• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include <set>
42 
43 #include "src/assembler.h"
44 #include "src/mips64/constants-mips64.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // clang-format off
50 #define GENERAL_REGISTERS(V)                              \
51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52   V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2)  V(t3)  \
53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55 
56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58   V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2) V(s7)
59 
60 #define DOUBLE_REGISTERS(V)                               \
61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65 
66 #define FLOAT_REGISTERS DOUBLE_REGISTERS
67 
68 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
69   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
70   V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
71 // clang-format on
72 
73 // CPU Registers.
74 //
75 // 1) We would prefer to use an enum, but enum values are assignment-
76 // compatible with int, which has caused code-generation bugs.
77 //
78 // 2) We would prefer to use a class instead of a struct but we don't like
79 // the register initialization to depend on the particular initialization
80 // order (which appears to be different on OS X, Linux, and Windows for the
81 // installed versions of C++ we tried). Using a struct permits C-style
82 // "initialization". Also, the Register objects cannot be const as this
83 // forces initialization stubs in MSVC, making us dependent on initialization
84 // order.
85 //
86 // 3) By not using an enum, we are possibly preventing the compiler from
87 // doing certain constant folds, which may significantly reduce the
88 // code generated for some assembly instructions (because they boil down
89 // to a few constants). If this is a problem, we could change the code
90 // such that we use an enum in optimized mode, and the struct in debug
91 // mode. This way we get the compile-time error checking in debug mode
92 // and best performance in optimized code.
93 
94 
95 // -----------------------------------------------------------------------------
96 // Implementation of Register and FPURegister.
97 
98 struct Register {
99   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
100 
101 #if defined(V8_TARGET_LITTLE_ENDIAN)
102   static const int kMantissaOffset = 0;
103   static const int kExponentOffset = 4;
104 #elif defined(V8_TARGET_BIG_ENDIAN)
105   static const int kMantissaOffset = 4;
106   static const int kExponentOffset = 0;
107 #else
108 #error Unknown endianness
109 #endif
110 
111   enum Code {
112 #define REGISTER_CODE(R) kCode_##R,
113     GENERAL_REGISTERS(REGISTER_CODE)
114 #undef REGISTER_CODE
115         kAfterLast,
116     kCode_no_reg = -1
117   };
118 
119   static const int kNumRegisters = Code::kAfterLast;
120 
from_codeRegister121   static Register from_code(int code) {
122     DCHECK(code >= 0);
123     DCHECK(code < kNumRegisters);
124     Register r = { code };
125     return r;
126   }
127 
is_validRegister128   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister129   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister130   int code() const {
131     DCHECK(is_valid());
132     return reg_code;
133   }
bitRegister134   int bit() const {
135     DCHECK(is_valid());
136     return 1 << reg_code;
137   }
138 
139   // Unfortunately we can't make this private in a struct.
140   int reg_code;
141 };
142 
143 // s7: context register
144 // s3: lithium scratch
145 // s4: lithium scratch2
146 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
147 GENERAL_REGISTERS(DECLARE_REGISTER)
148 #undef DECLARE_REGISTER
149 const Register no_reg = {Register::kCode_no_reg};
150 
151 
152 int ToNumber(Register reg);
153 
154 Register ToRegister(int num);
155 
156 static const bool kSimpleFPAliasing = true;
157 
158 // Coprocessor register.
159 struct FPURegister {
160   enum Code {
161 #define REGISTER_CODE(R) kCode_##R,
162     DOUBLE_REGISTERS(REGISTER_CODE)
163 #undef REGISTER_CODE
164         kAfterLast,
165     kCode_no_reg = -1
166   };
167 
168   static const int kMaxNumRegisters = Code::kAfterLast;
169 
170   inline static int NumRegisters();
171 
172   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
173   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
174   // number of Double regs (64-bit regs, or FPU-reg-pairs).
175 
is_validFPURegister176   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isFPURegister177   bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
lowFPURegister178   FPURegister low() const {
179     // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
180     // Find low reg of a Double-reg pair, which is the reg itself.
181     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
182     FPURegister reg;
183     reg.reg_code = reg_code;
184     DCHECK(reg.is_valid());
185     return reg;
186   }
highFPURegister187   FPURegister high() const {
188     // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
189     // Find high reg of a Doubel-reg pair, which is reg + 1.
190     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
191     FPURegister reg;
192     reg.reg_code = reg_code + 1;
193     DCHECK(reg.is_valid());
194     return reg;
195   }
196 
codeFPURegister197   int code() const {
198     DCHECK(is_valid());
199     return reg_code;
200   }
bitFPURegister201   int bit() const {
202     DCHECK(is_valid());
203     return 1 << reg_code;
204   }
205 
from_codeFPURegister206   static FPURegister from_code(int code) {
207     FPURegister r = {code};
208     return r;
209   }
setcodeFPURegister210   void setcode(int f) {
211     reg_code = f;
212     DCHECK(is_valid());
213   }
214   // Unfortunately we can't make this private in a struct.
215   int reg_code;
216 };
217 
218 // A few double registers are reserved: one as a scratch register and one to
219 // hold 0.0.
220 //  f28: 0.0
221 //  f30: scratch register.
222 
223 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
224 // 32-bit registers, f0 through f31. When used as 'double' they are used
225 // in pairs, starting with the even numbered register. So a double operation
226 // on f0 really uses f0 and f1.
227 // (Modern mips hardware also supports 32 64-bit registers, via setting
228 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
229 // but it is not in common use. Someday we will want to support this in v8.)
230 
231 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
232 typedef FPURegister FloatRegister;
233 
234 typedef FPURegister DoubleRegister;
235 
236 // TODO(mips64) Define SIMD registers.
237 typedef FPURegister Simd128Register;
238 
239 const DoubleRegister no_freg = {-1};
240 
241 const DoubleRegister f0 = {0};  // Return value in hard float mode.
242 const DoubleRegister f1 = {1};
243 const DoubleRegister f2 = {2};
244 const DoubleRegister f3 = {3};
245 const DoubleRegister f4 = {4};
246 const DoubleRegister f5 = {5};
247 const DoubleRegister f6 = {6};
248 const DoubleRegister f7 = {7};
249 const DoubleRegister f8 = {8};
250 const DoubleRegister f9 = {9};
251 const DoubleRegister f10 = {10};
252 const DoubleRegister f11 = {11};
253 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
254 const DoubleRegister f13 = {13};
255 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
256 const DoubleRegister f15 = {15};
257 const DoubleRegister f16 = {16};
258 const DoubleRegister f17 = {17};
259 const DoubleRegister f18 = {18};
260 const DoubleRegister f19 = {19};
261 const DoubleRegister f20 = {20};
262 const DoubleRegister f21 = {21};
263 const DoubleRegister f22 = {22};
264 const DoubleRegister f23 = {23};
265 const DoubleRegister f24 = {24};
266 const DoubleRegister f25 = {25};
267 const DoubleRegister f26 = {26};
268 const DoubleRegister f27 = {27};
269 const DoubleRegister f28 = {28};
270 const DoubleRegister f29 = {29};
271 const DoubleRegister f30 = {30};
272 const DoubleRegister f31 = {31};
273 
274 // Register aliases.
275 // cp is assumed to be a callee saved register.
276 // Defined using #define instead of "static const Register&" because Clang
277 // complains otherwise when a compilation unit that includes this header
278 // doesn't use the variables.
279 #define kRootRegister s6
280 #define cp s7
281 #define kLithiumScratchReg s3
282 #define kLithiumScratchReg2 s4
283 #define kLithiumScratchDouble f30
284 #define kDoubleRegZero f28
285 // Used on mips64r6 for compare operations.
286 // We use the last non-callee saved odd register for N64 ABI
287 #define kDoubleCompareReg f23
288 
289 // FPU (coprocessor 1) control registers.
290 // Currently only FCSR (#31) is implemented.
291 struct FPUControlRegister {
is_validFPUControlRegister292   bool is_valid() const { return reg_code == kFCSRRegister; }
isFPUControlRegister293   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
codeFPUControlRegister294   int code() const {
295     DCHECK(is_valid());
296     return reg_code;
297   }
bitFPUControlRegister298   int bit() const {
299     DCHECK(is_valid());
300     return 1 << reg_code;
301   }
setcodeFPUControlRegister302   void setcode(int f) {
303     reg_code = f;
304     DCHECK(is_valid());
305   }
306   // Unfortunately we can't make this private in a struct.
307   int reg_code;
308 };
309 
310 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
311 const FPUControlRegister FCSR = { kFCSRRegister };
312 
313 // -----------------------------------------------------------------------------
314 // Machine instruction Operands.
315 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
316 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
317 // Class Operand represents a shifter operand in data processing instructions.
318 class Operand BASE_EMBEDDED {
319  public:
320   // Immediate.
321   INLINE(explicit Operand(int64_t immediate,
322          RelocInfo::Mode rmode = RelocInfo::NONE64));
323   INLINE(explicit Operand(const ExternalReference& f));
324   INLINE(explicit Operand(const char* s));
325   INLINE(explicit Operand(Object** opp));
326   INLINE(explicit Operand(Context** cpp));
327   explicit Operand(Handle<Object> handle);
328   INLINE(explicit Operand(Smi* value));
329 
330   // Register.
331   INLINE(explicit Operand(Register rm));
332 
333   // Return true if this is a register operand.
334   INLINE(bool is_reg() const);
335 
immediate()336   inline int64_t immediate() const {
337     DCHECK(!is_reg());
338     return imm64_;
339   }
340 
rm()341   Register rm() const { return rm_; }
342 
343  private:
344   Register rm_;
345   int64_t imm64_;  // Valid if rm_ == no_reg.
346   RelocInfo::Mode rmode_;
347 
348   friend class Assembler;
349   friend class MacroAssembler;
350 };
351 
352 
353 // On MIPS we have only one adressing mode with base_reg + offset.
354 // Class MemOperand represents a memory operand in load and store instructions.
355 class MemOperand : public Operand {
356  public:
357   // Immediate value attached to offset.
358   enum OffsetAddend {
359     offset_minus_one = -1,
360     offset_zero = 0
361   };
362 
363   explicit MemOperand(Register rn, int32_t offset = 0);
364   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
365                       OffsetAddend offset_addend = offset_zero);
offset()366   int32_t offset() const { return offset_; }
367 
OffsetIsInt16Encodable()368   bool OffsetIsInt16Encodable() const {
369     return is_int16(offset_);
370   }
371 
372  private:
373   int32_t offset_;
374 
375   friend class Assembler;
376 };
377 
378 
379 class Assembler : public AssemblerBase {
380  public:
381   // Create an assembler. Instructions and relocation information are emitted
382   // into a buffer, with the instructions starting from the beginning and the
383   // relocation information starting from the end of the buffer. See CodeDesc
384   // for a detailed comment on the layout (globals.h).
385   //
386   // If the provided buffer is NULL, the assembler allocates and grows its own
387   // buffer, and buffer_size determines the initial buffer size. The buffer is
388   // owned by the assembler and deallocated upon destruction of the assembler.
389   //
390   // If the provided buffer is not NULL, the assembler uses the provided buffer
391   // for code generation and assumes its size to be buffer_size. If the buffer
392   // is too small, a fatal error occurs. No deallocation of the buffer is done
393   // upon destruction of the assembler.
394   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()395   virtual ~Assembler() { }
396 
397   // GetCode emits any pending (non-emitted) code and fills the descriptor
398   // desc. GetCode() is idempotent; it returns the same result if no other
399   // Assembler functions are invoked in between GetCode() calls.
400   void GetCode(CodeDesc* desc);
401 
402   // Label operations & relative jumps (PPUM Appendix D).
403   //
404   // Takes a branch opcode (cc) and a label (L) and generates
405   // either a backward branch or a forward branch and links it
406   // to the label fixup chain. Usage:
407   //
408   // Label L;    // unbound label
409   // j(cc, &L);  // forward branch to unbound label
410   // bind(&L);   // bind label to the current pc
411   // j(cc, &L);  // backward branch to bound label
412   // bind(&L);   // illegal: a label may be bound only once
413   //
414   // Note: The same Label can be used for forward and backward branches
415   // but it may be bound only once.
416   void bind(Label* L);  // Binds an unbound label L to current code position.
417 
418   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
419 
420   // Determines if Label is bound and near enough so that branch instruction
421   // can be used to reach it, instead of jump instruction.
422   bool is_near(Label* L);
423   bool is_near(Label* L, OffsetSize bits);
424   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)425   inline bool is_near_pre_r6(Label* L) {
426     DCHECK(!(kArchVariant == kMips64r6));
427     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
428   }
is_near_r6(Label * L)429   inline bool is_near_r6(Label* L) {
430     DCHECK(kArchVariant == kMips64r6);
431     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
432   }
433 
434   int BranchOffset(Instr instr);
435 
436   // Returns the branch offset to the given label from the current code
437   // position. Links the label to the current position if it is still unbound.
438   // Manages the jump elimination optimization if the second parameter is true.
439   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)440   inline int32_t branch_offset(Label* L) {
441     return branch_offset_helper(L, OffsetSize::kOffset16);
442   }
branch_offset21(Label * L)443   inline int32_t branch_offset21(Label* L) {
444     return branch_offset_helper(L, OffsetSize::kOffset21);
445   }
branch_offset26(Label * L)446   inline int32_t branch_offset26(Label* L) {
447     return branch_offset_helper(L, OffsetSize::kOffset26);
448   }
shifted_branch_offset(Label * L)449   inline int32_t shifted_branch_offset(Label* L) {
450     return branch_offset(L) >> 2;
451   }
shifted_branch_offset21(Label * L)452   inline int32_t shifted_branch_offset21(Label* L) {
453     return branch_offset21(L) >> 2;
454   }
shifted_branch_offset26(Label * L)455   inline int32_t shifted_branch_offset26(Label* L) {
456     return branch_offset26(L) >> 2;
457   }
458   uint64_t jump_address(Label* L);
459   uint64_t jump_offset(Label* L);
460 
461   // Puts a labels target address at the given position.
462   // The high 8 bits are set to zero.
463   void label_at_put(Label* L, int at_offset);
464 
465   // Read/Modify the code target address in the branch/call instruction at pc.
466   static Address target_address_at(Address pc);
467   static void set_target_address_at(
468       Isolate* isolate, Address pc, Address target,
469       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
470   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,Address constant_pool))471   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
472     return target_address_at(pc);
473   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))474   INLINE(static void set_target_address_at(
475       Isolate* isolate, Address pc, Address constant_pool, Address target,
476       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
477     set_target_address_at(isolate, pc, target, icache_flush_mode);
478   }
INLINE(static Address target_address_at (Address pc,Code * code))479   INLINE(static Address target_address_at(Address pc, Code* code)) {
480     Address constant_pool = code ? code->constant_pool() : NULL;
481     return target_address_at(pc, constant_pool);
482   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))483   INLINE(static void set_target_address_at(
484       Isolate* isolate, Address pc, Code* code, Address target,
485       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
486     Address constant_pool = code ? code->constant_pool() : NULL;
487     set_target_address_at(isolate, pc, constant_pool, target,
488                           icache_flush_mode);
489   }
490 
491   // Return the code target address at a call site from the return address
492   // of that call in the instruction stream.
493   inline static Address target_address_from_return_address(Address pc);
494 
495   static void JumpLabelToJumpRegister(Address pc);
496 
497   static void QuietNaN(HeapObject* nan);
498 
499   // This sets the branch destination (which gets loaded at the call address).
500   // This is for calls and branches within generated code.  The serializer
501   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)502   inline static void deserialization_set_special_target_at(
503       Isolate* isolate, Address instruction_payload, Code* code,
504       Address target) {
505     set_target_address_at(
506         isolate,
507         instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code,
508         target);
509   }
510 
511   // This sets the internal reference at the pc.
512   inline static void deserialization_set_target_internal_reference_at(
513       Isolate* isolate, Address pc, Address target,
514       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
515 
516   // Size of an instruction.
517   static const int kInstrSize = sizeof(Instr);
518 
519   // Difference between address of current opcode and target address offset.
520   static const int kBranchPCOffset = 4;
521 
522   // Here we are patching the address in the LUI/ORI instruction pair.
523   // These values are used in the serialization process and must be zero for
524   // MIPS platform, as Code, Embedded Object or External-reference pointers
525   // are split across two consecutive instructions and don't exist separately
526   // in the code, so the serializer should not step forwards in memory after
527   // a target is resolved and written.
528   static const int kSpecialTargetSize = 0;
529 
530   // Number of consecutive instructions used to store 32bit/64bit constant.
531   // This constant was used in RelocInfo::target_address_address() function
532   // to tell serializer address of the instruction that follows
533   // LUI/ORI instruction pair.
534   static const int kInstructionsFor32BitConstant = 2;
535   static const int kInstructionsFor64BitConstant = 4;
536 
537   // Distance between the instruction referring to the address of the call
538   // target and the return address.
539 #ifdef _MIPS_ARCH_MIPS64R6
540   static const int kCallTargetAddressOffset = 5 * kInstrSize;
541 #else
542   static const int kCallTargetAddressOffset = 6 * kInstrSize;
543 #endif
544 
545   // Distance between start of patched debug break slot and the emitted address
546   // to jump to.
547   static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize;
548 
549   // Difference between address of current opcode and value read from pc
550   // register.
551   static const int kPcLoadDelta = 4;
552 
553 #ifdef _MIPS_ARCH_MIPS64R6
554   static const int kDebugBreakSlotInstructions = 5;
555 #else
556   static const int kDebugBreakSlotInstructions = 6;
557 #endif
558   static const int kDebugBreakSlotLength =
559       kDebugBreakSlotInstructions * kInstrSize;
560 
561 
562   // ---------------------------------------------------------------------------
563   // Code generation.
564 
565   // Insert the smallest number of nop instructions
566   // possible to align the pc offset to a multiple
567   // of m. m must be a power of 2 (>= 4).
568   void Align(int m);
569   // Insert the smallest number of zero bytes possible to align the pc offset
570   // to a mulitple of m. m must be a power of 2 (>= 2).
571   void DataAlign(int m);
572   // Aligns code to something that's optimal for a jump target for the platform.
573   void CodeTargetAlign();
574 
575   // Different nop operations are used by the code generator to detect certain
576   // states of the generated code.
577   enum NopMarkerTypes {
578     NON_MARKING_NOP = 0,
579     DEBUG_BREAK_NOP,
580     // IC markers.
581     PROPERTY_ACCESS_INLINED,
582     PROPERTY_ACCESS_INLINED_CONTEXT,
583     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
584     // Helper values.
585     LAST_CODE_MARKER,
586     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
587     // Code aging
588     CODE_AGE_MARKER_NOP = 6,
589     CODE_AGE_SEQUENCE_NOP
590   };
591 
592   // Type == 0 is the default non-marking nop. For mips this is a
593   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
594   // marking, to avoid conflict with ssnop and ehb instructions.
595   void nop(unsigned int type = 0) {
596     DCHECK(type < 32);
597     Register nop_rt_reg = (type == 0) ? zero_reg : at;
598     sll(zero_reg, nop_rt_reg, type, true);
599   }
600 
601 
602   // --------Branch-and-jump-instructions----------
603   // We don't use likely variant of instructions.
604   void b(int16_t offset);
b(Label * L)605   inline void b(Label* L) { b(shifted_branch_offset(L)); }
606   void bal(int16_t offset);
bal(Label * L)607   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
608   void bc(int32_t offset);
bc(Label * L)609   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
610   void balc(int32_t offset);
balc(Label * L)611   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
612 
613   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)614   inline void beq(Register rs, Register rt, Label* L) {
615     beq(rs, rt, shifted_branch_offset(L));
616   }
617   void bgez(Register rs, int16_t offset);
618   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)619   inline void bgezc(Register rt, Label* L) {
620     bgezc(rt, shifted_branch_offset(L));
621   }
622   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)623   inline void bgeuc(Register rs, Register rt, Label* L) {
624     bgeuc(rs, rt, shifted_branch_offset(L));
625   }
626   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)627   inline void bgec(Register rs, Register rt, Label* L) {
628     bgec(rs, rt, shifted_branch_offset(L));
629   }
630   void bgezal(Register rs, int16_t offset);
631   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)632   inline void bgezalc(Register rt, Label* L) {
633     bgezalc(rt, shifted_branch_offset(L));
634   }
635   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)636   inline void bgezall(Register rs, Label* L) {
637     bgezall(rs, branch_offset(L) >> 2);
638   }
639   void bgtz(Register rs, int16_t offset);
640   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)641   inline void bgtzc(Register rt, Label* L) {
642     bgtzc(rt, shifted_branch_offset(L));
643   }
644   void blez(Register rs, int16_t offset);
645   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)646   inline void blezc(Register rt, Label* L) {
647     blezc(rt, shifted_branch_offset(L));
648   }
649   void bltz(Register rs, int16_t offset);
650   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)651   inline void bltzc(Register rt, Label* L) {
652     bltzc(rt, shifted_branch_offset(L));
653   }
654   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)655   inline void bltuc(Register rs, Register rt, Label* L) {
656     bltuc(rs, rt, shifted_branch_offset(L));
657   }
658   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)659   inline void bltc(Register rs, Register rt, Label* L) {
660     bltc(rs, rt, shifted_branch_offset(L));
661   }
662   void bltzal(Register rs, int16_t offset);
663   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)664   inline void blezalc(Register rt, Label* L) {
665     blezalc(rt, shifted_branch_offset(L));
666   }
667   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)668   inline void bltzalc(Register rt, Label* L) {
669     bltzalc(rt, shifted_branch_offset(L));
670   }
671   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)672   inline void bgtzalc(Register rt, Label* L) {
673     bgtzalc(rt, shifted_branch_offset(L));
674   }
675   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)676   inline void beqzalc(Register rt, Label* L) {
677     beqzalc(rt, shifted_branch_offset(L));
678   }
679   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)680   inline void beqc(Register rs, Register rt, Label* L) {
681     beqc(rs, rt, shifted_branch_offset(L));
682   }
683   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)684   inline void beqzc(Register rs, Label* L) {
685     beqzc(rs, shifted_branch_offset21(L));
686   }
687   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)688   inline void bnezalc(Register rt, Label* L) {
689     bnezalc(rt, shifted_branch_offset(L));
690   }
691   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)692   inline void bnec(Register rs, Register rt, Label* L) {
693     bnec(rs, rt, shifted_branch_offset(L));
694   }
695   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)696   inline void bnezc(Register rt, Label* L) {
697     bnezc(rt, shifted_branch_offset21(L));
698   }
699   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)700   inline void bne(Register rs, Register rt, Label* L) {
701     bne(rs, rt, shifted_branch_offset(L));
702   }
703   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)704   inline void bovc(Register rs, Register rt, Label* L) {
705     bovc(rs, rt, shifted_branch_offset(L));
706   }
707   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)708   inline void bnvc(Register rs, Register rt, Label* L) {
709     bnvc(rs, rt, shifted_branch_offset(L));
710   }
711 
712   // Never use the int16_t b(l)cond version with a branch offset
713   // instead of using the Label* version.
714 
715   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
716   void j(int64_t target);
717   void jal(int64_t target);
718   void j(Label* target);
719   void jal(Label* target);
720   void jalr(Register rs, Register rd = ra);
721   void jr(Register target);
722   void jic(Register rt, int16_t offset);
723   void jialc(Register rt, int16_t offset);
724 
725 
726   // -------Data-processing-instructions---------
727 
728   // Arithmetic.
729   void addu(Register rd, Register rs, Register rt);
730   void subu(Register rd, Register rs, Register rt);
731 
732   void div(Register rs, Register rt);
733   void divu(Register rs, Register rt);
734   void ddiv(Register rs, Register rt);
735   void ddivu(Register rs, Register rt);
736   void div(Register rd, Register rs, Register rt);
737   void divu(Register rd, Register rs, Register rt);
738   void ddiv(Register rd, Register rs, Register rt);
739   void ddivu(Register rd, Register rs, Register rt);
740   void mod(Register rd, Register rs, Register rt);
741   void modu(Register rd, Register rs, Register rt);
742   void dmod(Register rd, Register rs, Register rt);
743   void dmodu(Register rd, Register rs, Register rt);
744 
745   void mul(Register rd, Register rs, Register rt);
746   void muh(Register rd, Register rs, Register rt);
747   void mulu(Register rd, Register rs, Register rt);
748   void muhu(Register rd, Register rs, Register rt);
749   void mult(Register rs, Register rt);
750   void multu(Register rs, Register rt);
751   void dmul(Register rd, Register rs, Register rt);
752   void dmuh(Register rd, Register rs, Register rt);
753   void dmulu(Register rd, Register rs, Register rt);
754   void dmuhu(Register rd, Register rs, Register rt);
755   void daddu(Register rd, Register rs, Register rt);
756   void dsubu(Register rd, Register rs, Register rt);
757   void dmult(Register rs, Register rt);
758   void dmultu(Register rs, Register rt);
759 
760   void addiu(Register rd, Register rs, int32_t j);
761   void daddiu(Register rd, Register rs, int32_t j);
762 
763   // Logical.
764   void and_(Register rd, Register rs, Register rt);
765   void or_(Register rd, Register rs, Register rt);
766   void xor_(Register rd, Register rs, Register rt);
767   void nor(Register rd, Register rs, Register rt);
768 
769   void andi(Register rd, Register rs, int32_t j);
770   void ori(Register rd, Register rs, int32_t j);
771   void xori(Register rd, Register rs, int32_t j);
772   void lui(Register rd, int32_t j);
773   void aui(Register rt, Register rs, int32_t j);
774   void daui(Register rt, Register rs, int32_t j);
775   void dahi(Register rs, int32_t j);
776   void dati(Register rs, int32_t j);
777 
778   // Shifts.
779   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
780   // and may cause problems in normal code. coming_from_nop makes sure this
781   // doesn't happen.
782   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
783   void sllv(Register rd, Register rt, Register rs);
784   void srl(Register rd, Register rt, uint16_t sa);
785   void srlv(Register rd, Register rt, Register rs);
786   void sra(Register rt, Register rd, uint16_t sa);
787   void srav(Register rt, Register rd, Register rs);
788   void rotr(Register rd, Register rt, uint16_t sa);
789   void rotrv(Register rd, Register rt, Register rs);
790   void dsll(Register rd, Register rt, uint16_t sa);
791   void dsllv(Register rd, Register rt, Register rs);
792   void dsrl(Register rd, Register rt, uint16_t sa);
793   void dsrlv(Register rd, Register rt, Register rs);
794   void drotr(Register rd, Register rt, uint16_t sa);
795   void drotr32(Register rd, Register rt, uint16_t sa);
796   void drotrv(Register rd, Register rt, Register rs);
797   void dsra(Register rt, Register rd, uint16_t sa);
798   void dsrav(Register rd, Register rt, Register rs);
799   void dsll32(Register rt, Register rd, uint16_t sa);
800   void dsrl32(Register rt, Register rd, uint16_t sa);
801   void dsra32(Register rt, Register rd, uint16_t sa);
802 
803   // ------------Memory-instructions-------------
804 
805   void lb(Register rd, const MemOperand& rs);
806   void lbu(Register rd, const MemOperand& rs);
807   void lh(Register rd, const MemOperand& rs);
808   void lhu(Register rd, const MemOperand& rs);
809   void lw(Register rd, const MemOperand& rs);
810   void lwu(Register rd, const MemOperand& rs);
811   void lwl(Register rd, const MemOperand& rs);
812   void lwr(Register rd, const MemOperand& rs);
813   void sb(Register rd, const MemOperand& rs);
814   void sh(Register rd, const MemOperand& rs);
815   void sw(Register rd, const MemOperand& rs);
816   void swl(Register rd, const MemOperand& rs);
817   void swr(Register rd, const MemOperand& rs);
818   void ldl(Register rd, const MemOperand& rs);
819   void ldr(Register rd, const MemOperand& rs);
820   void sdl(Register rd, const MemOperand& rs);
821   void sdr(Register rd, const MemOperand& rs);
822   void ld(Register rd, const MemOperand& rs);
823   void sd(Register rd, const MemOperand& rs);
824 
825 
826   // ---------PC-Relative-instructions-----------
827 
828   void addiupc(Register rs, int32_t imm19);
829   void lwpc(Register rs, int32_t offset19);
830   void lwupc(Register rs, int32_t offset19);
831   void ldpc(Register rs, int32_t offset18);
832   void auipc(Register rs, int16_t imm16);
833   void aluipc(Register rs, int16_t imm16);
834 
835 
836   // ----------------Prefetch--------------------
837 
838   void pref(int32_t hint, const MemOperand& rs);
839 
840 
841   // -------------Misc-instructions--------------
842 
843   // Break / Trap instructions.
844   void break_(uint32_t code, bool break_as_stop = false);
845   void stop(const char* msg, uint32_t code = kMaxStopCode);
846   void tge(Register rs, Register rt, uint16_t code);
847   void tgeu(Register rs, Register rt, uint16_t code);
848   void tlt(Register rs, Register rt, uint16_t code);
849   void tltu(Register rs, Register rt, uint16_t code);
850   void teq(Register rs, Register rt, uint16_t code);
851   void tne(Register rs, Register rt, uint16_t code);
852 
853   // Memory barrier instruction.
854   void sync();
855 
856   // Move from HI/LO register.
857   void mfhi(Register rd);
858   void mflo(Register rd);
859 
860   // Set on less than.
861   void slt(Register rd, Register rs, Register rt);
862   void sltu(Register rd, Register rs, Register rt);
863   void slti(Register rd, Register rs, int32_t j);
864   void sltiu(Register rd, Register rs, int32_t j);
865 
866   // Conditional move.
867   void movz(Register rd, Register rs, Register rt);
868   void movn(Register rd, Register rs, Register rt);
869   void movt(Register rd, Register rs, uint16_t cc = 0);
870   void movf(Register rd, Register rs, uint16_t cc = 0);
871 
872   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
873   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
874   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
875   void seleqz(Register rd, Register rs, Register rt);
876   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
877               FPURegister ft);
878   void selnez(Register rs, Register rt, Register rd);
879   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
880               FPURegister ft);
881   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
882   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
883   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
884   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
885 
886   void movz_s(FPURegister fd, FPURegister fs, Register rt);
887   void movz_d(FPURegister fd, FPURegister fs, Register rt);
888   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
889   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
890   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
891   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
892   void movn_s(FPURegister fd, FPURegister fs, Register rt);
893   void movn_d(FPURegister fd, FPURegister fs, Register rt);
894   // Bit twiddling.
895   void clz(Register rd, Register rs);
896   void dclz(Register rd, Register rs);
897   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
898   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
899   void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
900   void dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
901   void dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
902   void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
903   void bitswap(Register rd, Register rt);
904   void dbitswap(Register rd, Register rt);
905   void align(Register rd, Register rs, Register rt, uint8_t bp);
906   void dalign(Register rd, Register rs, Register rt, uint8_t bp);
907 
908   void wsbh(Register rd, Register rt);
909   void dsbh(Register rd, Register rt);
910   void dshd(Register rd, Register rt);
911   void seh(Register rd, Register rt);
912   void seb(Register rd, Register rt);
913 
914   // --------Coprocessor-instructions----------------
915 
916   // Load, store, and move.
917   void lwc1(FPURegister fd, const MemOperand& src);
918   void ldc1(FPURegister fd, const MemOperand& src);
919 
920   void swc1(FPURegister fs, const MemOperand& dst);
921   void sdc1(FPURegister fs, const MemOperand& dst);
922 
923   void mtc1(Register rt, FPURegister fs);
924   void mthc1(Register rt, FPURegister fs);
925   void dmtc1(Register rt, FPURegister fs);
926 
927   void mfc1(Register rt, FPURegister fs);
928   void mfhc1(Register rt, FPURegister fs);
929   void dmfc1(Register rt, FPURegister fs);
930 
931   void ctc1(Register rt, FPUControlRegister fs);
932   void cfc1(Register rt, FPUControlRegister fs);
933 
934   // Arithmetic.
935   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
936   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
937   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
938   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
939   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
940   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
941   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
942   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
943   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
944   void abs_s(FPURegister fd, FPURegister fs);
945   void abs_d(FPURegister fd, FPURegister fs);
946   void mov_d(FPURegister fd, FPURegister fs);
947   void mov_s(FPURegister fd, FPURegister fs);
948   void neg_s(FPURegister fd, FPURegister fs);
949   void neg_d(FPURegister fd, FPURegister fs);
950   void sqrt_s(FPURegister fd, FPURegister fs);
951   void sqrt_d(FPURegister fd, FPURegister fs);
952   void rsqrt_s(FPURegister fd, FPURegister fs);
953   void rsqrt_d(FPURegister fd, FPURegister fs);
954   void recip_d(FPURegister fd, FPURegister fs);
955   void recip_s(FPURegister fd, FPURegister fs);
956 
957   // Conversion.
958   void cvt_w_s(FPURegister fd, FPURegister fs);
959   void cvt_w_d(FPURegister fd, FPURegister fs);
960   void trunc_w_s(FPURegister fd, FPURegister fs);
961   void trunc_w_d(FPURegister fd, FPURegister fs);
962   void round_w_s(FPURegister fd, FPURegister fs);
963   void round_w_d(FPURegister fd, FPURegister fs);
964   void floor_w_s(FPURegister fd, FPURegister fs);
965   void floor_w_d(FPURegister fd, FPURegister fs);
966   void ceil_w_s(FPURegister fd, FPURegister fs);
967   void ceil_w_d(FPURegister fd, FPURegister fs);
968   void rint_s(FPURegister fd, FPURegister fs);
969   void rint_d(FPURegister fd, FPURegister fs);
970   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
971 
972 
973   void cvt_l_s(FPURegister fd, FPURegister fs);
974   void cvt_l_d(FPURegister fd, FPURegister fs);
975   void trunc_l_s(FPURegister fd, FPURegister fs);
976   void trunc_l_d(FPURegister fd, FPURegister fs);
977   void round_l_s(FPURegister fd, FPURegister fs);
978   void round_l_d(FPURegister fd, FPURegister fs);
979   void floor_l_s(FPURegister fd, FPURegister fs);
980   void floor_l_d(FPURegister fd, FPURegister fs);
981   void ceil_l_s(FPURegister fd, FPURegister fs);
982   void ceil_l_d(FPURegister fd, FPURegister fs);
983 
984   void class_s(FPURegister fd, FPURegister fs);
985   void class_d(FPURegister fd, FPURegister fs);
986 
987   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
988   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
989   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
990   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
991   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
992   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
993   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
994   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
995   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
996   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
997   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
998   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
999 
1000   void cvt_s_w(FPURegister fd, FPURegister fs);
1001   void cvt_s_l(FPURegister fd, FPURegister fs);
1002   void cvt_s_d(FPURegister fd, FPURegister fs);
1003 
1004   void cvt_d_w(FPURegister fd, FPURegister fs);
1005   void cvt_d_l(FPURegister fd, FPURegister fs);
1006   void cvt_d_s(FPURegister fd, FPURegister fs);
1007 
1008   // Conditions and branches for MIPSr6.
1009   void cmp(FPUCondition cond, SecondaryField fmt,
1010          FPURegister fd, FPURegister ft, FPURegister fs);
1011   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1012   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1013 
1014   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)1015   inline void bc1eqz(Label* L, FPURegister ft) {
1016     bc1eqz(shifted_branch_offset(L), ft);
1017   }
1018   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)1019   inline void bc1nez(Label* L, FPURegister ft) {
1020     bc1nez(shifted_branch_offset(L), ft);
1021   }
1022 
1023   // Conditions and branches for non MIPSr6.
1024   void c(FPUCondition cond, SecondaryField fmt,
1025          FPURegister ft, FPURegister fs, uint16_t cc = 0);
1026   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1027   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1028 
1029   void bc1f(int16_t offset, uint16_t cc = 0);
1030   inline void bc1f(Label* L, uint16_t cc = 0) {
1031     bc1f(shifted_branch_offset(L), cc);
1032   }
1033   void bc1t(int16_t offset, uint16_t cc = 0);
1034   inline void bc1t(Label* L, uint16_t cc = 0) {
1035     bc1t(shifted_branch_offset(L), cc);
1036   }
1037   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1038 
1039   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1040   int SizeOfCodeGeneratedSince(Label* label) {
1041     return pc_offset() - label->pos();
1042   }
1043 
1044   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)1045   int InstructionsGeneratedSince(Label* label) {
1046     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1047   }
1048 
1049   // Class for scoping postponing the trampoline pool generation.
1050   class BlockTrampolinePoolScope {
1051    public:
BlockTrampolinePoolScope(Assembler * assem)1052     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1053       assem_->StartBlockTrampolinePool();
1054     }
~BlockTrampolinePoolScope()1055     ~BlockTrampolinePoolScope() {
1056       assem_->EndBlockTrampolinePool();
1057     }
1058 
1059    private:
1060     Assembler* assem_;
1061 
1062     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1063   };
1064 
1065   // Class for postponing the assembly buffer growth. Typically used for
1066   // sequences of instructions that must be emitted as a unit, before
1067   // buffer growth (and relocation) can occur.
1068   // This blocking scope is not nestable.
1069   class BlockGrowBufferScope {
1070    public:
BlockGrowBufferScope(Assembler * assem)1071     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1072       assem_->StartBlockGrowBuffer();
1073     }
~BlockGrowBufferScope()1074     ~BlockGrowBufferScope() {
1075       assem_->EndBlockGrowBuffer();
1076     }
1077 
1078    private:
1079     Assembler* assem_;
1080 
1081     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1082   };
1083 
1084   // Debugging.
1085 
1086   // Mark generator continuation.
1087   void RecordGeneratorContinuation();
1088 
1089   // Mark address of a debug break slot.
1090   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1091 
1092   // Record the AST id of the CallIC being compiled, so that it can be placed
1093   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1094   void SetRecordedAstId(TypeFeedbackId ast_id) {
1095     DCHECK(recorded_ast_id_.IsNone());
1096     recorded_ast_id_ = ast_id;
1097   }
1098 
RecordedAstId()1099   TypeFeedbackId RecordedAstId() {
1100     DCHECK(!recorded_ast_id_.IsNone());
1101     return recorded_ast_id_;
1102   }
1103 
ClearRecordedAstId()1104   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1105 
1106   // Record a comment relocation entry that can be used by a disassembler.
1107   // Use --code-comments to enable.
1108   void RecordComment(const char* msg);
1109 
1110   // Record a deoptimization reason that can be used by a log or cpu profiler.
1111   // Use --trace-deopt to enable.
1112   void RecordDeoptReason(const int reason, int raw_position, int id);
1113 
1114   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1115                                        intptr_t pc_delta);
1116 
1117   // Writes a single byte or word of data in the code stream.  Used for
1118   // inline tables, e.g., jump-tables.
1119   void db(uint8_t data);
1120   void dd(uint32_t data);
1121   void dq(uint64_t data);
dp(uintptr_t data)1122   void dp(uintptr_t data) { dq(data); }
1123   void dd(Label* label);
1124 
positions_recorder()1125   AssemblerPositionsRecorder* positions_recorder() {
1126     return &positions_recorder_;
1127   }
1128 
1129   // Postpone the generation of the trampoline pool for the specified number of
1130   // instructions.
1131   void BlockTrampolinePoolFor(int instructions);
1132 
1133   // Check if there is less than kGap bytes available in the buffer.
1134   // If this is the case, we need to grow the buffer before emitting
1135   // an instruction or relocation information.
overflow()1136   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1137 
1138   // Get the number of bytes available in the buffer.
available_space()1139   inline intptr_t available_space() const {
1140     return reloc_info_writer.pos() - pc_;
1141   }
1142 
1143   // Read/patch instructions.
instr_at(byte * pc)1144   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1145   static void instr_at_put(byte* pc, Instr instr) {
1146     *reinterpret_cast<Instr*>(pc) = instr;
1147   }
instr_at(int pos)1148   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1149   void instr_at_put(int pos, Instr instr) {
1150     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1151   }
1152 
1153   // Check if an instruction is a branch of some kind.
1154   static bool IsBranch(Instr instr);
1155   static bool IsBc(Instr instr);
1156   static bool IsBzc(Instr instr);
1157 
1158   static bool IsBeq(Instr instr);
1159   static bool IsBne(Instr instr);
1160   static bool IsBeqzc(Instr instr);
1161   static bool IsBnezc(Instr instr);
1162   static bool IsBeqc(Instr instr);
1163   static bool IsBnec(Instr instr);
1164 
1165 
1166   static bool IsJump(Instr instr);
1167   static bool IsJ(Instr instr);
1168   static bool IsLui(Instr instr);
1169   static bool IsOri(Instr instr);
1170 
1171   static bool IsJal(Instr instr);
1172   static bool IsJr(Instr instr);
1173   static bool IsJalr(Instr instr);
1174 
1175   static bool IsNop(Instr instr, unsigned int type);
1176   static bool IsPop(Instr instr);
1177   static bool IsPush(Instr instr);
1178   static bool IsLwRegFpOffset(Instr instr);
1179   static bool IsSwRegFpOffset(Instr instr);
1180   static bool IsLwRegFpNegOffset(Instr instr);
1181   static bool IsSwRegFpNegOffset(Instr instr);
1182 
1183   static Register GetRtReg(Instr instr);
1184   static Register GetRsReg(Instr instr);
1185   static Register GetRdReg(Instr instr);
1186 
1187   static uint32_t GetRt(Instr instr);
1188   static uint32_t GetRtField(Instr instr);
1189   static uint32_t GetRs(Instr instr);
1190   static uint32_t GetRsField(Instr instr);
1191   static uint32_t GetRd(Instr instr);
1192   static uint32_t GetRdField(Instr instr);
1193   static uint32_t GetSa(Instr instr);
1194   static uint32_t GetSaField(Instr instr);
1195   static uint32_t GetOpcodeField(Instr instr);
1196   static uint32_t GetFunction(Instr instr);
1197   static uint32_t GetFunctionField(Instr instr);
1198   static uint32_t GetImmediate16(Instr instr);
1199   static uint32_t GetLabelConst(Instr instr);
1200 
1201   static int32_t GetBranchOffset(Instr instr);
1202   static bool IsLw(Instr instr);
1203   static int16_t GetLwOffset(Instr instr);
1204   static Instr SetLwOffset(Instr instr, int16_t offset);
1205 
1206   static bool IsSw(Instr instr);
1207   static Instr SetSwOffset(Instr instr, int16_t offset);
1208   static bool IsAddImmediate(Instr instr);
1209   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1210 
1211   static bool IsAndImmediate(Instr instr);
1212   static bool IsEmittedConstant(Instr instr);
1213 
1214   void CheckTrampolinePool();
1215 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1216   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1217                                           ConstantPoolEntry::Access access,
1218                                           ConstantPoolEntry::Type type) {
1219     // No embedded constant pool support.
1220     UNREACHABLE();
1221   }
1222 
IsPrevInstrCompactBranch()1223   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1224 
UnboundLabelsCount()1225   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1226 
1227  protected:
1228   // Load Scaled Address instructions.
1229   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1230   void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1231 
1232   // Helpers.
1233   void LoadRegPlusOffsetToAt(const MemOperand& src);
1234 
1235   // Relocation for a type-recording IC has the AST id added to it.  This
1236   // member variable is a way to pass the information from the call site to
1237   // the relocation info.
1238   TypeFeedbackId recorded_ast_id_;
1239 
1240   inline static void set_target_internal_reference_encoded_at(Address pc,
1241                                                               Address target);
1242 
buffer_space()1243   int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1244 
1245   // Decode branch instruction at pos and return branch target pos.
1246   int target_at(int pos, bool is_internal);
1247 
1248   // Patch branch instruction at pos to branch to given branch target pos.
1249   void target_at_put(int pos, int target_pos, bool is_internal);
1250 
1251   // Say if we need to relocate with this mode.
1252   bool MustUseReg(RelocInfo::Mode rmode);
1253 
1254   // Record reloc info for current pc_.
1255   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1256 
1257   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1258   void BlockTrampolinePoolBefore(int pc_offset) {
1259     if (no_trampoline_pool_before_ < pc_offset)
1260       no_trampoline_pool_before_ = pc_offset;
1261   }
1262 
StartBlockTrampolinePool()1263   void StartBlockTrampolinePool() {
1264     trampoline_pool_blocked_nesting_++;
1265   }
1266 
EndBlockTrampolinePool()1267   void EndBlockTrampolinePool() {
1268     trampoline_pool_blocked_nesting_--;
1269   }
1270 
is_trampoline_pool_blocked()1271   bool is_trampoline_pool_blocked() const {
1272     return trampoline_pool_blocked_nesting_ > 0;
1273   }
1274 
has_exception()1275   bool has_exception() const {
1276     return internal_trampoline_exception_;
1277   }
1278 
1279   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1280 
is_trampoline_emitted()1281   bool is_trampoline_emitted() const {
1282     return trampoline_emitted_;
1283   }
1284 
1285   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1286   void StartBlockGrowBuffer() {
1287     DCHECK(!block_buffer_growth_);
1288     block_buffer_growth_ = true;
1289   }
1290 
EndBlockGrowBuffer()1291   void EndBlockGrowBuffer() {
1292     DCHECK(block_buffer_growth_);
1293     block_buffer_growth_ = false;
1294   }
1295 
is_buffer_growth_blocked()1296   bool is_buffer_growth_blocked() const {
1297     return block_buffer_growth_;
1298   }
1299 
EmitForbiddenSlotInstruction()1300   void EmitForbiddenSlotInstruction() {
1301     if (IsPrevInstrCompactBranch()) {
1302       nop();
1303     }
1304   }
1305 
1306   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1307 
1308  private:
1309   // Buffer size and constant pool distance are checked together at regular
1310   // intervals of kBufferCheckInterval emitted bytes.
1311   static const int kBufferCheckInterval = 1*KB/2;
1312 
1313   // Code generation.
1314   // The relocation writer's position is at least kGap bytes below the end of
1315   // the generated instructions. This is so that multi-instruction sequences do
1316   // not have to check for overflow. The same is true for writes of large
1317   // relocation info entries.
1318   static const int kGap = 32;
1319 
1320 
1321   // Repeated checking whether the trampoline pool should be emitted is rather
1322   // expensive. By default we only check again once a number of instructions
1323   // has been generated.
1324   static const int kCheckConstIntervalInst = 32;
1325   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1326 
1327   int next_buffer_check_;  // pc offset of next buffer check.
1328 
1329   // Emission of the trampoline pool may be blocked in some code sequences.
1330   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1331   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1332 
1333   // Keep track of the last emitted pool to guarantee a maximal distance.
1334   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1335 
1336   // Automatic growth of the assembly buffer may be blocked for some sequences.
1337   bool block_buffer_growth_;  // Block growth when true.
1338 
1339   // Relocation information generation.
1340   // Each relocation is encoded as a variable size value.
1341   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1342   RelocInfoWriter reloc_info_writer;
1343 
1344   // The bound position, before this we cannot do instruction elimination.
1345   int last_bound_pos_;
1346 
1347   // Readable constants for compact branch handling in emit()
1348   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1349 
1350   // Code emission.
1351   inline void CheckBuffer();
1352   void GrowBuffer();
1353   inline void emit(Instr x,
1354                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1355   inline void emit(uint64_t x);
1356   inline void CheckForEmitInForbiddenSlot();
1357   template <typename T>
1358   inline void EmitHelper(T x);
1359   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1360 
1361   // Instruction generation.
1362   // We have 3 different kind of encoding layout on MIPS.
1363   // However due to many different types of objects encoded in the same fields
1364   // we have quite a few aliases for each mode.
1365   // Using the same structure to refer to Register and FPURegister would spare a
1366   // few aliases, but mixing both does not look clean to me.
1367   // Anyway we could surely implement this differently.
1368 
1369   void GenInstrRegister(Opcode opcode,
1370                         Register rs,
1371                         Register rt,
1372                         Register rd,
1373                         uint16_t sa = 0,
1374                         SecondaryField func = NULLSF);
1375 
1376   void GenInstrRegister(Opcode opcode,
1377                         Register rs,
1378                         Register rt,
1379                         uint16_t msb,
1380                         uint16_t lsb,
1381                         SecondaryField func);
1382 
1383   void GenInstrRegister(Opcode opcode,
1384                         SecondaryField fmt,
1385                         FPURegister ft,
1386                         FPURegister fs,
1387                         FPURegister fd,
1388                         SecondaryField func = NULLSF);
1389 
1390   void GenInstrRegister(Opcode opcode,
1391                         FPURegister fr,
1392                         FPURegister ft,
1393                         FPURegister fs,
1394                         FPURegister fd,
1395                         SecondaryField func = NULLSF);
1396 
1397   void GenInstrRegister(Opcode opcode,
1398                         SecondaryField fmt,
1399                         Register rt,
1400                         FPURegister fs,
1401                         FPURegister fd,
1402                         SecondaryField func = NULLSF);
1403 
1404   void GenInstrRegister(Opcode opcode,
1405                         SecondaryField fmt,
1406                         Register rt,
1407                         FPUControlRegister fs,
1408                         SecondaryField func = NULLSF);
1409 
1410 
1411   void GenInstrImmediate(
1412       Opcode opcode, Register rs, Register rt, int32_t j,
1413       CompactBranchType is_compact_branch = CompactBranchType::NO);
1414   void GenInstrImmediate(
1415       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1416       CompactBranchType is_compact_branch = CompactBranchType::NO);
1417   void GenInstrImmediate(
1418       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1419       CompactBranchType is_compact_branch = CompactBranchType::NO);
1420   void GenInstrImmediate(
1421       Opcode opcode, Register rs, int32_t offset21,
1422       CompactBranchType is_compact_branch = CompactBranchType::NO);
1423   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1424   void GenInstrImmediate(
1425       Opcode opcode, int32_t offset26,
1426       CompactBranchType is_compact_branch = CompactBranchType::NO);
1427 
1428   void GenInstrJump(Opcode opcode,
1429                      uint32_t address);
1430 
1431   // Labels.
1432   void print(Label* L);
1433   void bind_to(Label* L, int pos);
1434   void next(Label* L, bool is_internal);
1435 
1436   // One trampoline consists of:
1437   // - space for trampoline slots,
1438   // - space for labels.
1439   //
1440   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1441   // Space for trampoline slots preceeds space for labels. Each label is of one
1442   // instruction size, so total amount for labels is equal to
1443   // label_count *  kInstrSize.
1444   class Trampoline {
1445    public:
Trampoline()1446     Trampoline() {
1447       start_ = 0;
1448       next_slot_ = 0;
1449       free_slot_count_ = 0;
1450       end_ = 0;
1451     }
Trampoline(int start,int slot_count)1452     Trampoline(int start, int slot_count) {
1453       start_ = start;
1454       next_slot_ = start;
1455       free_slot_count_ = slot_count;
1456       end_ = start + slot_count * kTrampolineSlotsSize;
1457     }
start()1458     int start() {
1459       return start_;
1460     }
end()1461     int end() {
1462       return end_;
1463     }
take_slot()1464     int take_slot() {
1465       int trampoline_slot = kInvalidSlotPos;
1466       if (free_slot_count_ <= 0) {
1467         // We have run out of space on trampolines.
1468         // Make sure we fail in debug mode, so we become aware of each case
1469         // when this happens.
1470         DCHECK(0);
1471         // Internal exception will be caught.
1472       } else {
1473         trampoline_slot = next_slot_;
1474         free_slot_count_--;
1475         next_slot_ += kTrampolineSlotsSize;
1476       }
1477       return trampoline_slot;
1478     }
1479 
1480    private:
1481     int start_;
1482     int end_;
1483     int next_slot_;
1484     int free_slot_count_;
1485   };
1486 
1487   int32_t get_trampoline_entry(int32_t pos);
1488   int unbound_labels_count_;
1489   // After trampoline is emitted, long branches are used in generated code for
1490   // the forward branches whose target offsets could be beyond reach of branch
1491   // instruction. We use this information to trigger different mode of
1492   // branch instruction generation, where we use jump instructions rather
1493   // than regular branch instructions.
1494   bool trampoline_emitted_;
1495   static const int kTrampolineSlotsSize = 2 * kInstrSize;
1496   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1497   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
1498   static const int kInvalidSlotPos = -1;
1499 
1500   // Internal reference positions, required for unbounded internal reference
1501   // labels.
1502   std::set<int64_t> internal_reference_positions_;
1503 
EmittedCompactBranchInstruction()1504   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1505   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1506   bool prev_instr_compact_branch_ = false;
1507 
1508   Trampoline trampoline_;
1509   bool internal_trampoline_exception_;
1510 
1511   friend class RegExpMacroAssemblerMIPS;
1512   friend class RelocInfo;
1513   friend class CodePatcher;
1514   friend class BlockTrampolinePoolScope;
1515 
1516   AssemblerPositionsRecorder positions_recorder_;
1517   friend class AssemblerPositionsRecorder;
1518   friend class EnsureSpace;
1519 };
1520 
1521 
1522 class EnsureSpace BASE_EMBEDDED {
1523  public:
EnsureSpace(Assembler * assembler)1524   explicit EnsureSpace(Assembler* assembler) {
1525     assembler->CheckBuffer();
1526   }
1527 };
1528 
1529 }  // namespace internal
1530 }  // namespace v8
1531 
1532 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1533