• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36 
37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_
38 #define V8_S390_ASSEMBLER_S390_INL_H_
39 
40 #include "src/s390/assembler-s390.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 namespace v8 {
46 namespace internal {
47 
SupportsCrankshaft()48 bool CpuFeatures::SupportsCrankshaft() { return true; }
49 
apply(intptr_t delta)50 void RelocInfo::apply(intptr_t delta) {
51   // Absolute code pointer inside code object moves with the code object.
52   if (IsInternalReference(rmode_)) {
53     // Jump table entry
54     Address target = Memory::Address_at(pc_);
55     Memory::Address_at(pc_) = target + delta;
56   } else if (IsCodeTarget(rmode_)) {
57     SixByteInstr instr =
58         Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
59     int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2  // halfwords
60                   - static_cast<int32_t>(delta);
61     instr >>= 32;  // Clear the 4-byte displacement field.
62     instr <<= 32;
63     instr |= static_cast<uint32_t>(dis / 2);
64     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
65                                                   instr);
66   } else {
67     // mov sequence
68     DCHECK(IsInternalReferenceEncoded(rmode_));
69     Address target = Assembler::target_address_at(pc_, host_);
70     Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
71                                      SKIP_ICACHE_FLUSH);
72   }
73 }
74 
target_internal_reference()75 Address RelocInfo::target_internal_reference() {
76   if (IsInternalReference(rmode_)) {
77     // Jump table entry
78     return Memory::Address_at(pc_);
79   } else {
80     // mov sequence
81     DCHECK(IsInternalReferenceEncoded(rmode_));
82     return Assembler::target_address_at(pc_, host_);
83   }
84 }
85 
target_internal_reference_address()86 Address RelocInfo::target_internal_reference_address() {
87   DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
88   return reinterpret_cast<Address>(pc_);
89 }
90 
target_address()91 Address RelocInfo::target_address() {
92   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
93   return Assembler::target_address_at(pc_, host_);
94 }
95 
target_address_address()96 Address RelocInfo::target_address_address() {
97   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
98          rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
99 
100   // Read the address of the word containing the target_address in an
101   // instruction stream.
102   // The only architecture-independent user of this function is the serializer.
103   // The serializer uses it to find out how many raw bytes of instruction to
104   // output before the next target.
105   // For an instruction like LIS/ORI where the target bits are mixed into the
106   // instruction bits, the size of the target will be zero, indicating that the
107   // serializer should not step forward in memory after a target is resolved
108   // and written.
109   return reinterpret_cast<Address>(pc_);
110 }
111 
constant_pool_entry_address()112 Address RelocInfo::constant_pool_entry_address() {
113   UNREACHABLE();
114   return NULL;
115 }
116 
target_address_size()117 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
118 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)119 void RelocInfo::set_target_address(Address target,
120                                    WriteBarrierMode write_barrier_mode,
121                                    ICacheFlushMode icache_flush_mode) {
122   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
123   Assembler::set_target_address_at(isolate_, pc_, host_, target,
124                                    icache_flush_mode);
125   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
126       IsCodeTarget(rmode_)) {
127     Object* target_code = Code::GetCodeFromTargetAddress(target);
128     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
129         host(), this, HeapObject::cast(target_code));
130   }
131 }
132 
target_address_from_return_address(Address pc)133 Address Assembler::target_address_from_return_address(Address pc) {
134   // Returns the address of the call target from the return address that will
135   // be returned to after a call.
136   // Sequence is:
137   //    BRASL r14, RI
138   return pc - kCallTargetAddressOffset;
139 }
140 
return_address_from_call_start(Address pc)141 Address Assembler::return_address_from_call_start(Address pc) {
142   // Sequence is:
143   //    BRASL r14, RI
144   return pc + kCallTargetAddressOffset;
145 }
146 
code_target_object_handle_at(Address pc)147 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
148   SixByteInstr instr =
149       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
150   int index = instr & 0xFFFFFFFF;
151   return code_targets_[index];
152 }
153 
target_object()154 Object* RelocInfo::target_object() {
155   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
156   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
157 }
158 
target_object_handle(Assembler * origin)159 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
160   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
161   if (rmode_ == EMBEDDED_OBJECT) {
162     return Handle<Object>(
163         reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
164   } else {
165     return origin->code_target_object_handle_at(pc_);
166   }
167 }
168 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)169 void RelocInfo::set_target_object(Object* target,
170                                   WriteBarrierMode write_barrier_mode,
171                                   ICacheFlushMode icache_flush_mode) {
172   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
173   Assembler::set_target_address_at(isolate_, pc_, host_,
174                                    reinterpret_cast<Address>(target),
175                                    icache_flush_mode);
176   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
177       target->IsHeapObject()) {
178     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
179         host(), this, HeapObject::cast(target));
180   }
181 }
182 
target_external_reference()183 Address RelocInfo::target_external_reference() {
184   DCHECK(rmode_ == EXTERNAL_REFERENCE);
185   return Assembler::target_address_at(pc_, host_);
186 }
187 
target_runtime_entry(Assembler * origin)188 Address RelocInfo::target_runtime_entry(Assembler* origin) {
189   DCHECK(IsRuntimeEntry(rmode_));
190   return target_address();
191 }
192 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)193 void RelocInfo::set_target_runtime_entry(Address target,
194                                          WriteBarrierMode write_barrier_mode,
195                                          ICacheFlushMode icache_flush_mode) {
196   DCHECK(IsRuntimeEntry(rmode_));
197   if (target_address() != target)
198     set_target_address(target, write_barrier_mode, icache_flush_mode);
199 }
200 
target_cell_handle()201 Handle<Cell> RelocInfo::target_cell_handle() {
202   DCHECK(rmode_ == RelocInfo::CELL);
203   Address address = Memory::Address_at(pc_);
204   return Handle<Cell>(reinterpret_cast<Cell**>(address));
205 }
206 
target_cell()207 Cell* RelocInfo::target_cell() {
208   DCHECK(rmode_ == RelocInfo::CELL);
209   return Cell::FromValueAddress(Memory::Address_at(pc_));
210 }
211 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)212 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
213                                 ICacheFlushMode icache_flush_mode) {
214   DCHECK(rmode_ == RelocInfo::CELL);
215   Address address = cell->address() + Cell::kValueOffset;
216   Memory::Address_at(pc_) = address;
217   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
218     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
219                                                                   cell);
220   }
221 }
222 
223 #if V8_TARGET_ARCH_S390X
224 // NOP(2byte) + PUSH + MOV + BASR =
225 // NOP + LAY + STG + IIHF + IILF + BASR
226 static const int kCodeAgingSequenceLength = 28;
227 static const int kCodeAgingTargetDelta = 14;  // Jump past NOP + PUSH to IIHF
228                                               // LAY + 4 * STG + LA
229 static const int kNoCodeAgeSequenceLength = 34;
230 #else
231 #if (V8_HOST_ARCH_S390)
232 // NOP + NILH + LAY + ST + IILF + BASR
233 static const int kCodeAgingSequenceLength = 24;
234 static const int kCodeAgingTargetDelta = 16;  // Jump past NOP to IILF
235 // NILH + LAY + 4 * ST + LA
236 static const int kNoCodeAgeSequenceLength = 30;
237 #else
238 // NOP + LAY + ST + IILF + BASR
239 static const int kCodeAgingSequenceLength = 20;
240 static const int kCodeAgingTargetDelta = 12;  // Jump past NOP to IILF
241 // LAY + 4 * ST + LA
242 static const int kNoCodeAgeSequenceLength = 26;
243 #endif
244 #endif
245 
code_age_stub_handle(Assembler * origin)246 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
247   UNREACHABLE();  // This should never be reached on S390.
248   return Handle<Object>();
249 }
250 
code_age_stub()251 Code* RelocInfo::code_age_stub() {
252   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
253   return Code::GetCodeFromTargetAddress(
254       Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
255 }
256 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)257 void RelocInfo::set_code_age_stub(Code* stub,
258                                   ICacheFlushMode icache_flush_mode) {
259   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
260   Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
261                                    stub->instruction_start(),
262                                    icache_flush_mode);
263 }
264 
debug_call_address()265 Address RelocInfo::debug_call_address() {
266   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
267   return Assembler::target_address_at(pc_, host_);
268 }
269 
set_debug_call_address(Address target)270 void RelocInfo::set_debug_call_address(Address target) {
271   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
272   Assembler::set_target_address_at(isolate_, pc_, host_, target);
273   if (host() != NULL) {
274     Object* target_code = Code::GetCodeFromTargetAddress(target);
275     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
276         host(), this, HeapObject::cast(target_code));
277   }
278 }
279 
WipeOut()280 void RelocInfo::WipeOut() {
281   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
282          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
283          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
284   if (IsInternalReference(rmode_)) {
285     // Jump table entry
286     Memory::Address_at(pc_) = NULL;
287   } else if (IsInternalReferenceEncoded(rmode_)) {
288     // mov sequence
289     // Currently used only by deserializer, no need to flush.
290     Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
291                                      SKIP_ICACHE_FLUSH);
292   } else {
293     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
294   }
295 }
296 
297 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)298 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
299   RelocInfo::Mode mode = rmode();
300   if (mode == RelocInfo::EMBEDDED_OBJECT) {
301     visitor->VisitEmbeddedPointer(this);
302   } else if (RelocInfo::IsCodeTarget(mode)) {
303     visitor->VisitCodeTarget(this);
304   } else if (mode == RelocInfo::CELL) {
305     visitor->VisitCell(this);
306   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
307     visitor->VisitExternalReference(this);
308   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
309     visitor->VisitInternalReference(this);
310   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
311     visitor->VisitCodeAgeSequence(this);
312   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
313              IsPatchedDebugBreakSlotSequence()) {
314     visitor->VisitDebugTarget(this);
315   } else if (IsRuntimeEntry(mode)) {
316     visitor->VisitRuntimeEntry(this);
317   }
318 }
319 
320 template <typename StaticVisitor>
Visit(Heap * heap)321 void RelocInfo::Visit(Heap* heap) {
322   RelocInfo::Mode mode = rmode();
323   if (mode == RelocInfo::EMBEDDED_OBJECT) {
324     StaticVisitor::VisitEmbeddedPointer(heap, this);
325   } else if (RelocInfo::IsCodeTarget(mode)) {
326     StaticVisitor::VisitCodeTarget(heap, this);
327   } else if (mode == RelocInfo::CELL) {
328     StaticVisitor::VisitCell(heap, this);
329   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
330     StaticVisitor::VisitExternalReference(this);
331   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
332     StaticVisitor::VisitInternalReference(this);
333   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
334     StaticVisitor::VisitCodeAgeSequence(heap, this);
335   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
336              IsPatchedDebugBreakSlotSequence()) {
337     StaticVisitor::VisitDebugTarget(heap, this);
338   } else if (IsRuntimeEntry(mode)) {
339     StaticVisitor::VisitRuntimeEntry(this);
340   }
341 }
342 
343 // Operand constructors
Operand(intptr_t immediate,RelocInfo::Mode rmode)344 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
345   rm_ = no_reg;
346   imm_ = immediate;
347   rmode_ = rmode;
348 }
349 
Operand(const ExternalReference & f)350 Operand::Operand(const ExternalReference& f) {
351   rm_ = no_reg;
352   imm_ = reinterpret_cast<intptr_t>(f.address());
353   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
354 }
355 
Operand(Smi * value)356 Operand::Operand(Smi* value) {
357   rm_ = no_reg;
358   imm_ = reinterpret_cast<intptr_t>(value);
359   rmode_ = kRelocInfo_NONEPTR;
360 }
361 
Operand(Register rm)362 Operand::Operand(Register rm) {
363   rm_ = rm;
364   rmode_ = kRelocInfo_NONEPTR;  // S390 -why doesn't ARM do this?
365 }
366 
CheckBuffer()367 void Assembler::CheckBuffer() {
368   if (buffer_space() <= kGap) {
369     GrowBuffer();
370   }
371 }
372 
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)373 int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
374                                     TypeFeedbackId ast_id) {
375   DCHECK(RelocInfo::IsCodeTarget(rmode));
376   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
377     SetRecordedAstId(ast_id);
378     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
379   } else {
380     RecordRelocInfo(rmode);
381   }
382 
383   int current = code_targets_.length();
384   if (current > 0 && code_targets_.last().is_identical_to(target)) {
385     // Optimization if we keep jumping to the same code target.
386     current--;
387   } else {
388     code_targets_.Add(target);
389   }
390   return current;
391 }
392 
393 // Helper to emit the binary encoding of a 2 byte instruction
emit2bytes(uint16_t x)394 void Assembler::emit2bytes(uint16_t x) {
395   CheckBuffer();
396 #if V8_TARGET_LITTLE_ENDIAN
397   // We need to emit instructions in big endian format as disassembler /
398   // simulator require the first byte of the instruction in order to decode
399   // the instruction length.  Swap the bytes.
400   x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
401 #endif
402   *reinterpret_cast<uint16_t*>(pc_) = x;
403   pc_ += 2;
404 }
405 
406 // Helper to emit the binary encoding of a 4 byte instruction
emit4bytes(uint32_t x)407 void Assembler::emit4bytes(uint32_t x) {
408   CheckBuffer();
409 #if V8_TARGET_LITTLE_ENDIAN
410   // We need to emit instructions in big endian format as disassembler /
411   // simulator require the first byte of the instruction in order to decode
412   // the instruction length.  Swap the bytes.
413   x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
414       ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
415 #endif
416   *reinterpret_cast<uint32_t*>(pc_) = x;
417   pc_ += 4;
418 }
419 
420 // Helper to emit the binary encoding of a 6 byte instruction
emit6bytes(uint64_t x)421 void Assembler::emit6bytes(uint64_t x) {
422   CheckBuffer();
423 #if V8_TARGET_LITTLE_ENDIAN
424   // We need to emit instructions in big endian format as disassembler /
425   // simulator require the first byte of the instruction in order to decode
426   // the instruction length.  Swap the bytes.
427   x = (static_cast<uint64_t>(x & 0xFF) << 40) |
428       (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
429       (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
430       (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
431       (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
432       (static_cast<uint64_t>((x >> 40) & 0xFF));
433   x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
434 #else
435   // We need to pad two bytes of zeros in order to get the 6-bytes
436   // stored from low address.
437   x = x << 16;
438   x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
439 #endif
440   // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
441   // space left over.
442   *reinterpret_cast<uint64_t*>(pc_) = x;
443   pc_ += 6;
444 }
445 
is_reg()446 bool Operand::is_reg() const { return rm_.is_valid(); }
447 
448 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
target_address_at(Address pc,Address constant_pool)449 Address Assembler::target_address_at(Address pc, Address constant_pool) {
450   // S390 Instruction!
451   // We want to check for instructions generated by Asm::mov()
452   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
453   SixByteInstr instr_1 =
454       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
455 
456   if (BRASL == op1 || BRCL == op1) {
457     int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
458     return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
459   }
460 
461 #if V8_TARGET_ARCH_S390X
462   int instr1_length =
463       Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
464   Opcode op2 = Instruction::S390OpcodeValue(
465       reinterpret_cast<const byte*>(pc + instr1_length));
466   SixByteInstr instr_2 = Instruction::InstructionBits(
467       reinterpret_cast<const byte*>(pc + instr1_length));
468   // IIHF for hi_32, IILF for lo_32
469   if (IIHF == op1 && IILF == op2) {
470     return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
471                                      ((instr_2 & 0xFFFFFFFF)));
472   }
473 #else
474   // IILF loads 32-bits
475   if (IILF == op1 || CFI == op1) {
476     return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
477   }
478 #endif
479 
480   UNIMPLEMENTED();
481   return (Address)0;
482 }
483 
484 // This sets the branch destination (which gets loaded at the call address).
485 // This is for calls and branches within generated code.  The serializer
486 // has already deserialized the mov instructions etc.
487 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)488 void Assembler::deserialization_set_special_target_at(
489     Isolate* isolate, Address instruction_payload, Code* code, Address target) {
490   set_target_address_at(isolate, instruction_payload, code, target);
491 }
492 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)493 void Assembler::deserialization_set_target_internal_reference_at(
494     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
495   if (RelocInfo::IsInternalReferenceEncoded(mode)) {
496     Code* code = NULL;
497     set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
498   } else {
499     Memory::Address_at(pc) = target;
500   }
501 }
502 
503 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
set_target_address_at(Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)504 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
505                                       Address constant_pool, Address target,
506                                       ICacheFlushMode icache_flush_mode) {
507   // Check for instructions generated by Asm::mov()
508   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
509   SixByteInstr instr_1 =
510       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
511   bool patched = false;
512 
513   if (BRASL == op1 || BRCL == op1) {
514     instr_1 >>= 32;  // Zero out the lower 32-bits
515     instr_1 <<= 32;
516     int32_t halfwords = (target - pc) / 2;  // number of halfwords
517     instr_1 |= static_cast<uint32_t>(halfwords);
518     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
519                                                   instr_1);
520     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
521       Assembler::FlushICache(isolate, pc, 6);
522     }
523     patched = true;
524   } else {
525 #if V8_TARGET_ARCH_S390X
526     int instr1_length =
527         Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
528     Opcode op2 = Instruction::S390OpcodeValue(
529         reinterpret_cast<const byte*>(pc + instr1_length));
530     SixByteInstr instr_2 = Instruction::InstructionBits(
531         reinterpret_cast<const byte*>(pc + instr1_length));
532     // IIHF for hi_32, IILF for lo_32
533     if (IIHF == op1 && IILF == op2) {
534       // IIHF
535       instr_1 >>= 32;  // Zero out the lower 32-bits
536       instr_1 <<= 32;
537       instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
538 
539       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
540                                                     instr_1);
541 
542       // IILF
543       instr_2 >>= 32;
544       instr_2 <<= 32;
545       instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
546 
547       Instruction::SetInstructionBits<SixByteInstr>(
548           reinterpret_cast<byte*>(pc + instr1_length), instr_2);
549       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
550         Assembler::FlushICache(isolate, pc, 12);
551       }
552       patched = true;
553     }
554 #else
555     // IILF loads 32-bits
556     if (IILF == op1 || CFI == op1) {
557       instr_1 >>= 32;  // Zero out the lower 32-bits
558       instr_1 <<= 32;
559       instr_1 |= reinterpret_cast<uint32_t>(target);
560 
561       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
562                                                     instr_1);
563       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
564         Assembler::FlushICache(isolate, pc, 6);
565       }
566       patched = true;
567     }
568 #endif
569   }
570   if (!patched) UNREACHABLE();
571 }
572 
573 }  // namespace internal
574 }  // namespace v8
575 
576 #endif  // V8_S390_ASSEMBLER_S390_INL_H_
577