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
329         host(), this, HeapObject::cast(target_code));
330   }
331 }
332 
333 
WipeOut()334 void RelocInfo::WipeOut() {
335   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
336          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
337          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
338   if (IsInternalReference(rmode_)) {
339     Memory::Address_at(pc_) = NULL;
340   } else if (IsInternalReferenceEncoded(rmode_)) {
341     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
342   } else {
343     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
344   }
345 }
346 
347 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)348 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
349   RelocInfo::Mode mode = rmode();
350   if (mode == RelocInfo::EMBEDDED_OBJECT) {
351     visitor->VisitEmbeddedPointer(this);
352   } else if (RelocInfo::IsCodeTarget(mode)) {
353     visitor->VisitCodeTarget(this);
354   } else if (mode == RelocInfo::CELL) {
355     visitor->VisitCell(this);
356   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
357     visitor->VisitExternalReference(this);
358   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
359              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
360     visitor->VisitInternalReference(this);
361   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
362     visitor->VisitCodeAgeSequence(this);
363   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
364              IsPatchedDebugBreakSlotSequence()) {
365     visitor->VisitDebugTarget(this);
366   } else if (RelocInfo::IsRuntimeEntry(mode)) {
367     visitor->VisitRuntimeEntry(this);
368   }
369 }
370 
371 
372 template<typename StaticVisitor>
Visit(Heap * heap)373 void RelocInfo::Visit(Heap* heap) {
374   RelocInfo::Mode mode = rmode();
375   if (mode == RelocInfo::EMBEDDED_OBJECT) {
376     StaticVisitor::VisitEmbeddedPointer(heap, this);
377   } else if (RelocInfo::IsCodeTarget(mode)) {
378     StaticVisitor::VisitCodeTarget(heap, this);
379   } else if (mode == RelocInfo::CELL) {
380     StaticVisitor::VisitCell(heap, this);
381   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
382     StaticVisitor::VisitExternalReference(this);
383   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
384              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
385     StaticVisitor::VisitInternalReference(this);
386   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
387     StaticVisitor::VisitCodeAgeSequence(heap, this);
388   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
389              IsPatchedDebugBreakSlotSequence()) {
390     StaticVisitor::VisitDebugTarget(heap, this);
391   } else if (RelocInfo::IsRuntimeEntry(mode)) {
392     StaticVisitor::VisitRuntimeEntry(this);
393   }
394 }
395 
396 
397 // -----------------------------------------------------------------------------
398 // Assembler.
399 
400 
CheckBuffer()401 void Assembler::CheckBuffer() {
402   if (buffer_space() <= kGap) {
403     GrowBuffer();
404   }
405 }
406 
407 
CheckTrampolinePoolQuick(int extra_instructions)408 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
409   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
410     CheckTrampolinePool();
411   }
412 }
413 
414 
CheckForEmitInForbiddenSlot()415 void Assembler::CheckForEmitInForbiddenSlot() {
416   if (!is_buffer_growth_blocked()) {
417     CheckBuffer();
418   }
419   if (IsPrevInstrCompactBranch()) {
420     // Nop instruction to preceed a CTI in forbidden slot:
421     Instr nop = SPECIAL | SLL;
422     *reinterpret_cast<Instr*>(pc_) = nop;
423     pc_ += kInstrSize;
424 
425     ClearCompactBranchState();
426   }
427 }
428 
429 
EmitHelper(Instr x,CompactBranchType is_compact_branch)430 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
431   if (IsPrevInstrCompactBranch()) {
432     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
433       // Nop instruction to preceed a CTI in forbidden slot:
434       Instr nop = SPECIAL | SLL;
435       *reinterpret_cast<Instr*>(pc_) = nop;
436       pc_ += kInstrSize;
437     }
438     ClearCompactBranchState();
439   }
440   *reinterpret_cast<Instr*>(pc_) = x;
441   pc_ += kInstrSize;
442   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
443     EmittedCompactBranchInstruction();
444   }
445   CheckTrampolinePoolQuick();
446 }
447 
448 template <>
449 inline void Assembler::EmitHelper(uint8_t x);
450 
451 template <typename T>
EmitHelper(T x)452 void Assembler::EmitHelper(T x) {
453   *reinterpret_cast<T*>(pc_) = x;
454   pc_ += sizeof(x);
455   CheckTrampolinePoolQuick();
456 }
457 
458 template <>
EmitHelper(uint8_t x)459 void Assembler::EmitHelper(uint8_t x) {
460   *reinterpret_cast<uint8_t*>(pc_) = x;
461   pc_ += sizeof(x);
462   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
463     CheckTrampolinePoolQuick();
464   }
465 }
466 
emit(Instr x,CompactBranchType is_compact_branch)467 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
468   if (!is_buffer_growth_blocked()) {
469     CheckBuffer();
470   }
471   EmitHelper(x, is_compact_branch);
472 }
473 
474 
emit(uint64_t data)475 void Assembler::emit(uint64_t data) {
476   CheckForEmitInForbiddenSlot();
477   EmitHelper(data);
478 }
479 
480 
481 }  // namespace internal
482 }  // namespace v8
483 
484 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
485