• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/runtime/runtime-utils.h"
6 
7 #include "src/arguments.h"
8 #include "src/regexp/jsregexp-inl.h"
9 #include "src/string-builder.h"
10 #include "src/string-search.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 
16 // Perform string match of pattern on subject, starting at start index.
17 // Caller must ensure that 0 <= start_index <= sub->length(),
18 // and should check that pat->length() + start_index <= sub->length().
StringMatch(Isolate * isolate,Handle<String> sub,Handle<String> pat,int start_index)19 int StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat,
20                 int start_index) {
21   DCHECK(0 <= start_index);
22   DCHECK(start_index <= sub->length());
23 
24   int pattern_length = pat->length();
25   if (pattern_length == 0) return start_index;
26 
27   int subject_length = sub->length();
28   if (start_index + pattern_length > subject_length) return -1;
29 
30   sub = String::Flatten(sub);
31   pat = String::Flatten(pat);
32 
33   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
34   // Extract flattened substrings of cons strings before getting encoding.
35   String::FlatContent seq_sub = sub->GetFlatContent();
36   String::FlatContent seq_pat = pat->GetFlatContent();
37 
38   // dispatch on type of strings
39   if (seq_pat.IsOneByte()) {
40     Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
41     if (seq_sub.IsOneByte()) {
42       return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
43                           start_index);
44     }
45     return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector,
46                         start_index);
47   }
48   Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
49   if (seq_sub.IsOneByte()) {
50     return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
51                         start_index);
52   }
53   return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index);
54 }
55 
56 
57 // This may return an empty MaybeHandle if an exception is thrown or
58 // we abort due to reaching the recursion limit.
StringReplaceOneCharWithString(Isolate * isolate,Handle<String> subject,Handle<String> search,Handle<String> replace,bool * found,int recursion_limit)59 MaybeHandle<String> StringReplaceOneCharWithString(
60     Isolate* isolate, Handle<String> subject, Handle<String> search,
61     Handle<String> replace, bool* found, int recursion_limit) {
62   StackLimitCheck stackLimitCheck(isolate);
63   if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
64     return MaybeHandle<String>();
65   }
66   recursion_limit--;
67   if (subject->IsConsString()) {
68     ConsString* cons = ConsString::cast(*subject);
69     Handle<String> first = Handle<String>(cons->first());
70     Handle<String> second = Handle<String>(cons->second());
71     Handle<String> new_first;
72     if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
73                                         recursion_limit).ToHandle(&new_first)) {
74       return MaybeHandle<String>();
75     }
76     if (*found) return isolate->factory()->NewConsString(new_first, second);
77 
78     Handle<String> new_second;
79     if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
80                                         recursion_limit)
81              .ToHandle(&new_second)) {
82       return MaybeHandle<String>();
83     }
84     if (*found) return isolate->factory()->NewConsString(first, new_second);
85 
86     return subject;
87   } else {
88     int index = StringMatch(isolate, subject, search, 0);
89     if (index == -1) return subject;
90     *found = true;
91     Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
92     Handle<String> cons1;
93     ASSIGN_RETURN_ON_EXCEPTION(
94         isolate, cons1, isolate->factory()->NewConsString(first, replace),
95         String);
96     Handle<String> second =
97         isolate->factory()->NewSubString(subject, index + 1, subject->length());
98     return isolate->factory()->NewConsString(cons1, second);
99   }
100 }
101 
102 
RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString)103 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
104   HandleScope scope(isolate);
105   DCHECK(args.length() == 3);
106   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
107   CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
108   CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
109 
110   // If the cons string tree is too deep, we simply abort the recursion and
111   // retry with a flattened subject string.
112   const int kRecursionLimit = 0x1000;
113   bool found = false;
114   Handle<String> result;
115   if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
116                                      kRecursionLimit).ToHandle(&result)) {
117     return *result;
118   }
119   if (isolate->has_pending_exception()) return isolate->heap()->exception();
120 
121   subject = String::Flatten(subject);
122   if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
123                                      kRecursionLimit).ToHandle(&result)) {
124     return *result;
125   }
126   if (isolate->has_pending_exception()) return isolate->heap()->exception();
127   // In case of empty handle and no pending exception we have stack overflow.
128   return isolate->StackOverflow();
129 }
130 
131 
RUNTIME_FUNCTION(Runtime_StringIndexOf)132 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
133   HandleScope scope(isolate);
134   DCHECK(args.length() == 3);
135 
136   CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
137   CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
138   CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
139 
140   uint32_t start_index = 0;
141   if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
142 
143   CHECK(start_index <= static_cast<uint32_t>(sub->length()));
144   int position = StringMatch(isolate, sub, pat, start_index);
145   return Smi::FromInt(position);
146 }
147 
148 
149 template <typename schar, typename pchar>
StringMatchBackwards(Vector<const schar> subject,Vector<const pchar> pattern,int idx)150 static int StringMatchBackwards(Vector<const schar> subject,
151                                 Vector<const pchar> pattern, int idx) {
152   int pattern_length = pattern.length();
153   DCHECK(pattern_length >= 1);
154   DCHECK(idx + pattern_length <= subject.length());
155 
156   if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
157     for (int i = 0; i < pattern_length; i++) {
158       uc16 c = pattern[i];
159       if (c > String::kMaxOneByteCharCode) {
160         return -1;
161       }
162     }
163   }
164 
165   pchar pattern_first_char = pattern[0];
166   for (int i = idx; i >= 0; i--) {
167     if (subject[i] != pattern_first_char) continue;
168     int j = 1;
169     while (j < pattern_length) {
170       if (pattern[j] != subject[i + j]) {
171         break;
172       }
173       j++;
174     }
175     if (j == pattern_length) {
176       return i;
177     }
178   }
179   return -1;
180 }
181 
182 
RUNTIME_FUNCTION(Runtime_StringLastIndexOf)183 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
184   HandleScope scope(isolate);
185   DCHECK(args.length() == 3);
186 
187   CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
188   CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
189   CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
190 
191   uint32_t start_index = 0;
192   if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
193 
194   uint32_t pat_length = pat->length();
195   uint32_t sub_length = sub->length();
196 
197   if (start_index + pat_length > sub_length) {
198     start_index = sub_length - pat_length;
199   }
200 
201   if (pat_length == 0) {
202     return Smi::FromInt(start_index);
203   }
204 
205   sub = String::Flatten(sub);
206   pat = String::Flatten(pat);
207 
208   int position = -1;
209   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
210 
211   String::FlatContent sub_content = sub->GetFlatContent();
212   String::FlatContent pat_content = pat->GetFlatContent();
213 
214   if (pat_content.IsOneByte()) {
215     Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
216     if (sub_content.IsOneByte()) {
217       position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
218                                       start_index);
219     } else {
220       position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
221                                       start_index);
222     }
223   } else {
224     Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
225     if (sub_content.IsOneByte()) {
226       position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
227                                       start_index);
228     } else {
229       position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
230                                       start_index);
231     }
232   }
233 
234   return Smi::FromInt(position);
235 }
236 
237 
RUNTIME_FUNCTION(Runtime_StringLocaleCompare)238 RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
239   HandleScope handle_scope(isolate);
240   DCHECK(args.length() == 2);
241 
242   CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
243   CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
244 
245   if (str1.is_identical_to(str2)) return Smi::FromInt(0);  // Equal.
246   int str1_length = str1->length();
247   int str2_length = str2->length();
248 
249   // Decide trivial cases without flattening.
250   if (str1_length == 0) {
251     if (str2_length == 0) return Smi::FromInt(0);  // Equal.
252     return Smi::FromInt(-str2_length);
253   } else {
254     if (str2_length == 0) return Smi::FromInt(str1_length);
255   }
256 
257   int end = str1_length < str2_length ? str1_length : str2_length;
258 
259   // No need to flatten if we are going to find the answer on the first
260   // character.  At this point we know there is at least one character
261   // in each string, due to the trivial case handling above.
262   int d = str1->Get(0) - str2->Get(0);
263   if (d != 0) return Smi::FromInt(d);
264 
265   str1 = String::Flatten(str1);
266   str2 = String::Flatten(str2);
267 
268   DisallowHeapAllocation no_gc;
269   String::FlatContent flat1 = str1->GetFlatContent();
270   String::FlatContent flat2 = str2->GetFlatContent();
271 
272   for (int i = 0; i < end; i++) {
273     if (flat1.Get(i) != flat2.Get(i)) {
274       return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
275     }
276   }
277 
278   return Smi::FromInt(str1_length - str2_length);
279 }
280 
281 
RUNTIME_FUNCTION(Runtime_SubString)282 RUNTIME_FUNCTION(Runtime_SubString) {
283   HandleScope scope(isolate);
284   DCHECK(args.length() == 3);
285 
286   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
287   int start, end;
288   // We have a fast integer-only case here to avoid a conversion to double in
289   // the common case where from and to are Smis.
290   if (args[1]->IsSmi() && args[2]->IsSmi()) {
291     CONVERT_SMI_ARG_CHECKED(from_number, 1);
292     CONVERT_SMI_ARG_CHECKED(to_number, 2);
293     start = from_number;
294     end = to_number;
295   } else {
296     CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
297     CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
298     start = FastD2IChecked(from_number);
299     end = FastD2IChecked(to_number);
300   }
301   RUNTIME_ASSERT(end >= start);
302   RUNTIME_ASSERT(start >= 0);
303   RUNTIME_ASSERT(end <= string->length());
304   isolate->counters()->sub_string_runtime()->Increment();
305 
306   return *isolate->factory()->NewSubString(string, start, end);
307 }
308 
309 
RUNTIME_FUNCTION(Runtime_StringAdd)310 RUNTIME_FUNCTION(Runtime_StringAdd) {
311   HandleScope scope(isolate);
312   DCHECK(args.length() == 2);
313   CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
314   CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
315   isolate->counters()->string_add_runtime()->Increment();
316   RETURN_RESULT_OR_FAILURE(isolate,
317                            isolate->factory()->NewConsString(str1, str2));
318 }
319 
320 
RUNTIME_FUNCTION(Runtime_InternalizeString)321 RUNTIME_FUNCTION(Runtime_InternalizeString) {
322   HandleScope handles(isolate);
323   DCHECK(args.length() == 1);
324   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
325   return *isolate->factory()->InternalizeString(string);
326 }
327 
328 
RUNTIME_FUNCTION(Runtime_StringMatch)329 RUNTIME_FUNCTION(Runtime_StringMatch) {
330   HandleScope handles(isolate);
331   DCHECK(args.length() == 3);
332 
333   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
334   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
335   CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
336 
337   CHECK(regexp_info->HasFastObjectElements());
338 
339   RegExpImpl::GlobalCache global_cache(regexp, subject, isolate);
340   if (global_cache.HasException()) return isolate->heap()->exception();
341 
342   int capture_count = regexp->CaptureCount();
343 
344   ZoneScope zone_scope(isolate->runtime_zone());
345   ZoneList<int> offsets(8, zone_scope.zone());
346 
347   while (true) {
348     int32_t* match = global_cache.FetchNext();
349     if (match == NULL) break;
350     offsets.Add(match[0], zone_scope.zone());  // start
351     offsets.Add(match[1], zone_scope.zone());  // end
352   }
353 
354   if (global_cache.HasException()) return isolate->heap()->exception();
355 
356   if (offsets.length() == 0) {
357     // Not a single match.
358     return isolate->heap()->null_value();
359   }
360 
361   RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count,
362                                global_cache.LastSuccessfulMatch());
363 
364   int matches = offsets.length() / 2;
365   Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
366   Handle<String> substring =
367       isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
368   elements->set(0, *substring);
369   FOR_WITH_HANDLE_SCOPE(isolate, int, i = 1, i, i < matches, i++, {
370     int from = offsets.at(i * 2);
371     int to = offsets.at(i * 2 + 1);
372     Handle<String> substring =
373         isolate->factory()->NewProperSubString(subject, from, to);
374     elements->set(i, *substring);
375   });
376   Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
377   result->set_length(Smi::FromInt(matches));
378   return *result;
379 }
380 
381 
RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT)382 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
383   HandleScope handle_scope(isolate);
384   DCHECK(args.length() == 2);
385 
386   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
387   CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
388 
389   // Flatten the string.  If someone wants to get a char at an index
390   // in a cons string, it is likely that more indices will be
391   // accessed.
392   subject = String::Flatten(subject);
393 
394   if (i >= static_cast<uint32_t>(subject->length())) {
395     return isolate->heap()->nan_value();
396   }
397 
398   return Smi::FromInt(subject->Get(i));
399 }
400 
401 
RUNTIME_FUNCTION(Runtime_StringCompare)402 RUNTIME_FUNCTION(Runtime_StringCompare) {
403   HandleScope handle_scope(isolate);
404   DCHECK_EQ(2, args.length());
405   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
406   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
407   isolate->counters()->string_compare_runtime()->Increment();
408   switch (String::Compare(x, y)) {
409     case ComparisonResult::kLessThan:
410       return Smi::FromInt(LESS);
411     case ComparisonResult::kEqual:
412       return Smi::FromInt(EQUAL);
413     case ComparisonResult::kGreaterThan:
414       return Smi::FromInt(GREATER);
415     case ComparisonResult::kUndefined:
416       break;
417   }
418   UNREACHABLE();
419   return Smi::FromInt(0);
420 }
421 
422 
RUNTIME_FUNCTION(Runtime_StringBuilderConcat)423 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
424   HandleScope scope(isolate);
425   DCHECK(args.length() == 3);
426   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
427   int32_t array_length;
428   if (!args[1]->ToInt32(&array_length)) {
429     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
430   }
431   CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
432 
433   size_t actual_array_length = 0;
434   CHECK(TryNumberToSize(isolate, array->length(), &actual_array_length));
435   CHECK(array_length >= 0);
436   CHECK(static_cast<size_t>(array_length) <= actual_array_length);
437 
438   // This assumption is used by the slice encoding in one or two smis.
439   DCHECK(Smi::kMaxValue >= String::kMaxLength);
440 
441   CHECK(array->HasFastElements());
442   JSObject::EnsureCanContainHeapObjectElements(array);
443 
444   int special_length = special->length();
445   if (!array->HasFastObjectElements()) {
446     return isolate->Throw(isolate->heap()->illegal_argument_string());
447   }
448 
449   int length;
450   bool one_byte = special->HasOnlyOneByteChars();
451 
452   {
453     DisallowHeapAllocation no_gc;
454     FixedArray* fixed_array = FixedArray::cast(array->elements());
455     if (fixed_array->length() < array_length) {
456       array_length = fixed_array->length();
457     }
458 
459     if (array_length == 0) {
460       return isolate->heap()->empty_string();
461     } else if (array_length == 1) {
462       Object* first = fixed_array->get(0);
463       if (first->IsString()) return first;
464     }
465     length = StringBuilderConcatLength(special_length, fixed_array,
466                                        array_length, &one_byte);
467   }
468 
469   if (length == -1) {
470     return isolate->Throw(isolate->heap()->illegal_argument_string());
471   }
472 
473   if (one_byte) {
474     Handle<SeqOneByteString> answer;
475     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
476         isolate, answer, isolate->factory()->NewRawOneByteString(length));
477     StringBuilderConcatHelper(*special, answer->GetChars(),
478                               FixedArray::cast(array->elements()),
479                               array_length);
480     return *answer;
481   } else {
482     Handle<SeqTwoByteString> answer;
483     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
484         isolate, answer, isolate->factory()->NewRawTwoByteString(length));
485     StringBuilderConcatHelper(*special, answer->GetChars(),
486                               FixedArray::cast(array->elements()),
487                               array_length);
488     return *answer;
489   }
490 }
491 
492 
RUNTIME_FUNCTION(Runtime_StringBuilderJoin)493 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
494   HandleScope scope(isolate);
495   DCHECK(args.length() == 3);
496   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
497   int32_t array_length;
498   if (!args[1]->ToInt32(&array_length)) {
499     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
500   }
501   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
502   CHECK(array->HasFastObjectElements());
503   CHECK(array_length >= 0);
504 
505   Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
506   if (fixed_array->length() < array_length) {
507     array_length = fixed_array->length();
508   }
509 
510   if (array_length == 0) {
511     return isolate->heap()->empty_string();
512   } else if (array_length == 1) {
513     Object* first = fixed_array->get(0);
514     CHECK(first->IsString());
515     return first;
516   }
517 
518   int separator_length = separator->length();
519   CHECK(separator_length > 0);
520   int max_nof_separators =
521       (String::kMaxLength + separator_length - 1) / separator_length;
522   if (max_nof_separators < (array_length - 1)) {
523     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
524   }
525   int length = (array_length - 1) * separator_length;
526   for (int i = 0; i < array_length; i++) {
527     Object* element_obj = fixed_array->get(i);
528     CHECK(element_obj->IsString());
529     String* element = String::cast(element_obj);
530     int increment = element->length();
531     if (increment > String::kMaxLength - length) {
532       STATIC_ASSERT(String::kMaxLength < kMaxInt);
533       length = kMaxInt;  // Provoke exception;
534       break;
535     }
536     length += increment;
537   }
538 
539   Handle<SeqTwoByteString> answer;
540   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
541       isolate, answer, isolate->factory()->NewRawTwoByteString(length));
542 
543   DisallowHeapAllocation no_gc;
544 
545   uc16* sink = answer->GetChars();
546 #ifdef DEBUG
547   uc16* end = sink + length;
548 #endif
549 
550   CHECK(fixed_array->get(0)->IsString());
551   String* first = String::cast(fixed_array->get(0));
552   String* separator_raw = *separator;
553 
554   int first_length = first->length();
555   String::WriteToFlat(first, sink, 0, first_length);
556   sink += first_length;
557 
558   for (int i = 1; i < array_length; i++) {
559     DCHECK(sink + separator_length <= end);
560     String::WriteToFlat(separator_raw, sink, 0, separator_length);
561     sink += separator_length;
562 
563     CHECK(fixed_array->get(i)->IsString());
564     String* element = String::cast(fixed_array->get(i));
565     int element_length = element->length();
566     DCHECK(sink + element_length <= end);
567     String::WriteToFlat(element, sink, 0, element_length);
568     sink += element_length;
569   }
570   DCHECK(sink == end);
571 
572   // Use %_FastOneByteArrayJoin instead.
573   DCHECK(!answer->IsOneByteRepresentation());
574   return *answer;
575 }
576 
577 template <typename sinkchar>
WriteRepeatToFlat(String * src,Vector<sinkchar> buffer,int cursor,int repeat,int length)578 static void WriteRepeatToFlat(String* src, Vector<sinkchar> buffer, int cursor,
579                               int repeat, int length) {
580   if (repeat == 0) return;
581 
582   sinkchar* start = &buffer[cursor];
583   String::WriteToFlat<sinkchar>(src, start, 0, length);
584 
585   int done = 1;
586   sinkchar* next = start + length;
587 
588   while (done < repeat) {
589     int block = Min(done, repeat - done);
590     int block_chars = block * length;
591     CopyChars(next, start, block_chars);
592     next += block_chars;
593     done += block;
594   }
595 }
596 
597 template <typename Char>
JoinSparseArrayWithSeparator(FixedArray * elements,int elements_length,uint32_t array_length,String * separator,Vector<Char> buffer)598 static void JoinSparseArrayWithSeparator(FixedArray* elements,
599                                          int elements_length,
600                                          uint32_t array_length,
601                                          String* separator,
602                                          Vector<Char> buffer) {
603   DisallowHeapAllocation no_gc;
604   int previous_separator_position = 0;
605   int separator_length = separator->length();
606   DCHECK_LT(0, separator_length);
607   int cursor = 0;
608   for (int i = 0; i < elements_length; i += 2) {
609     int position = NumberToInt32(elements->get(i));
610     String* string = String::cast(elements->get(i + 1));
611     int string_length = string->length();
612     if (string->length() > 0) {
613       int repeat = position - previous_separator_position;
614       WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat,
615                               separator_length);
616       cursor += repeat * separator_length;
617       previous_separator_position = position;
618       String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
619       cursor += string->length();
620     }
621   }
622 
623   int last_array_index = static_cast<int>(array_length - 1);
624   // Array length must be representable as a signed 32-bit number,
625   // otherwise the total string length would have been too large.
626   DCHECK(array_length <= 0x7fffffff);  // Is int32_t.
627   int repeat = last_array_index - previous_separator_position;
628   WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat, separator_length);
629   cursor += repeat * separator_length;
630   DCHECK(cursor <= buffer.length());
631 }
632 
633 
RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator)634 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
635   HandleScope scope(isolate);
636   DCHECK(args.length() == 3);
637   CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
638   CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
639   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
640   // elements_array is fast-mode JSarray of alternating positions
641   // (increasing order) and strings.
642   CHECK(elements_array->HasFastSmiOrObjectElements());
643   // array_length is length of original array (used to add separators);
644   // separator is string to put between elements. Assumed to be non-empty.
645   CHECK(array_length > 0);
646 
647   // Find total length of join result.
648   int string_length = 0;
649   bool is_one_byte = separator->IsOneByteRepresentation();
650   bool overflow = false;
651   CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
652   CHECK(elements_length <= elements_array->elements()->length());
653   CHECK((elements_length & 1) == 0);  // Even length.
654   FixedArray* elements = FixedArray::cast(elements_array->elements());
655   {
656     DisallowHeapAllocation no_gc;
657     for (int i = 0; i < elements_length; i += 2) {
658       String* string = String::cast(elements->get(i + 1));
659       int length = string->length();
660       if (is_one_byte && !string->IsOneByteRepresentation()) {
661         is_one_byte = false;
662       }
663       if (length > String::kMaxLength ||
664           String::kMaxLength - length < string_length) {
665         overflow = true;
666         break;
667       }
668       string_length += length;
669     }
670   }
671 
672   int separator_length = separator->length();
673   if (!overflow && separator_length > 0) {
674     if (array_length <= 0x7fffffffu) {
675       int separator_count = static_cast<int>(array_length) - 1;
676       int remaining_length = String::kMaxLength - string_length;
677       if ((remaining_length / separator_length) >= separator_count) {
678         string_length += separator_length * (array_length - 1);
679       } else {
680         // Not room for the separators within the maximal string length.
681         overflow = true;
682       }
683     } else {
684       // Nonempty separator and at least 2^31-1 separators necessary
685       // means that the string is too large to create.
686       STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
687       overflow = true;
688     }
689   }
690   if (overflow) {
691     // Throw an exception if the resulting string is too large. See
692     // https://code.google.com/p/chromium/issues/detail?id=336820
693     // for details.
694     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
695   }
696 
697   if (is_one_byte) {
698     Handle<SeqOneByteString> result = isolate->factory()
699                                           ->NewRawOneByteString(string_length)
700                                           .ToHandleChecked();
701     JoinSparseArrayWithSeparator<uint8_t>(
702         FixedArray::cast(elements_array->elements()), elements_length,
703         array_length, *separator,
704         Vector<uint8_t>(result->GetChars(), string_length));
705     return *result;
706   } else {
707     Handle<SeqTwoByteString> result = isolate->factory()
708                                           ->NewRawTwoByteString(string_length)
709                                           .ToHandleChecked();
710     JoinSparseArrayWithSeparator<uc16>(
711         FixedArray::cast(elements_array->elements()), elements_length,
712         array_length, *separator,
713         Vector<uc16>(result->GetChars(), string_length));
714     return *result;
715   }
716 }
717 
718 
719 // Copies Latin1 characters to the given fixed array looking up
720 // one-char strings in the cache. Gives up on the first char that is
721 // not in the cache and fills the remainder with smi zeros. Returns
722 // the length of the successfully copied prefix.
CopyCachedOneByteCharsToArray(Heap * heap,const uint8_t * chars,FixedArray * elements,int length)723 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
724                                          FixedArray* elements, int length) {
725   DisallowHeapAllocation no_gc;
726   FixedArray* one_byte_cache = heap->single_character_string_cache();
727   Object* undefined = heap->undefined_value();
728   int i;
729   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
730   for (i = 0; i < length; ++i) {
731     Object* value = one_byte_cache->get(chars[i]);
732     if (value == undefined) break;
733     elements->set(i, value, mode);
734   }
735   if (i < length) {
736     DCHECK(Smi::FromInt(0) == 0);
737     memset(elements->data_start() + i, 0, kPointerSize * (length - i));
738   }
739 #ifdef DEBUG
740   for (int j = 0; j < length; ++j) {
741     Object* element = elements->get(j);
742     DCHECK(element == Smi::FromInt(0) ||
743            (element->IsString() && String::cast(element)->LooksValid()));
744   }
745 #endif
746   return i;
747 }
748 
749 
750 // Converts a String to JSArray.
751 // For example, "foo" => ["f", "o", "o"].
RUNTIME_FUNCTION(Runtime_StringToArray)752 RUNTIME_FUNCTION(Runtime_StringToArray) {
753   HandleScope scope(isolate);
754   DCHECK(args.length() == 2);
755   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
756   CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
757 
758   s = String::Flatten(s);
759   const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
760 
761   Handle<FixedArray> elements;
762   int position = 0;
763   if (s->IsFlat() && s->IsOneByteRepresentation()) {
764     // Try using cached chars where possible.
765     elements = isolate->factory()->NewUninitializedFixedArray(length);
766 
767     DisallowHeapAllocation no_gc;
768     String::FlatContent content = s->GetFlatContent();
769     if (content.IsOneByte()) {
770       Vector<const uint8_t> chars = content.ToOneByteVector();
771       // Note, this will initialize all elements (not only the prefix)
772       // to prevent GC from seeing partially initialized array.
773       position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
774                                                *elements, length);
775     } else {
776       MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
777                     length);
778     }
779   } else {
780     elements = isolate->factory()->NewFixedArray(length);
781   }
782   for (int i = position; i < length; ++i) {
783     Handle<Object> str =
784         isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
785     elements->set(i, *str);
786   }
787 
788 #ifdef DEBUG
789   for (int i = 0; i < length; ++i) {
790     DCHECK(String::cast(elements->get(i))->length() == 1);
791   }
792 #endif
793 
794   return *isolate->factory()->NewJSArrayWithElements(elements);
795 }
796 
797 
ToUpperOverflows(uc32 character)798 static inline bool ToUpperOverflows(uc32 character) {
799   // y with umlauts and the micro sign are the only characters that stop
800   // fitting into one-byte when converting to uppercase.
801   static const uc32 yuml_code = 0xff;
802   static const uc32 micro_code = 0xb5;
803   return (character == yuml_code || character == micro_code);
804 }
805 
806 
807 template <class Converter>
ConvertCaseHelper(Isolate * isolate,String * string,SeqString * result,int result_length,unibrow::Mapping<Converter,128> * mapping)808 MUST_USE_RESULT static Object* ConvertCaseHelper(
809     Isolate* isolate, String* string, SeqString* result, int result_length,
810     unibrow::Mapping<Converter, 128>* mapping) {
811   DisallowHeapAllocation no_gc;
812   // We try this twice, once with the assumption that the result is no longer
813   // than the input and, if that assumption breaks, again with the exact
814   // length.  This may not be pretty, but it is nicer than what was here before
815   // and I hereby claim my vaffel-is.
816   //
817   // NOTE: This assumes that the upper/lower case of an ASCII
818   // character is also ASCII.  This is currently the case, but it
819   // might break in the future if we implement more context and locale
820   // dependent upper/lower conversions.
821   bool has_changed_character = false;
822 
823   // Convert all characters to upper case, assuming that they will fit
824   // in the buffer
825   StringCharacterStream stream(string);
826   unibrow::uchar chars[Converter::kMaxWidth];
827   // We can assume that the string is not empty
828   uc32 current = stream.GetNext();
829   bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
830   for (int i = 0; i < result_length;) {
831     bool has_next = stream.HasMore();
832     uc32 next = has_next ? stream.GetNext() : 0;
833     int char_length = mapping->get(current, next, chars);
834     if (char_length == 0) {
835       // The case conversion of this character is the character itself.
836       result->Set(i, current);
837       i++;
838     } else if (char_length == 1 &&
839                (ignore_overflow || !ToUpperOverflows(current))) {
840       // Common case: converting the letter resulted in one character.
841       DCHECK(static_cast<uc32>(chars[0]) != current);
842       result->Set(i, chars[0]);
843       has_changed_character = true;
844       i++;
845     } else if (result_length == string->length()) {
846       bool overflows = ToUpperOverflows(current);
847       // We've assumed that the result would be as long as the
848       // input but here is a character that converts to several
849       // characters.  No matter, we calculate the exact length
850       // of the result and try the whole thing again.
851       //
852       // Note that this leaves room for optimization.  We could just
853       // memcpy what we already have to the result string.  Also,
854       // the result string is the last object allocated we could
855       // "realloc" it and probably, in the vast majority of cases,
856       // extend the existing string to be able to hold the full
857       // result.
858       int next_length = 0;
859       if (has_next) {
860         next_length = mapping->get(next, 0, chars);
861         if (next_length == 0) next_length = 1;
862       }
863       int current_length = i + char_length + next_length;
864       while (stream.HasMore()) {
865         current = stream.GetNext();
866         overflows |= ToUpperOverflows(current);
867         // NOTE: we use 0 as the next character here because, while
868         // the next character may affect what a character converts to,
869         // it does not in any case affect the length of what it convert
870         // to.
871         int char_length = mapping->get(current, 0, chars);
872         if (char_length == 0) char_length = 1;
873         current_length += char_length;
874         if (current_length > String::kMaxLength) {
875           AllowHeapAllocation allocate_error_and_return;
876           THROW_NEW_ERROR_RETURN_FAILURE(isolate,
877                                          NewInvalidStringLengthError());
878         }
879       }
880       // Try again with the real length.  Return signed if we need
881       // to allocate a two-byte string for to uppercase.
882       return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
883                                              : Smi::FromInt(current_length);
884     } else {
885       for (int j = 0; j < char_length; j++) {
886         result->Set(i, chars[j]);
887         i++;
888       }
889       has_changed_character = true;
890     }
891     current = next;
892   }
893   if (has_changed_character) {
894     return result;
895   } else {
896     // If we didn't actually change anything in doing the conversion
897     // we simple return the result and let the converted string
898     // become garbage; there is no reason to keep two identical strings
899     // alive.
900     return string;
901   }
902 }
903 
904 
905 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
906 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
907 
908 // Given a word and two range boundaries returns a word with high bit
909 // set in every byte iff the corresponding input byte was strictly in
910 // the range (m, n). All the other bits in the result are cleared.
911 // This function is only useful when it can be inlined and the
912 // boundaries are statically known.
913 // Requires: all bytes in the input word and the boundaries must be
914 // ASCII (less than 0x7F).
AsciiRangeMask(uintptr_t w,char m,char n)915 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
916   // Use strict inequalities since in edge cases the function could be
917   // further simplified.
918   DCHECK(0 < m && m < n);
919   // Has high bit set in every w byte less than n.
920   uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
921   // Has high bit set in every w byte greater than m.
922   uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
923   return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
924 }
925 
926 
927 #ifdef DEBUG
CheckFastAsciiConvert(char * dst,const char * src,int length,bool changed,bool is_to_lower)928 static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
929                                   bool changed, bool is_to_lower) {
930   bool expected_changed = false;
931   for (int i = 0; i < length; i++) {
932     if (dst[i] == src[i]) continue;
933     expected_changed = true;
934     if (is_to_lower) {
935       DCHECK('A' <= src[i] && src[i] <= 'Z');
936       DCHECK(dst[i] == src[i] + ('a' - 'A'));
937     } else {
938       DCHECK('a' <= src[i] && src[i] <= 'z');
939       DCHECK(dst[i] == src[i] - ('a' - 'A'));
940     }
941   }
942   return (expected_changed == changed);
943 }
944 #endif
945 
946 
947 template <class Converter>
FastAsciiConvert(char * dst,const char * src,int length,bool * changed_out)948 static bool FastAsciiConvert(char* dst, const char* src, int length,
949                              bool* changed_out) {
950 #ifdef DEBUG
951   char* saved_dst = dst;
952   const char* saved_src = src;
953 #endif
954   DisallowHeapAllocation no_gc;
955   // We rely on the distance between upper and lower case letters
956   // being a known power of 2.
957   DCHECK('a' - 'A' == (1 << 5));
958   // Boundaries for the range of input characters than require conversion.
959   static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
960   static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
961   bool changed = false;
962   uintptr_t or_acc = 0;
963   const char* const limit = src + length;
964 
965   // dst is newly allocated and always aligned.
966   DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
967   // Only attempt processing one word at a time if src is also aligned.
968   if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
969     // Process the prefix of the input that requires no conversion one aligned
970     // (machine) word at a time.
971     while (src <= limit - sizeof(uintptr_t)) {
972       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
973       or_acc |= w;
974       if (AsciiRangeMask(w, lo, hi) != 0) {
975         changed = true;
976         break;
977       }
978       *reinterpret_cast<uintptr_t*>(dst) = w;
979       src += sizeof(uintptr_t);
980       dst += sizeof(uintptr_t);
981     }
982     // Process the remainder of the input performing conversion when
983     // required one word at a time.
984     while (src <= limit - sizeof(uintptr_t)) {
985       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
986       or_acc |= w;
987       uintptr_t m = AsciiRangeMask(w, lo, hi);
988       // The mask has high (7th) bit set in every byte that needs
989       // conversion and we know that the distance between cases is
990       // 1 << 5.
991       *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
992       src += sizeof(uintptr_t);
993       dst += sizeof(uintptr_t);
994     }
995   }
996   // Process the last few bytes of the input (or the whole input if
997   // unaligned access is not supported).
998   while (src < limit) {
999     char c = *src;
1000     or_acc |= c;
1001     if (lo < c && c < hi) {
1002       c ^= (1 << 5);
1003       changed = true;
1004     }
1005     *dst = c;
1006     ++src;
1007     ++dst;
1008   }
1009 
1010   if ((or_acc & kAsciiMask) != 0) return false;
1011 
1012   DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
1013                                Converter::kIsToLower));
1014 
1015   *changed_out = changed;
1016   return true;
1017 }
1018 
1019 
1020 template <class Converter>
ConvertCase(Handle<String> s,Isolate * isolate,unibrow::Mapping<Converter,128> * mapping)1021 MUST_USE_RESULT static Object* ConvertCase(
1022     Handle<String> s, Isolate* isolate,
1023     unibrow::Mapping<Converter, 128>* mapping) {
1024   s = String::Flatten(s);
1025   int length = s->length();
1026   // Assume that the string is not empty; we need this assumption later
1027   if (length == 0) return *s;
1028 
1029   // Simpler handling of ASCII strings.
1030   //
1031   // NOTE: This assumes that the upper/lower case of an ASCII
1032   // character is also ASCII.  This is currently the case, but it
1033   // might break in the future if we implement more context and locale
1034   // dependent upper/lower conversions.
1035   if (s->IsOneByteRepresentationUnderneath()) {
1036     // Same length as input.
1037     Handle<SeqOneByteString> result =
1038         isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
1039     DisallowHeapAllocation no_gc;
1040     String::FlatContent flat_content = s->GetFlatContent();
1041     DCHECK(flat_content.IsFlat());
1042     bool has_changed_character = false;
1043     bool is_ascii = FastAsciiConvert<Converter>(
1044         reinterpret_cast<char*>(result->GetChars()),
1045         reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
1046         length, &has_changed_character);
1047     // If not ASCII, we discard the result and take the 2 byte path.
1048     if (is_ascii) return has_changed_character ? *result : *s;
1049   }
1050 
1051   Handle<SeqString> result;  // Same length as input.
1052   if (s->IsOneByteRepresentation()) {
1053     result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
1054   } else {
1055     result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
1056   }
1057 
1058   Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
1059   if (answer->IsException(isolate) || answer->IsString()) return answer;
1060 
1061   DCHECK(answer->IsSmi());
1062   length = Smi::cast(answer)->value();
1063   if (s->IsOneByteRepresentation() && length > 0) {
1064     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1065         isolate, result, isolate->factory()->NewRawOneByteString(length));
1066   } else {
1067     if (length < 0) length = -length;
1068     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1069         isolate, result, isolate->factory()->NewRawTwoByteString(length));
1070   }
1071   return ConvertCaseHelper(isolate, *s, *result, length, mapping);
1072 }
1073 
1074 
RUNTIME_FUNCTION(Runtime_StringToLowerCase)1075 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
1076   HandleScope scope(isolate);
1077   DCHECK_EQ(args.length(), 1);
1078   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
1079   return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
1080 }
1081 
1082 
RUNTIME_FUNCTION(Runtime_StringToUpperCase)1083 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
1084   HandleScope scope(isolate);
1085   DCHECK_EQ(args.length(), 1);
1086   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
1087   return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
1088 }
1089 
RUNTIME_FUNCTION(Runtime_StringLessThan)1090 RUNTIME_FUNCTION(Runtime_StringLessThan) {
1091   HandleScope handle_scope(isolate);
1092   DCHECK_EQ(2, args.length());
1093   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1094   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1095   switch (String::Compare(x, y)) {
1096     case ComparisonResult::kLessThan:
1097       return isolate->heap()->true_value();
1098     case ComparisonResult::kEqual:
1099     case ComparisonResult::kGreaterThan:
1100       return isolate->heap()->false_value();
1101     case ComparisonResult::kUndefined:
1102       break;
1103   }
1104   UNREACHABLE();
1105   return Smi::FromInt(0);
1106 }
1107 
RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual)1108 RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual) {
1109   HandleScope handle_scope(isolate);
1110   DCHECK_EQ(2, args.length());
1111   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1112   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1113   switch (String::Compare(x, y)) {
1114     case ComparisonResult::kEqual:
1115     case ComparisonResult::kLessThan:
1116       return isolate->heap()->true_value();
1117     case ComparisonResult::kGreaterThan:
1118       return isolate->heap()->false_value();
1119     case ComparisonResult::kUndefined:
1120       break;
1121   }
1122   UNREACHABLE();
1123   return Smi::FromInt(0);
1124 }
1125 
RUNTIME_FUNCTION(Runtime_StringGreaterThan)1126 RUNTIME_FUNCTION(Runtime_StringGreaterThan) {
1127   HandleScope handle_scope(isolate);
1128   DCHECK_EQ(2, args.length());
1129   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1130   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1131   switch (String::Compare(x, y)) {
1132     case ComparisonResult::kGreaterThan:
1133       return isolate->heap()->true_value();
1134     case ComparisonResult::kEqual:
1135     case ComparisonResult::kLessThan:
1136       return isolate->heap()->false_value();
1137     case ComparisonResult::kUndefined:
1138       break;
1139   }
1140   UNREACHABLE();
1141   return Smi::FromInt(0);
1142 }
1143 
RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual)1144 RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual) {
1145   HandleScope handle_scope(isolate);
1146   DCHECK_EQ(2, args.length());
1147   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1148   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1149   switch (String::Compare(x, y)) {
1150     case ComparisonResult::kEqual:
1151     case ComparisonResult::kGreaterThan:
1152       return isolate->heap()->true_value();
1153     case ComparisonResult::kLessThan:
1154       return isolate->heap()->false_value();
1155     case ComparisonResult::kUndefined:
1156       break;
1157   }
1158   UNREACHABLE();
1159   return Smi::FromInt(0);
1160 }
1161 
RUNTIME_FUNCTION(Runtime_StringEqual)1162 RUNTIME_FUNCTION(Runtime_StringEqual) {
1163   HandleScope handle_scope(isolate);
1164   DCHECK_EQ(2, args.length());
1165   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1166   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1167   return isolate->heap()->ToBoolean(String::Equals(x, y));
1168 }
1169 
RUNTIME_FUNCTION(Runtime_StringNotEqual)1170 RUNTIME_FUNCTION(Runtime_StringNotEqual) {
1171   HandleScope handle_scope(isolate);
1172   DCHECK_EQ(2, args.length());
1173   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1174   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1175   return isolate->heap()->ToBoolean(!String::Equals(x, y));
1176 }
1177 
RUNTIME_FUNCTION(Runtime_FlattenString)1178 RUNTIME_FUNCTION(Runtime_FlattenString) {
1179   HandleScope scope(isolate);
1180   DCHECK(args.length() == 1);
1181   CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
1182   return *String::Flatten(str);
1183 }
1184 
1185 
RUNTIME_FUNCTION(Runtime_StringCharFromCode)1186 RUNTIME_FUNCTION(Runtime_StringCharFromCode) {
1187   HandleScope handlescope(isolate);
1188   DCHECK_EQ(1, args.length());
1189   if (args[0]->IsNumber()) {
1190     CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
1191     code &= 0xffff;
1192     return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
1193   }
1194   return isolate->heap()->empty_string();
1195 }
1196 
RUNTIME_FUNCTION(Runtime_ExternalStringGetChar)1197 RUNTIME_FUNCTION(Runtime_ExternalStringGetChar) {
1198   SealHandleScope shs(isolate);
1199   DCHECK_EQ(2, args.length());
1200   CONVERT_ARG_CHECKED(ExternalString, string, 0);
1201   CONVERT_INT32_ARG_CHECKED(index, 1);
1202   return Smi::FromInt(string->Get(index));
1203 }
1204 
RUNTIME_FUNCTION(Runtime_StringCharCodeAt)1205 RUNTIME_FUNCTION(Runtime_StringCharCodeAt) {
1206   SealHandleScope shs(isolate);
1207   DCHECK(args.length() == 2);
1208   if (!args[0]->IsString()) return isolate->heap()->undefined_value();
1209   if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
1210   if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
1211   return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
1212 }
1213 
1214 }  // namespace internal
1215 }  // namespace v8
1216