• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* s_cbrtf.c -- float version of s_cbrt.c.
2   * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3   * Debugged and optimized by Bruce D. Evans.
4   */
5  
6  /*
7   * ====================================================
8   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9   *
10   * Developed at SunPro, a Sun Microsystems, Inc. business.
11   * Permission to use, copy, modify, and distribute this
12   * software is freely granted, provided that this notice
13   * is preserved.
14   * ====================================================
15   */
16  
17  #include <sys/cdefs.h>
18  __FBSDID("$FreeBSD$");
19  
20  #include "math.h"
21  #include "math_private.h"
22  
23  /* cbrtf(x)
24   * Return cube root of x
25   */
26  static const unsigned
27  	B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
28  	B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
29  
30  float
cbrtf(float x)31  cbrtf(float x)
32  {
33  	double r,T;
34  	float t;
35  	int32_t hx;
36  	u_int32_t sign;
37  	u_int32_t high;
38  
39  	GET_FLOAT_WORD(hx,x);
40  	sign=hx&0x80000000; 		/* sign= sign(x) */
41  	hx  ^=sign;
42  	if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
43  
44      /* rough cbrt to 5 bits */
45  	if(hx<0x00800000) { 		/* zero or subnormal? */
46  	    if(hx==0)
47  		return(x);		/* cbrt(+-0) is itself */
48  	    SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
49  	    t*=x;
50  	    GET_FLOAT_WORD(high,t);
51  	    SET_FLOAT_WORD(t,sign|((high&0x7fffffff)/3+B2));
52  	} else
53  	    SET_FLOAT_WORD(t,sign|(hx/3+B1));
54  
55      /*
56       * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
57       * double precision so that its terms can be arranged for efficiency
58       * without causing overflow or underflow.
59       */
60  	T=t;
61  	r=T*T*T;
62  	T=T*((double)x+x+r)/(x+r+r);
63  
64      /*
65       * Second step Newton iteration to 47 bits.  In double precision for
66       * efficiency and accuracy.
67       */
68  	r=T*T*T;
69  	T=T*((double)x+x+r)/(x+r+r);
70  
71      /* rounding to 24 bits is perfect in round-to-nearest mode */
72  	return(T);
73  }
74