• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
6 #define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
7 
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/macro-assembler.h"
10 #include "src/regexp/regexp-macro-assembler.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 
16 #ifndef V8_INTERPRETED_REGEXP
17 class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
18  public:
19   RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
20                             int registers_to_save);
21   virtual ~RegExpMacroAssemblerARM64();
AbortedCodeGeneration()22   virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
23   virtual int stack_limit_slack();
24   virtual void AdvanceCurrentPosition(int by);
25   virtual void AdvanceRegister(int reg, int by);
26   virtual void Backtrack();
27   virtual void Bind(Label* label);
28   virtual void CheckAtStart(Label* on_at_start);
29   virtual void CheckCharacter(unsigned c, Label* on_equal);
30   virtual void CheckCharacterAfterAnd(unsigned c,
31                                       unsigned mask,
32                                       Label* on_equal);
33   virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
34   virtual void CheckCharacterLT(uc16 limit, Label* on_less);
35   virtual void CheckCharacters(Vector<const uc16> str,
36                                int cp_offset,
37                                Label* on_failure,
38                                bool check_end_of_string);
39   // A "greedy loop" is a loop that is both greedy and with a simple
40   // body. It has a particularly simple implementation.
41   virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
42   virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
43   virtual void CheckNotBackReference(int start_reg, bool read_backward,
44                                      Label* on_no_match);
45   virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
46                                                bool read_backward, bool unicode,
47                                                Label* on_no_match);
48   virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
49   virtual void CheckNotCharacterAfterAnd(unsigned c,
50                                          unsigned mask,
51                                          Label* on_not_equal);
52   virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
53                                               uc16 minus,
54                                               uc16 mask,
55                                               Label* on_not_equal);
56   virtual void CheckCharacterInRange(uc16 from,
57                                      uc16 to,
58                                      Label* on_in_range);
59   virtual void CheckCharacterNotInRange(uc16 from,
60                                         uc16 to,
61                                         Label* on_not_in_range);
62   virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
63 
64   // Checks whether the given offset from the current position is before
65   // the end of the string.
66   virtual void CheckPosition(int cp_offset, Label* on_outside_input);
67   virtual bool CheckSpecialCharacterClass(uc16 type,
68                                           Label* on_no_match);
69   virtual void Fail();
70   virtual Handle<HeapObject> GetCode(Handle<String> source);
71   virtual void GoTo(Label* label);
72   virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
73   virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
74   virtual void IfRegisterEqPos(int reg, Label* if_eq);
75   virtual IrregexpImplementation Implementation();
76   virtual void LoadCurrentCharacter(int cp_offset,
77                                     Label* on_end_of_input,
78                                     bool check_bounds = true,
79                                     int characters = 1);
80   virtual void PopCurrentPosition();
81   virtual void PopRegister(int register_index);
82   virtual void PushBacktrack(Label* label);
83   virtual void PushCurrentPosition();
84   virtual void PushRegister(int register_index,
85                             StackCheckFlag check_stack_limit);
86   virtual void ReadCurrentPositionFromRegister(int reg);
87   virtual void ReadStackPointerFromRegister(int reg);
88   virtual void SetCurrentPositionFromEnd(int by);
89   virtual void SetRegister(int register_index, int to);
90   virtual bool Succeed();
91   virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
92   virtual void ClearRegisters(int reg_from, int reg_to);
93   virtual void WriteStackPointerToRegister(int reg);
94   virtual bool CanReadUnaligned();
95 
96   // Called from RegExp if the stack-guard is triggered.
97   // If the code object is relocated, the return address is fixed before
98   // returning.
99   static int CheckStackGuardState(Address* return_address,
100                                   Code* re_code,
101                                   Address re_frame,
102                                   int start_offset,
103                                   const byte** input_start,
104                                   const byte** input_end);
105 
106  private:
107   // Above the frame pointer - Stored registers and stack passed parameters.
108   // Callee-saved registers x19-x29, where x29 is the old frame pointer.
109   static const int kCalleeSavedRegisters = 0;
110   // Return address.
111   // It is placed above the 11 callee-saved registers.
112   static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
113   static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
114   // Stack parameter placed by caller.
115   static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
116 
117   // Below the frame pointer.
118   // Register parameters stored by setup code.
119   static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
120   static const int kStackBase = kDirectCall - kPointerSize;
121   static const int kOutputSize = kStackBase - kPointerSize;
122   static const int kInput = kOutputSize - kPointerSize;
123   // When adding local variables remember to push space for them in
124   // the frame in GetCode.
125   static const int kSuccessCounter = kInput - kPointerSize;
126   // First position register address on the stack. Following positions are
127   // below it. A position is a 32 bit value.
128   static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
129   // A capture is a 64 bit value holding two position.
130   static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
131 
132   // Initial size of code buffer.
133   static const size_t kRegExpCodeSize = 1024;
134 
135   // When initializing registers to a non-position value we can unroll
136   // the loop. Set the limit of registers to unroll.
137   static const int kNumRegistersToUnroll = 16;
138 
139   // We are using x0 to x7 as a register cache. Each hardware register must
140   // contain one capture, that is two 32 bit registers. We can cache at most
141   // 16 registers.
142   static const int kNumCachedRegisters = 16;
143 
144   // Load a number of characters at the given offset from the
145   // current position, into the current-character register.
146   void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
147 
148   // Check whether preemption has been requested.
149   void CheckPreemption();
150 
151   // Check whether we are exceeding the stack limit on the backtrack stack.
152   void CheckStackLimit();
153 
154   // Generate a call to CheckStackGuardState.
155   void CallCheckStackGuardState(Register scratch);
156 
157   // Location of a 32 bit position register.
158   MemOperand register_location(int register_index);
159 
160   // Location of a 64 bit capture, combining two position registers.
161   MemOperand capture_location(int register_index, Register scratch);
162 
163   // Register holding the current input position as negative offset from
164   // the end of the string.
current_input_offset()165   Register current_input_offset() { return w21; }
166 
167   // The register containing the current character after LoadCurrentCharacter.
current_character()168   Register current_character() { return w22; }
169 
170   // Register holding address of the end of the input string.
input_end()171   Register input_end() { return x25; }
172 
173   // Register holding address of the start of the input string.
input_start()174   Register input_start() { return x26; }
175 
176   // Register holding the offset from the start of the string where we should
177   // start matching.
start_offset()178   Register start_offset() { return w27; }
179 
180   // Pointer to the output array's first element.
output_array()181   Register output_array() { return x28; }
182 
183   // Register holding the frame address. Local variables, parameters and
184   // regexp registers are addressed relative to this.
frame_pointer()185   Register frame_pointer() { return fp; }
186 
187   // The register containing the backtrack stack top. Provides a meaningful
188   // name to the register.
backtrack_stackpointer()189   Register backtrack_stackpointer() { return x23; }
190 
191   // Register holding pointer to the current code object.
code_pointer()192   Register code_pointer() { return x20; }
193 
194   // Register holding the value used for clearing capture registers.
string_start_minus_one()195   Register string_start_minus_one() { return w24; }
196   // The top 32 bit of this register is used to store this value
197   // twice. This is used for clearing more than one register at a time.
twice_non_position_value()198   Register twice_non_position_value() { return x24; }
199 
200   // Byte size of chars in the string to match (decided by the Mode argument)
char_size()201   int char_size() { return static_cast<int>(mode_); }
202 
203   // Equivalent to a conditional branch to the label, unless the label
204   // is NULL, in which case it is a conditional Backtrack.
205   void BranchOrBacktrack(Condition condition, Label* to);
206 
207   // Compares reg against immmediate before calling BranchOrBacktrack.
208   // It makes use of the Cbz and Cbnz instructions.
209   void CompareAndBranchOrBacktrack(Register reg,
210                                    int immediate,
211                                    Condition condition,
212                                    Label* to);
213 
214   inline void CallIf(Label* to, Condition condition);
215 
216   // Save and restore the link register on the stack in a way that
217   // is GC-safe.
218   inline void SaveLinkRegister();
219   inline void RestoreLinkRegister();
220 
221   // Pushes the value of a register on the backtrack stack. Decrements the
222   // stack pointer by a word size and stores the register's value there.
223   inline void Push(Register source);
224 
225   // Pops a value from the backtrack stack. Reads the word at the stack pointer
226   // and increments it by a word size.
227   inline void Pop(Register target);
228 
229   // This state indicates where the register actually is.
230   enum RegisterState {
231     STACKED,     // Resides in memory.
232     CACHED_LSW,  // Least Significant Word of a 64 bit hardware register.
233     CACHED_MSW   // Most Significant Word of a 64 bit hardware register.
234   };
235 
GetRegisterState(int register_index)236   RegisterState GetRegisterState(int register_index) {
237     DCHECK(register_index >= 0);
238     if (register_index >= kNumCachedRegisters) {
239       return STACKED;
240     } else {
241       if ((register_index % 2) == 0) {
242         return CACHED_LSW;
243       } else {
244         return CACHED_MSW;
245       }
246     }
247   }
248 
249   // Store helper that takes the state of the register into account.
250   inline void StoreRegister(int register_index, Register source);
251 
252   // Returns a hardware W register that holds the value of the capture
253   // register.
254   //
255   // This function will try to use an existing cache register (w0-w7) for the
256   // result. Otherwise, it will load the value into maybe_result.
257   //
258   // If the returned register is anything other than maybe_result, calling code
259   // must not write to it.
260   inline Register GetRegister(int register_index, Register maybe_result);
261 
262   // Returns the harware register (x0-x7) holding the value of the capture
263   // register.
264   // This assumes that the state of the register is not STACKED.
265   inline Register GetCachedRegister(int register_index);
266 
isolate()267   Isolate* isolate() const { return masm_->isolate(); }
268 
269   MacroAssembler* masm_;
270 
271   // Which mode to generate code for (LATIN1 or UC16).
272   Mode mode_;
273 
274   // One greater than maximal register index actually used.
275   int num_registers_;
276 
277   // Number of registers to output at the end (the saved registers
278   // are always 0..num_saved_registers_-1)
279   int num_saved_registers_;
280 
281   // Labels used internally.
282   Label entry_label_;
283   Label start_label_;
284   Label success_label_;
285   Label backtrack_label_;
286   Label exit_label_;
287   Label check_preempt_label_;
288   Label stack_overflow_label_;
289 };
290 
291 #endif  // V8_INTERPRETED_REGEXP
292 
293 
294 }  // namespace internal
295 }  // namespace v8
296 
297 #endif  // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
298