• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36 
37 // A light-weight S390 Assembler
38 // Generates user mode instructions for z/Architecture
39 
40 #ifndef V8_S390_ASSEMBLER_S390_H_
41 #define V8_S390_ASSEMBLER_S390_H_
42 #include <stdio.h>
43 #if V8_HOST_ARCH_S390
44 // elf.h include is required for auxv check for STFLE facility used
45 // for hardware detection, which is sensible only on s390 hosts.
46 #include <elf.h>
47 #endif
48 
49 #include <fcntl.h>
50 #include <unistd.h>
51 #include "src/assembler.h"
52 #include "src/s390/constants-s390.h"
53 
54 #define ABI_USES_FUNCTION_DESCRIPTORS 0
55 
56 #define ABI_PASSES_HANDLES_IN_REGS 1
57 
58 // ObjectPair is defined under runtime/runtime-util.h.
59 // On 31-bit, ObjectPair == uint64_t.  ABI dictates long long
60 //            be returned with the lower addressed half in r2
61 //            and the higher addressed half in r3. (Returns in Regs)
62 // On 64-bit, ObjectPair is a Struct.  ABI dictaes Structs be
63 //            returned in a storage buffer allocated by the caller,
64 //            with the address of this buffer passed as a hidden
65 //            argument in r2. (Does NOT return in Regs)
66 // For x86 linux, ObjectPair is returned in registers.
67 #if V8_TARGET_ARCH_S390X
68 #define ABI_RETURNS_OBJECTPAIR_IN_REGS 0
69 #else
70 #define ABI_RETURNS_OBJECTPAIR_IN_REGS 1
71 #endif
72 
73 #define ABI_CALL_VIA_IP 1
74 
75 #define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC
76 
77 namespace v8 {
78 namespace internal {
79 
80 // clang-format off
81 #define GENERAL_REGISTERS(V)                              \
82   V(r0)  V(r1)  V(r2)  V(r3)  V(r4)  V(r5)  V(r6)  V(r7)  \
83   V(r8)  V(r9)  V(r10) V(fp) V(ip) V(r13) V(r14) V(sp)
84 
85 #define ALLOCATABLE_GENERAL_REGISTERS(V)                  \
86   V(r2)  V(r3)  V(r4)  V(r5)  V(r6)  V(r7)                \
87   V(r8)  V(r9)  V(r13)
88 
89 #define DOUBLE_REGISTERS(V)                               \
90   V(d0)  V(d1)  V(d2)  V(d3)  V(d4)  V(d5)  V(d6)  V(d7)  \
91   V(d8)  V(d9)  V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
92 
93 #define FLOAT_REGISTERS DOUBLE_REGISTERS
94 
95 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
96   V(d1)  V(d2)  V(d3)  V(d4)  V(d5)  V(d6)  V(d7)         \
97   V(d8)  V(d9)  V(d10) V(d11) V(d12) V(d15) V(d0)
98 // clang-format on
99 
100 // CPU Registers.
101 //
102 // 1) We would prefer to use an enum, but enum values are assignment-
103 // compatible with int, which has caused code-generation bugs.
104 //
105 // 2) We would prefer to use a class instead of a struct but we don't like
106 // the register initialization to depend on the particular initialization
107 // order (which appears to be different on OS X, Linux, and Windows for the
108 // installed versions of C++ we tried). Using a struct permits C-style
109 // "initialization". Also, the Register objects cannot be const as this
110 // forces initialization stubs in MSVC, making us dependent on initialization
111 // order.
112 //
113 // 3) By not using an enum, we are possibly preventing the compiler from
114 // doing certain constant folds, which may significantly reduce the
115 // code generated for some assembly instructions (because they boil down
116 // to a few constants). If this is a problem, we could change the code
117 // such that we use an enum in optimized mode, and the struct in debug
118 // mode. This way we get the compile-time error checking in debug mode
119 // and best performance in optimized code.
120 
121 struct Register {
122   enum Code {
123 #define REGISTER_CODE(R) kCode_##R,
124     GENERAL_REGISTERS(REGISTER_CODE)
125 #undef REGISTER_CODE
126         kAfterLast,
127     kCode_no_reg = -1
128   };
129   static const int kNumRegisters = Code::kAfterLast;
130 
131 #define REGISTER_COUNT(R) 1 +
132   static const int kNumAllocatable =
133       ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT) 0;
134 #undef REGISTER_COUNT
135 
136 #define REGISTER_BIT(R) 1 << kCode_##R |
137   static const RegList kAllocatable =
138       ALLOCATABLE_GENERAL_REGISTERS(REGISTER_BIT) 0;
139 #undef REGISTER_BIT
140 
from_codeRegister141   static Register from_code(int code) {
142     DCHECK(code >= 0);
143     DCHECK(code < kNumRegisters);
144     Register r = {code};
145     return r;
146   }
147 
is_validRegister148   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister149   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister150   int code() const {
151     DCHECK(is_valid());
152     return reg_code;
153   }
bitRegister154   int bit() const {
155     DCHECK(is_valid());
156     return 1 << reg_code;
157   }
158 
set_codeRegister159   void set_code(int code) {
160     reg_code = code;
161     DCHECK(is_valid());
162   }
163 
164 #if V8_TARGET_LITTLE_ENDIAN
165   static const int kMantissaOffset = 0;
166   static const int kExponentOffset = 4;
167 #else
168   static const int kMantissaOffset = 4;
169   static const int kExponentOffset = 0;
170 #endif
171 
172   // Unfortunately we can't make this private in a struct.
173   int reg_code;
174 };
175 
176 typedef struct Register Register;
177 
178 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
179 GENERAL_REGISTERS(DECLARE_REGISTER)
180 #undef DECLARE_REGISTER
181 const Register no_reg = {Register::kCode_no_reg};
182 
183 // Register aliases
184 const Register kLithiumScratch = r1;  // lithium scratch.
185 const Register kRootRegister = r10;   // Roots array pointer.
186 const Register cp = r13;              // JavaScript context pointer.
187 
188 static const bool kSimpleFPAliasing = true;
189 
190 // Double word FP register.
191 struct DoubleRegister {
192   enum Code {
193 #define REGISTER_CODE(R) kCode_##R,
194     DOUBLE_REGISTERS(REGISTER_CODE)
195 #undef REGISTER_CODE
196         kAfterLast,
197     kCode_no_reg = -1
198   };
199 
200   static const int kNumRegisters = Code::kAfterLast;
201   static const int kMaxNumRegisters = kNumRegisters;
202 
is_validDoubleRegister203   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isDoubleRegister204   bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
205 
codeDoubleRegister206   int code() const {
207     DCHECK(is_valid());
208     return reg_code;
209   }
210 
bitDoubleRegister211   int bit() const {
212     DCHECK(is_valid());
213     return 1 << reg_code;
214   }
215 
from_codeDoubleRegister216   static DoubleRegister from_code(int code) {
217     DoubleRegister r = {code};
218     return r;
219   }
220 
221   int reg_code;
222 };
223 
224 typedef DoubleRegister FloatRegister;
225 
226 // TODO(john.yan) Define SIMD registers.
227 typedef DoubleRegister Simd128Register;
228 
229 #define DECLARE_REGISTER(R) \
230   const DoubleRegister R = {DoubleRegister::kCode_##R};
231 DOUBLE_REGISTERS(DECLARE_REGISTER)
232 #undef DECLARE_REGISTER
233 const Register no_dreg = {Register::kCode_no_reg};
234 
235 // Aliases for double registers.  Defined using #define instead of
236 // "static const DoubleRegister&" because Clang complains otherwise when a
237 // compilation unit that includes this header doesn't use the variables.
238 #define kDoubleRegZero d14
239 #define kScratchDoubleReg d13
240 
241 Register ToRegister(int num);
242 
243 // Coprocessor register
244 struct CRegister {
is_validCRegister245   bool is_valid() const { return 0 <= reg_code && reg_code < 8; }
isCRegister246   bool is(CRegister creg) const { return reg_code == creg.reg_code; }
codeCRegister247   int code() const {
248     DCHECK(is_valid());
249     return reg_code;
250   }
bitCRegister251   int bit() const {
252     DCHECK(is_valid());
253     return 1 << reg_code;
254   }
255 
256   // Unfortunately we can't make this private in a struct.
257   int reg_code;
258 };
259 
260 const CRegister no_creg = {-1};
261 
262 const CRegister cr0 = {0};
263 const CRegister cr1 = {1};
264 const CRegister cr2 = {2};
265 const CRegister cr3 = {3};
266 const CRegister cr4 = {4};
267 const CRegister cr5 = {5};
268 const CRegister cr6 = {6};
269 const CRegister cr7 = {7};
270 
271 // -----------------------------------------------------------------------------
272 // Machine instruction Operands
273 
274 #if V8_TARGET_ARCH_S390X
275 const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64;
276 #else
277 const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32;
278 #endif
279 
280 // Class Operand represents a shifter operand in data processing instructions
281 // defining immediate numbers and masks
282 typedef uint8_t Length;
283 
284 struct Mask {
285   uint8_t mask;
valueMask286   uint8_t value() { return mask; }
from_valueMask287   static Mask from_value(uint8_t input) {
288     DCHECK(input <= 0x0F);
289     Mask m = {input};
290     return m;
291   }
292 };
293 
294 class Operand BASE_EMBEDDED {
295  public:
296   // immediate
297   INLINE(explicit Operand(intptr_t immediate,
298                           RelocInfo::Mode rmode = kRelocInfo_NONEPTR));
INLINE(static Operand Zero ())299   INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); }
300   INLINE(explicit Operand(const ExternalReference& f));
301   explicit Operand(Handle<Object> handle);
302   INLINE(explicit Operand(Smi* value));
303 
304   // rm
305   INLINE(explicit Operand(Register rm));
306 
307   // Return true if this is a register operand.
308   INLINE(bool is_reg() const);
309 
310   bool must_output_reloc_info(const Assembler* assembler) const;
311 
immediate()312   inline intptr_t immediate() const {
313     DCHECK(!rm_.is_valid());
314     return imm_;
315   }
316 
setBits(int n)317   inline void setBits(int n) {
318     imm_ = (static_cast<uint32_t>(imm_) << (32 - n)) >> (32 - n);
319   }
320 
rm()321   Register rm() const { return rm_; }
322 
323  private:
324   Register rm_;
325   intptr_t imm_;  // valid if rm_ == no_reg
326   RelocInfo::Mode rmode_;
327 
328   friend class Assembler;
329   friend class MacroAssembler;
330 };
331 
332 typedef int32_t Disp;
333 
334 // Class MemOperand represents a memory operand in load and store instructions
335 // On S390, we have various flavours of memory operands:
336 //   1) a base register + 16 bit unsigned displacement
337 //   2) a base register + index register + 16 bit unsigned displacement
338 //   3) a base register + index register + 20 bit signed displacement
339 class MemOperand BASE_EMBEDDED {
340  public:
341   explicit MemOperand(Register rx, Disp offset = 0);
342   explicit MemOperand(Register rx, Register rb, Disp offset = 0);
343 
offset()344   int32_t offset() const { return offset_; }
getDisplacement()345   uint32_t getDisplacement() const { return offset(); }
346 
347   // Base register
rb()348   Register rb() const {
349     DCHECK(!baseRegister.is(no_reg));
350     return baseRegister;
351   }
352 
getBaseRegister()353   Register getBaseRegister() const { return rb(); }
354 
355   // Index Register
rx()356   Register rx() const {
357     DCHECK(!indexRegister.is(no_reg));
358     return indexRegister;
359   }
getIndexRegister()360   Register getIndexRegister() const { return rx(); }
361 
362  private:
363   Register baseRegister;   // base
364   Register indexRegister;  // index
365   int32_t offset_;         // offset
366 
367   friend class Assembler;
368 };
369 
370 class DeferredRelocInfo {
371  public:
DeferredRelocInfo()372   DeferredRelocInfo() {}
DeferredRelocInfo(int position,RelocInfo::Mode rmode,intptr_t data)373   DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data)
374       : position_(position), rmode_(rmode), data_(data) {}
375 
position()376   int position() const { return position_; }
rmode()377   RelocInfo::Mode rmode() const { return rmode_; }
data()378   intptr_t data() const { return data_; }
379 
380  private:
381   int position_;
382   RelocInfo::Mode rmode_;
383   intptr_t data_;
384 };
385 
386 class Assembler : public AssemblerBase {
387  public:
388   // Create an assembler. Instructions and relocation information are emitted
389   // into a buffer, with the instructions starting from the beginning and the
390   // relocation information starting from the end of the buffer. See CodeDesc
391   // for a detailed comment on the layout (globals.h).
392   //
393   // If the provided buffer is NULL, the assembler allocates and grows its own
394   // buffer, and buffer_size determines the initial buffer size. The buffer is
395   // owned by the assembler and deallocated upon destruction of the assembler.
396   //
397   // If the provided buffer is not NULL, the assembler uses the provided buffer
398   // for code generation and assumes its size to be buffer_size. If the buffer
399   // is too small, a fatal error occurs. No deallocation of the buffer is done
400   // upon destruction of the assembler.
401   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()402   virtual ~Assembler() {}
403 
404   // GetCode emits any pending (non-emitted) code and fills the descriptor
405   // desc. GetCode() is idempotent; it returns the same result if no other
406   // Assembler functions are invoked in between GetCode() calls.
407   void GetCode(CodeDesc* desc);
408 
409   // Label operations & relative jumps (PPUM Appendix D)
410   //
411   // Takes a branch opcode (cc) and a label (L) and generates
412   // either a backward branch or a forward branch and links it
413   // to the label fixup chain. Usage:
414   //
415   // Label L;    // unbound label
416   // j(cc, &L);  // forward branch to unbound label
417   // bind(&L);   // bind label to the current pc
418   // j(cc, &L);  // backward branch to bound label
419   // bind(&L);   // illegal: a label may be bound only once
420   //
421   // Note: The same Label can be used for forward and backward branches
422   // but it may be bound only once.
423 
424   void bind(Label* L);  // binds an unbound label L to the current code position
425 
426   // Links a label at the current pc_offset().  If already bound, returns the
427   // bound position.  If already linked, returns the position of the prior link.
428   // Otherwise, returns the current pc_offset().
429   int link(Label* L);
430 
431   // Determines if Label is bound and near enough so that a single
432   // branch instruction can be used to reach it.
433   bool is_near(Label* L, Condition cond);
434 
435   // Returns the branch offset to the given label from the current code position
436   // Links the label to the current position if it is still unbound
branch_offset(Label * L)437   int branch_offset(Label* L) { return link(L) - pc_offset(); }
438 
439   // Puts a labels target address at the given position.
440   // The high 8 bits are set to zero.
441   void label_at_put(Label* L, int at_offset);
442   void load_label_offset(Register r1, Label* L);
443 
444   // Read/Modify the code target address in the branch/call instruction at pc.
445   INLINE(static Address target_address_at(Address pc, Address constant_pool));
446   INLINE(static void set_target_address_at(
447       Isolate* isolate, Address pc, Address constant_pool, Address target,
448       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
INLINE(static Address target_address_at (Address pc,Code * code))449   INLINE(static Address target_address_at(Address pc, Code* code)) {
450     Address constant_pool = NULL;
451     return target_address_at(pc, constant_pool);
452   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))453   INLINE(static void set_target_address_at(
454       Isolate* isolate, Address pc, Code* code, Address target,
455       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
456     Address constant_pool = NULL;
457     set_target_address_at(isolate, pc, constant_pool, target,
458                           icache_flush_mode);
459   }
460 
461   // Return the code target address at a call site from the return address
462   // of that call in the instruction stream.
463   inline static Address target_address_from_return_address(Address pc);
464 
465   // Given the address of the beginning of a call, return the address
466   // in the instruction stream that the call will return to.
467   INLINE(static Address return_address_from_call_start(Address pc));
468 
469   inline Handle<Object> code_target_object_handle_at(Address pc);
470   // This sets the branch destination.
471   // This is for calls and branches within generated code.
472   inline static void deserialization_set_special_target_at(
473       Isolate* isolate, Address instruction_payload, Code* code,
474       Address target);
475 
476   // This sets the internal reference at the pc.
477   inline static void deserialization_set_target_internal_reference_at(
478       Isolate* isolate, Address pc, Address target,
479       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
480 
481   // Here we are patching the address in the IIHF/IILF instruction pair.
482   // These values are used in the serialization process and must be zero for
483   // S390 platform, as Code, Embedded Object or External-reference pointers
484   // are split across two consecutive instructions and don't exist separately
485   // in the code, so the serializer should not step forwards in memory after
486   // a target is resolved and written.
487   static const int kSpecialTargetSize = 0;
488 
489 // Number of bytes for instructions used to store pointer sized constant.
490 #if V8_TARGET_ARCH_S390X
491   static const int kBytesForPtrConstant = 12;  // IIHF + IILF
492 #else
493   static const int kBytesForPtrConstant = 6;  // IILF
494 #endif
495 
496   // Distance between the instruction referring to the address of the call
497   // target and the return address.
498 
499   // Offset between call target address and return address
500   // for BRASL calls
501   // Patch will be appiled to other FIXED_SEQUENCE call
502   static const int kCallTargetAddressOffset = 6;
503 
504 // The length of FIXED_SEQUENCE call
505 // iihf    r8, <address_hi>  // <64-bit only>
506 // iilf    r8, <address_lo>
507 // basr    r14, r8
508 #if V8_TARGET_ARCH_S390X
509   static const int kCallSequenceLength = 14;
510 #else
511   static const int kCallSequenceLength = 8;
512 #endif
513 
514   // This is the length of the BreakLocationIterator::SetDebugBreakAtReturn()
515   // code patch FIXED_SEQUENCE in bytes!
516   // JS Return Sequence = Call Sequence + BKPT
517   // static const int kJSReturnSequenceLength = kCallSequenceLength + 2;
518 
519   // This is the length of the code sequence from SetDebugBreakAtSlot()
520   // FIXED_SEQUENCE in bytes!
521   static const int kDebugBreakSlotLength = kCallSequenceLength;
522   static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset;
523 
524   // Length to patch between the start of the JS return sequence
525   // from SetDebugBreakAtReturn and the address from
526   // break_address_from_return_address.
527   //
528   // frame->pc() in Debug::SetAfterBreakTarget will point to BKPT in
529   // JS return sequence, so the length to patch will not include BKPT
530   // instruction length.
531   // static const int kPatchReturnSequenceAddressOffset =
532   //     kCallSequenceLength - kPatchDebugBreakSlotReturnOffset;
533 
534   // Length to patch between the start of the FIXED call sequence from
535   // SetDebugBreakAtSlot() and the the address from
536   // break_address_from_return_address.
537   static const int kPatchDebugBreakSlotAddressOffset =
538       kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset;
539 
encode_crbit(const CRegister & cr,enum CRBit crbit)540   static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) {
541     return ((cr.code() * CRWIDTH) + crbit);
542   }
543 
544   // ---------------------------------------------------------------------------
545   // Code generation
546 
547   // Helper for unconditional branch to Label with update to save register
b(Register r,Label * l)548   void b(Register r, Label* l) {
549     int32_t halfwords = branch_offset(l) / 2;
550     brasl(r, Operand(halfwords));
551   }
552 
553   // Conditional Branch Instruction - Generates either BRC / BRCL
554   void branchOnCond(Condition c, int branch_offset, bool is_bound = false);
555 
556   // Helpers for conditional branch to Label
557   void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) {
558     branchOnCond(cond, branch_offset(l),
559                  l->is_bound() || (dist == Label::kNear));
560   }
561 
562   void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) {
563     b(cond, l, Label::kNear);
564   }
565   // Helpers for conditional branch to Label
566   void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); }
567   void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); }
568   void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); }
569   void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); }
570   void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); }
571   void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); }
572   void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); }
573   void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); }
574   void bunordered(Label* l, Label::Distance dist = Label::kFar) {
575     b(unordered, l, dist);
576   }
577   void bordered(Label* l, Label::Distance dist = Label::kFar) {
578     b(ordered, l, dist);
579   }
580 
581   // Helpers for conditional indirect branch off register
b(Condition cond,Register r)582   void b(Condition cond, Register r) { bcr(cond, r); }
beq(Register r)583   void beq(Register r) { b(eq, r); }
bne(Register r)584   void bne(Register r) { b(ne, r); }
blt(Register r)585   void blt(Register r) { b(lt, r); }
ble(Register r)586   void ble(Register r) { b(le, r); }
bgt(Register r)587   void bgt(Register r) { b(gt, r); }
bge(Register r)588   void bge(Register r) { b(ge, r); }
b(Register r)589   void b(Register r) { b(al, r); }
jmp(Register r)590   void jmp(Register r) { b(al, r); }
bunordered(Register r)591   void bunordered(Register r) { b(unordered, r); }
bordered(Register r)592   void bordered(Register r) { b(ordered, r); }
593 
594   // ---------------------------------------------------------------------------
595   // Code generation
596 
597   // Insert the smallest number of nop instructions
598   // possible to align the pc offset to a multiple
599   // of m. m must be a power of 2 (>= 4).
600   void Align(int m);
601   // Insert the smallest number of zero bytes possible to align the pc offset
602   // to a mulitple of m. m must be a power of 2 (>= 2).
603   void DataAlign(int m);
604   // Aligns code to something that's optimal for a jump target for the platform.
605   void CodeTargetAlign();
606 
breakpoint(bool do_print)607   void breakpoint(bool do_print) {
608     if (do_print) {
609       PrintF("DebugBreak is inserted to %p\n", static_cast<void*>(pc_));
610     }
611 #if V8_HOST_ARCH_64_BIT
612     int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak);
613     int32_t hi_32 = static_cast<int64_t>(value) >> 32;
614     int32_t lo_32 = static_cast<int32_t>(value);
615 
616     iihf(r1, Operand(hi_32));
617     iilf(r1, Operand(lo_32));
618 #else
619     iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak)));
620 #endif
621     basr(r14, r1);
622   }
623 
624   void call(Handle<Code> target, RelocInfo::Mode rmode,
625             TypeFeedbackId ast_id = TypeFeedbackId::None());
626   void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond);
627 
628 // S390 instruction generation
629 #define I_FORM(name) void name(const Operand& i)
630 
631 #define RR_FORM(name) void name(Register r1, Register r2)
632 
633 #define RR2_FORM(name) void name(Condition m1, Register r2)
634 
635 #define RX_FORM(name)                                        \
636   void name(Register r1, Register x2, Register b2, Disp d2); \
637   void name(Register r1, const MemOperand& opnd)
638 
639 #define RI1_FORM(name) void name(Register r, const Operand& i)
640 
641 #define RI2_FORM(name) void name(Condition m, const Operand& i)
642 
643 #define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i)
644 
645 #define RIE_F_FORM(name)                                                    \
646   void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \
647             const Operand& i5)
648 
649 #define RIL1_FORM(name) void name(Register r1, const Operand& i2)
650 
651 #define RIL2_FORM(name) void name(Condition m1, const Operand& i2)
652 
653 #define RXE_FORM(name)                            \
654   void name(Register r1, const MemOperand& opnd); \
655   void name(Register r1, Register b2, Register x2, Disp d2)
656 
657 #define RXF_FORM(name)                                         \
658   void name(Register r1, Register r3, const MemOperand& opnd); \
659   void name(Register r1, Register r3, Register b2, Register x2, Disp d2)
660 
661 #define RXY_FORM(name)                                       \
662   void name(Register r1, Register x2, Register b2, Disp d2); \
663   void name(Register r1, const MemOperand& opnd)
664 
665 #define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i)
666 
667 #define RIS_FORM(name)                                       \
668   void name(Register r1, Condition m3, Register b4, Disp d4, \
669             const Operand& i2);                              \
670   void name(Register r1, const Operand& i2, Condition m3,    \
671             const MemOperand& opnd)
672 
673 #define SI_FORM(name)                                  \
674   void name(const MemOperand& opnd, const Operand& i); \
675   void name(const Operand& i2, Register b1, Disp d1)
676 
677 #define SIL_FORM(name)                                \
678   void name(Register b1, Disp d1, const Operand& i2); \
679   void name(const MemOperand& opnd, const Operand& i2)
680 
681 #define RRE_FORM(name) void name(Register r1, Register r2)
682 
683 #define RRF1_FORM(name) void name(Register r1, Register r2, Register r3)
684 
685 #define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2)
686 
687 #define RRF3_FORM(name) \
688   void name(Register r3, Condition m4, Register r1, Register r2)
689 
690 #define RS1_FORM(name)                                         \
691   void name(Register r1, Register r3, const MemOperand& opnd); \
692   void name(Register r1, Register r3, Register b2, Disp d2)
693 
694 #define RS2_FORM(name)                                          \
695   void name(Register r1, Condition m3, const MemOperand& opnd); \
696   void name(Register r1, Condition m3, Register b2, Disp d2)
697 
698 #define RSE_FORM(name)                                         \
699   void name(Register r1, Register r3, const MemOperand& opnd); \
700   void name(Register r1, Register r3, Register b2, Disp d2)
701 
702 #define RSL_FORM(name)                       \
703   void name(Length l, Register b2, Disp d2); \
704   void name(const MemOperand& opnd)
705 
706 #define RSY1_FORM(name)                                      \
707   void name(Register r1, Register r3, Register b2, Disp d2); \
708   void name(Register r1, Register r3, const MemOperand& opnd)
709 
710 #define RSY2_FORM(name)                                       \
711   void name(Register r1, Condition m3, Register b2, Disp d2); \
712   void name(Register r1, Condition m3, const MemOperand& opnd)
713 
714 #define RRD_FORM(name) void name(Register r1, Register r3, Register r2)
715 
716 #define RRS_FORM(name)                                                     \
717   void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \
718   void name(Register r1, Register r2, Condition m3, const MemOperand& opnd)
719 
720 #define S_FORM(name)               \
721   void name(Register b2, Disp d2); \
722   void name(const MemOperand& opnd)
723 
724 #define SIY_FORM(name)                                \
725   void name(const Operand& i2, Register b1, Disp d1); \
726   void name(const MemOperand& opnd, const Operand& i)
727 
728 #define SS1_FORM(name)                                                  \
729   void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \
730   void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length)
731 
732 #define SS2_FORM(name)                                                        \
733   void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \
734             Length length2);                                                  \
735   void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2)
736 
737 #define SS3_FORM(name)                                                        \
738   void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \
739   void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2,    \
740             Length l1)
741 
742 #define SS4_FORM(name)                                                   \
743   void name(const MemOperand& opnd1, const MemOperand& opnd2);           \
744   void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \
745             Disp d2)
746 
747 #define SS5_FORM(name)                                                   \
748   void name(const MemOperand& opnd1, const MemOperand& opnd2);           \
749   void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \
750             Disp d4)
751 
752 #define SSE_FORM(name)                                   \
753   void name(Register b1, Disp d1, Register b2, Disp d2); \
754   void name(const MemOperand& opnd1, const MemOperand& opnd2)
755 
756 #define SSF_FORM(name)                                                \
757   void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \
758   void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2)
759 
760   // S390 instruction sets
761   RX_FORM(bc);
762   RR_FORM(bctr);
763   RX_FORM(cd);
764   RRE_FORM(cdr);
765   RXE_FORM(cdb);
766   RXE_FORM(ceb);
767   RRE_FORM(cefbr);
768   RXE_FORM(ddb);
769   RRE_FORM(ddbr);
770   SS1_FORM(ed);
771   RRE_FORM(epair);
772   RX_FORM(ex);
773   RRF2_FORM(fidbr);
774   RRE_FORM(flogr);
775   RX_FORM(ic_z);
776   RXY_FORM(icy);
777   RIL1_FORM(iihf);
778   RI1_FORM(iihh);
779   RI1_FORM(iihl);
780   RIL1_FORM(iilf);
781   RI1_FORM(iilh);
782   RI1_FORM(iill);
783   RRE_FORM(lcgr);
784   RR_FORM(lcr);
785   RX_FORM(le_z);
786   RXY_FORM(ley);
787   RIL1_FORM(llihf);
788   RIL1_FORM(llilf);
789   RRE_FORM(lngr);
790   RR_FORM(lnr);
791   RSY1_FORM(loc);
792   RXY_FORM(lrv);
793   RXY_FORM(lrvh);
794   RXE_FORM(mdb);
795   RRE_FORM(mdbr);
796   SS4_FORM(mvck);
797   SSF_FORM(mvcos);
798   SS4_FORM(mvcs);
799   SS1_FORM(mvn);
800   SS1_FORM(nc);
801   SI_FORM(ni);
802   RIL1_FORM(nihf);
803   RIL1_FORM(nilf);
804   RI1_FORM(nilh);
805   RI1_FORM(nill);
806   RIL1_FORM(oihf);
807   RIL1_FORM(oilf);
808   RI1_FORM(oill);
809   RRE_FORM(popcnt);
810   RXE_FORM(sdb);
811   RRE_FORM(sdbr);
812   RIL1_FORM(slfi);
813   RXY_FORM(slgf);
814   RIL1_FORM(slgfi);
815   RS1_FORM(srdl);
816   RX_FORM(ste);
817   RXY_FORM(stey);
818   RXY_FORM(strv);
819   RI1_FORM(tmll);
820   SS1_FORM(tr);
821   S_FORM(ts);
822   RIL1_FORM(xihf);
823   RIL1_FORM(xilf);
824 
825   // Load Address Instructions
826   void la(Register r, const MemOperand& opnd);
827   void lay(Register r, const MemOperand& opnd);
828   void larl(Register r1, const Operand& opnd);
829   void larl(Register r, Label* l);
830 
831   // Load Instructions
832   void lb(Register r, const MemOperand& src);
833   void lbr(Register r1, Register r2);
834   void lgb(Register r, const MemOperand& src);
835   void lgbr(Register r1, Register r2);
836   void lh(Register r, const MemOperand& src);
837   void lhy(Register r, const MemOperand& src);
838   void lhr(Register r1, Register r2);
839   void lgh(Register r, const MemOperand& src);
840   void lghr(Register r1, Register r2);
841   void l(Register r, const MemOperand& src);
842   void ly(Register r, const MemOperand& src);
843   void lr(Register r1, Register r2);
844   void lg(Register r, const MemOperand& src);
845   void lgr(Register r1, Register r2);
846   void lgf(Register r, const MemOperand& src);
847   void lgfr(Register r1, Register r2);
848   void lhi(Register r, const Operand& imm);
849   void lghi(Register r, const Operand& imm);
850 
851   // Load And Test Instructions
852   void lt_z(Register r, const MemOperand& src);
853   void ltg(Register r, const MemOperand& src);
854   void ltr(Register r1, Register r2);
855   void ltgr(Register r1, Register r2);
856   void ltgfr(Register r1, Register r2);
857 
858   // Load Logical Instructions
859   void llc(Register r, const MemOperand& src);
860   void llgc(Register r, const MemOperand& src);
861   void llgf(Register r, const MemOperand& src);
862   void llgfr(Register r1, Register r2);
863   void llh(Register r, const MemOperand& src);
864   void llgh(Register r, const MemOperand& src);
865   void llhr(Register r1, Register r2);
866   void llghr(Register r1, Register r2);
867 
868   // Load Multiple Instructions
869   void lm(Register r1, Register r2, const MemOperand& src);
870   void lmy(Register r1, Register r2, const MemOperand& src);
871   void lmg(Register r1, Register r2, const MemOperand& src);
872 
873   // Store Instructions
874   void st(Register r, const MemOperand& src);
875   void stc(Register r, const MemOperand& src);
876   void stcy(Register r, const MemOperand& src);
877   void stg(Register r, const MemOperand& src);
878   void sth(Register r, const MemOperand& src);
879   void sthy(Register r, const MemOperand& src);
880   void sty(Register r, const MemOperand& src);
881 
882   // Store Multiple Instructions
883   void stm(Register r1, Register r2, const MemOperand& src);
884   void stmy(Register r1, Register r2, const MemOperand& src);
885   void stmg(Register r1, Register r2, const MemOperand& src);
886 
887   // Compare Instructions
888   void c(Register r, const MemOperand& opnd);
889   void cy(Register r, const MemOperand& opnd);
890   void cr_z(Register r1, Register r2);
891   void cg(Register r, const MemOperand& opnd);
892   void cgr(Register r1, Register r2);
893   void ch(Register r, const MemOperand& opnd);
894   void chy(Register r, const MemOperand& opnd);
895   void chi(Register r, const Operand& opnd);
896   void cghi(Register r, const Operand& opnd);
897   void cfi(Register r, const Operand& opnd);
898   void cgfi(Register r, const Operand& opnd);
899 
900   // Compare Logical Instructions
901   void cl(Register r, const MemOperand& opnd);
902   void cly(Register r, const MemOperand& opnd);
903   void clr(Register r1, Register r2);
904   void clg(Register r, const MemOperand& opnd);
905   void clgr(Register r1, Register r2);
906   void clfi(Register r, const Operand& opnd);
907   void clgfi(Register r, const Operand& opnd);
908   void cli(const MemOperand& mem, const Operand& imm);
909   void cliy(const MemOperand& mem, const Operand& imm);
910   void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length);
911 
912   // Test Under Mask Instructions
913   void tm(const MemOperand& mem, const Operand& imm);
914   void tmy(const MemOperand& mem, const Operand& imm);
915 
916   // Rotate Instructions
917   void rll(Register r1, Register r3, Register opnd);
918   void rll(Register r1, Register r3, const Operand& opnd);
919   void rll(Register r1, Register r3, Register r2, const Operand& opnd);
920   void rllg(Register r1, Register r3, const Operand& opnd);
921   void rllg(Register r1, Register r3, const Register opnd);
922   void rllg(Register r1, Register r3, Register r2, const Operand& opnd);
923 
924   // Shift Instructions (32)
925   void sll(Register r1, Register opnd);
926   void sll(Register r1, const Operand& opnd);
927   void sllk(Register r1, Register r3, Register opnd);
928   void sllk(Register r1, Register r3, const Operand& opnd);
929   void srl(Register r1, Register opnd);
930   void srl(Register r1, const Operand& opnd);
931   void srlk(Register r1, Register r3, Register opnd);
932   void srlk(Register r1, Register r3, const Operand& opnd);
933   void sra(Register r1, Register opnd);
934   void sra(Register r1, const Operand& opnd);
935   void srak(Register r1, Register r3, Register opnd);
936   void srak(Register r1, Register r3, const Operand& opnd);
937   void sla(Register r1, Register opnd);
938   void sla(Register r1, const Operand& opnd);
939   void slak(Register r1, Register r3, Register opnd);
940   void slak(Register r1, Register r3, const Operand& opnd);
941 
942   // Shift Instructions (64)
943   void sllg(Register r1, Register r3, const Operand& opnd);
944   void sllg(Register r1, Register r3, const Register opnd);
945   void srlg(Register r1, Register r3, const Operand& opnd);
946   void srlg(Register r1, Register r3, const Register opnd);
947   void srag(Register r1, Register r3, const Operand& opnd);
948   void srag(Register r1, Register r3, const Register opnd);
949   void srda(Register r1, const Operand& opnd);
950   void srdl(Register r1, const Operand& opnd);
951   void slag(Register r1, Register r3, const Operand& opnd);
952   void slag(Register r1, Register r3, const Register opnd);
953   void sldl(Register r1, Register b2, const Operand& opnd);
954   void srdl(Register r1, Register b2, const Operand& opnd);
955   void srda(Register r1, Register b2, const Operand& opnd);
956 
957   // Rotate and Insert Selected Bits
958   void risbg(Register dst, Register src, const Operand& startBit,
959              const Operand& endBit, const Operand& shiftAmt,
960              bool zeroBits = true);
961   void risbgn(Register dst, Register src, const Operand& startBit,
962               const Operand& endBit, const Operand& shiftAmt,
963               bool zeroBits = true);
964 
965   // Move Character (Mem to Mem)
966   void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length);
967 
968   // Branch Instructions
969   void basr(Register r1, Register r2);
970   void bcr(Condition m, Register target);
971   void bct(Register r, const MemOperand& opnd);
972   void bctg(Register r, const MemOperand& opnd);
973   void bras(Register r, const Operand& opnd);
974   void brasl(Register r, const Operand& opnd);
975   void brc(Condition c, const Operand& opnd);
976   void brcl(Condition m, const Operand& opnd, bool isCodeTarget = false);
977   void brct(Register r1, const Operand& opnd);
978   void brctg(Register r1, const Operand& opnd);
979 
980   // 32-bit Add Instructions
981   void a(Register r1, const MemOperand& opnd);
982   void ay(Register r1, const MemOperand& opnd);
983   void afi(Register r1, const Operand& opnd);
984   void ah(Register r1, const MemOperand& opnd);
985   void ahy(Register r1, const MemOperand& opnd);
986   void ahi(Register r1, const Operand& opnd);
987   void ahik(Register r1, Register r3, const Operand& opnd);
988   void ar(Register r1, Register r2);
989   void ark(Register r1, Register r2, Register r3);
990   void asi(const MemOperand&, const Operand&);
991 
992   // 64-bit Add Instructions
993   void ag(Register r1, const MemOperand& opnd);
994   void agf(Register r1, const MemOperand& opnd);
995   void agfi(Register r1, const Operand& opnd);
996   void agfr(Register r1, Register r2);
997   void aghi(Register r1, const Operand& opnd);
998   void aghik(Register r1, Register r3, const Operand& opnd);
999   void agr(Register r1, Register r2);
1000   void agrk(Register r1, Register r2, Register r3);
1001   void agsi(const MemOperand&, const Operand&);
1002 
1003   // 32-bit Add Logical Instructions
1004   void al_z(Register r1, const MemOperand& opnd);
1005   void aly(Register r1, const MemOperand& opnd);
1006   void alfi(Register r1, const Operand& opnd);
1007   void alr(Register r1, Register r2);
1008   void alcr(Register r1, Register r2);
1009   void alrk(Register r1, Register r2, Register r3);
1010 
1011   // 64-bit Add Logical Instructions
1012   void alg(Register r1, const MemOperand& opnd);
1013   void algfi(Register r1, const Operand& opnd);
1014   void algr(Register r1, Register r2);
1015   void algrk(Register r1, Register r2, Register r3);
1016 
1017   // 32-bit Subtract Instructions
1018   void s(Register r1, const MemOperand& opnd);
1019   void sy(Register r1, const MemOperand& opnd);
1020   void sh(Register r1, const MemOperand& opnd);
1021   void shy(Register r1, const MemOperand& opnd);
1022   void sr(Register r1, Register r2);
1023   void srk(Register r1, Register r2, Register r3);
1024 
1025   // 64-bit Subtract Instructions
1026   void sg(Register r1, const MemOperand& opnd);
1027   void sgf(Register r1, const MemOperand& opnd);
1028   void sgr(Register r1, Register r2);
1029   void sgfr(Register r1, Register r2);
1030   void sgrk(Register r1, Register r2, Register r3);
1031 
1032   // 32-bit Subtract Logical Instructions
1033   void sl(Register r1, const MemOperand& opnd);
1034   void sly(Register r1, const MemOperand& opnd);
1035   void slr(Register r1, Register r2);
1036   void slrk(Register r1, Register r2, Register r3);
1037   void slbr(Register r1, Register r2);
1038 
1039   // 64-bit Subtract Logical Instructions
1040   void slg(Register r1, const MemOperand& opnd);
1041   void slgr(Register r1, Register r2);
1042   void slgrk(Register r1, Register r2, Register r3);
1043 
1044   // 32-bit Multiply Instructions
1045   void m(Register r1, const MemOperand& opnd);
1046   void mr_z(Register r1, Register r2);
1047   void ml(Register r1, const MemOperand& opnd);
1048   void mlr(Register r1, Register r2);
1049   void ms(Register r1, const MemOperand& opnd);
1050   void msy(Register r1, const MemOperand& opnd);
1051   void msfi(Register r1, const Operand& opnd);
1052   void msr(Register r1, Register r2);
1053   void mh(Register r1, const MemOperand& opnd);
1054   void mhy(Register r1, const MemOperand& opnd);
1055   void mhi(Register r1, const Operand& opnd);
1056 
1057   // 64-bit Multiply Instructions
1058   void mlg(Register r1, const MemOperand& opnd);
1059   void mlgr(Register r1, Register r2);
1060   void mghi(Register r1, const Operand& opnd);
1061   void msgfi(Register r1, const Operand& opnd);
1062   void msg(Register r1, const MemOperand& opnd);
1063   void msgr(Register r1, Register r2);
1064 
1065   // 32-bit Divide Instructions
1066   void d(Register r1, const MemOperand& opnd);
1067   void dr(Register r1, Register r2);
1068   void dl(Register r1, const MemOperand& opnd);
1069   void dlr(Register r1, Register r2);
1070 
1071   // 64-bit Divide Instructions
1072   void dlgr(Register r1, Register r2);
1073   void dsgr(Register r1, Register r2);
1074 
1075   // Bitwise Instructions (AND / OR / XOR)
1076   void n(Register r1, const MemOperand& opnd);
1077   void ny(Register r1, const MemOperand& opnd);
1078   void nr(Register r1, Register r2);
1079   void nrk(Register r1, Register r2, Register r3);
1080   void ng(Register r1, const MemOperand& opnd);
1081   void ngr(Register r1, Register r2);
1082   void ngrk(Register r1, Register r2, Register r3);
1083   void o(Register r1, const MemOperand& opnd);
1084   void oy(Register r1, const MemOperand& opnd);
1085   void or_z(Register r1, Register r2);
1086   void ork(Register r1, Register r2, Register r3);
1087   void og(Register r1, const MemOperand& opnd);
1088   void ogr(Register r1, Register r2);
1089   void ogrk(Register r1, Register r2, Register r3);
1090   void x(Register r1, const MemOperand& opnd);
1091   void xy(Register r1, const MemOperand& opnd);
1092   void xr(Register r1, Register r2);
1093   void xrk(Register r1, Register r2, Register r3);
1094   void xg(Register r1, const MemOperand& opnd);
1095   void xgr(Register r1, Register r2);
1096   void xgrk(Register r1, Register r2, Register r3);
1097   void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length);
1098 
1099   // Bitwise GPR <-> FPR Conversion Instructions
1100   void lgdr(Register r1, DoubleRegister f2);
1101   void ldgr(DoubleRegister f1, Register r2);
1102 
1103   // Floating Point Load / Store Instructions
1104   void ld(DoubleRegister r1, const MemOperand& opnd);
1105   void ldy(DoubleRegister r1, const MemOperand& opnd);
1106   void le_z(DoubleRegister r1, const MemOperand& opnd);
1107   void ley(DoubleRegister r1, const MemOperand& opnd);
1108   void ldr(DoubleRegister r1, DoubleRegister r2);
1109   void ltdbr(DoubleRegister r1, DoubleRegister r2);
1110   void ltebr(DoubleRegister r1, DoubleRegister r2);
1111   void std(DoubleRegister r1, const MemOperand& opnd);
1112   void stdy(DoubleRegister r1, const MemOperand& opnd);
1113   void ste(DoubleRegister r1, const MemOperand& opnd);
1114   void stey(DoubleRegister r1, const MemOperand& opnd);
1115 
1116   // Floating Point Load Rounded/Positive Instructions
1117   void ledbr(DoubleRegister r1, DoubleRegister r2);
1118   void ldebr(DoubleRegister r1, DoubleRegister r2);
1119   void lpebr(DoubleRegister r1, DoubleRegister r2);
1120   void lpdbr(DoubleRegister r1, DoubleRegister r2);
1121 
1122   // Floating <-> Fixed Point Conversion Instructions
1123   void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg,
1124               Register fixReg);
1125   void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg,
1126               Register fixReg);
1127   void celgbr(Condition m3, Condition m4, DoubleRegister fltReg,
1128               Register fixReg);
1129   void celfbr(Condition m3, Condition m4, DoubleRegister fltReg,
1130               Register fixReg);
1131   void clfdbr(Condition m3, Condition m4, Register fixReg,
1132               DoubleRegister fltReg);
1133   void clfebr(Condition m3, Condition m4, Register fixReg,
1134               DoubleRegister fltReg);
1135   void clgdbr(Condition m3, Condition m4, Register fixReg,
1136               DoubleRegister fltReg);
1137   void clgebr(Condition m3, Condition m4, Register fixReg,
1138               DoubleRegister fltReg);
1139   void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg);
1140   void cdfbr(DoubleRegister fltReg, Register fixReg);
1141   void cgebr(Condition m, Register fixReg, DoubleRegister fltReg);
1142   void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg);
1143   void cegbr(DoubleRegister fltReg, Register fixReg);
1144   void cdgbr(DoubleRegister fltReg, Register fixReg);
1145   void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg);
1146   void cefbr(DoubleRegister fltReg, Register fixReg);
1147 
1148   // Floating Point Compare Instructions
1149   void cebr(DoubleRegister r1, DoubleRegister r2);
1150   void cdb(DoubleRegister r1, const MemOperand& opnd);
1151   void cdbr(DoubleRegister r1, DoubleRegister r2);
1152 
1153   // Floating Point Arithmetic Instructions
1154   void aebr(DoubleRegister r1, DoubleRegister r2);
1155   void adb(DoubleRegister r1, const MemOperand& opnd);
1156   void adbr(DoubleRegister r1, DoubleRegister r2);
1157   void lzdr(DoubleRegister r1);
1158   void sebr(DoubleRegister r1, DoubleRegister r2);
1159   void sdb(DoubleRegister r1, const MemOperand& opnd);
1160   void sdbr(DoubleRegister r1, DoubleRegister r2);
1161   void meebr(DoubleRegister r1, DoubleRegister r2);
1162   void mdb(DoubleRegister r1, const MemOperand& opnd);
1163   void mdbr(DoubleRegister r1, DoubleRegister r2);
1164   void debr(DoubleRegister r1, DoubleRegister r2);
1165   void ddb(DoubleRegister r1, const MemOperand& opnd);
1166   void ddbr(DoubleRegister r1, DoubleRegister r2);
1167   void madbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3);
1168   void msdbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3);
1169   void sqebr(DoubleRegister r1, DoubleRegister r2);
1170   void sqdb(DoubleRegister r1, const MemOperand& opnd);
1171   void sqdbr(DoubleRegister r1, DoubleRegister r2);
1172   void lcdbr(DoubleRegister r1, DoubleRegister r2);
1173   void ldeb(DoubleRegister r1, const MemOperand& opnd);
1174 
1175   enum FIDBRA_MASK3 {
1176     FIDBRA_CURRENT_ROUNDING_MODE = 0,
1177     FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1,
1178     // ...
1179     FIDBRA_ROUND_TOWARD_0 = 5,
1180     FIDBRA_ROUND_TOWARD_POS_INF = 6,
1181     FIDBRA_ROUND_TOWARD_NEG_INF = 7
1182   };
1183   void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3);
1184   void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3);
1185 
1186   // Move integer
1187   void mvhi(const MemOperand& opnd1, const Operand& i2);
1188   void mvghi(const MemOperand& opnd1, const Operand& i2);
1189 
1190   // Exception-generating instructions and debugging support
1191   void stop(const char* msg, Condition cond = al,
1192             int32_t code = kDefaultStopCode, CRegister cr = cr7);
1193 
1194   void bkpt(uint32_t imm16);  // v5 and above
1195 
1196   // Different nop operations are used by the code generator to detect certain
1197   // states of the generated code.
1198   enum NopMarkerTypes {
1199     NON_MARKING_NOP = 0,
1200     GROUP_ENDING_NOP,
1201     DEBUG_BREAK_NOP,
1202     // IC markers.
1203     PROPERTY_ACCESS_INLINED,
1204     PROPERTY_ACCESS_INLINED_CONTEXT,
1205     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
1206     // Helper values.
1207     LAST_CODE_MARKER,
1208     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
1209   };
1210 
1211   void nop(int type = 0);  // 0 is the default non-marking type.
1212 
1213   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1214   int SizeOfCodeGeneratedSince(Label* label) {
1215     return pc_offset() - label->pos();
1216   }
1217 
1218   // Debugging
1219 
1220   // Mark generator continuation.
1221   void RecordGeneratorContinuation();
1222 
1223   // Mark address of a debug break slot.
1224   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1225 
1226   // Record the AST id of the CallIC being compiled, so that it can be placed
1227   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1228   void SetRecordedAstId(TypeFeedbackId ast_id) { recorded_ast_id_ = ast_id; }
1229 
RecordedAstId()1230   TypeFeedbackId RecordedAstId() {
1231     // roohack - another issue??? DCHECK(!recorded_ast_id_.IsNone());
1232     return recorded_ast_id_;
1233   }
1234 
ClearRecordedAstId()1235   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1236 
1237   // Record a comment relocation entry that can be used by a disassembler.
1238   // Use --code-comments to enable.
1239   void RecordComment(const char* msg);
1240 
1241   // Record a deoptimization reason that can be used by a log or cpu profiler.
1242   // Use --trace-deopt to enable.
1243   void RecordDeoptReason(const int reason, int raw_position, int id);
1244 
1245   // Writes a single byte or word of data in the code stream.  Used
1246   // for inline tables, e.g., jump-tables.
1247   void db(uint8_t data);
1248   void dd(uint32_t data);
1249   void dq(uint64_t data);
1250   void dp(uintptr_t data);
1251 
positions_recorder()1252   AssemblerPositionsRecorder* positions_recorder() {
1253     return &positions_recorder_;
1254   }
1255 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1256   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1257                                           ConstantPoolEntry::Access access,
1258                                           ConstantPoolEntry::Type type) {
1259     // No embedded constant pool support.
1260     UNREACHABLE();
1261   }
1262 
1263   // Read/patch instructions
instr_at(int pos)1264   SixByteInstr instr_at(int pos) {
1265     return Instruction::InstructionBits(buffer_ + pos);
1266   }
1267   template <typename T>
instr_at_put(int pos,T instr)1268   void instr_at_put(int pos, T instr) {
1269     Instruction::SetInstructionBits<T>(buffer_ + pos, instr);
1270   }
1271 
1272   // Decodes instruction at pos, and returns its length
instr_length_at(int pos)1273   int32_t instr_length_at(int pos) {
1274     return Instruction::InstructionLength(buffer_ + pos);
1275   }
1276 
instr_at(byte * pc)1277   static SixByteInstr instr_at(byte* pc) {
1278     return Instruction::InstructionBits(pc);
1279   }
1280 
1281   static Condition GetCondition(Instr instr);
1282 
1283   static bool IsBranch(Instr instr);
1284 #if V8_TARGET_ARCH_S390X
1285   static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2);
1286 #else
1287   static bool Is32BitLoadIntoIP(SixByteInstr instr);
1288 #endif
1289 
1290   static bool IsCmpRegister(Instr instr);
1291   static bool IsCmpImmediate(Instr instr);
1292   static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP);
1293 
1294   // The code currently calls CheckBuffer() too often. This has the side
1295   // effect of randomly growing the buffer in the middle of multi-instruction
1296   // sequences.
1297   //
1298   // This function allows outside callers to check and grow the buffer
1299   void EnsureSpaceFor(int space_needed);
1300 
1301   void EmitRelocations();
1302   void emit_label_addr(Label* label);
1303 
1304  public:
buffer_pos()1305   byte* buffer_pos() const { return buffer_; }
1306 
1307  protected:
1308   // Relocation for a type-recording IC has the AST id added to it.  This
1309   // member variable is a way to pass the information from the call site to
1310   // the relocation info.
1311   TypeFeedbackId recorded_ast_id_;
1312 
buffer_space()1313   int buffer_space() const { return reloc_info_writer.pos() - pc_; }
1314 
1315   // Decode instruction(s) at pos and return backchain to previous
1316   // label reference or kEndOfChain.
1317   int target_at(int pos);
1318 
1319   // Patch instruction(s) at pos to target target_pos (e.g. branch)
1320   void target_at_put(int pos, int target_pos, bool* is_branch = nullptr);
1321 
1322   // Record reloc info for current pc_
1323   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1324 
1325  private:
1326   // Code generation
1327   // The relocation writer's position is at least kGap bytes below the end of
1328   // the generated instructions. This is so that multi-instruction sequences do
1329   // not have to check for overflow. The same is true for writes of large
1330   // relocation info entries.
1331   static const int kGap = 32;
1332 
1333   // Relocation info generation
1334   // Each relocation is encoded as a variable size value
1335   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1336   RelocInfoWriter reloc_info_writer;
1337   std::vector<DeferredRelocInfo> relocations_;
1338 
1339   // The bound position, before this we cannot do instruction elimination.
1340   int last_bound_pos_;
1341 
1342   // Code emission
1343   inline void CheckBuffer();
1344   void GrowBuffer(int needed = 0);
1345   inline void TrackBranch();
1346   inline void UntrackBranch();
1347 
1348   inline int32_t emit_code_target(
1349       Handle<Code> target, RelocInfo::Mode rmode,
1350       TypeFeedbackId ast_id = TypeFeedbackId::None());
1351 
1352   // Helpers to emit binary encoding of 2/4/6 byte instructions.
1353   inline void emit2bytes(uint16_t x);
1354   inline void emit4bytes(uint32_t x);
1355   inline void emit6bytes(uint64_t x);
1356 
1357   // Helpers to emit binary encoding for various instruction formats.
1358 
1359   inline void rr_form(Opcode op, Register r1, Register r2);
1360   inline void rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2);
1361   inline void rr_form(Opcode op, Condition m1, Register r2);
1362   inline void rr2_form(uint8_t op, Condition m1, Register r2);
1363 
1364   inline void rx_form(Opcode op, Register r1, Register x2, Register b2,
1365                       Disp d2);
1366   inline void rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
1367                       Disp d2);
1368 
1369   inline void ri_form(Opcode op, Register r1, const Operand& i2);
1370   inline void ri_form(Opcode op, Condition m1, const Operand& i2);
1371 
1372   inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2);
1373   inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3,
1374                          const Operand& i4, const Operand& i5);
1375 
1376   inline void ril_form(Opcode op, Register r1, const Operand& i2);
1377   inline void ril_form(Opcode op, Condition m1, const Operand& i2);
1378 
1379   inline void ris_form(Opcode op, Register r1, Condition m3, Register b4,
1380                        Disp d4, const Operand& i2);
1381 
1382   inline void rrd_form(Opcode op, Register r1, Register r3, Register r2);
1383 
1384   inline void rre_form(Opcode op, Register r1, Register r2);
1385   inline void rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2);
1386 
1387   inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3);
1388   inline void rrf1_form(uint32_t x);
1389   inline void rrf2_form(uint32_t x);
1390   inline void rrf3_form(uint32_t x);
1391   inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1,
1392                         Register r2);
1393 
1394   inline void rrs_form(Opcode op, Register r1, Register r2, Register b4,
1395                        Disp d4, Condition m3);
1396 
1397   inline void rs_form(Opcode op, Register r1, Condition m3, Register b2,
1398                       const Disp d2);
1399   inline void rs_form(Opcode op, Register r1, Register r3, Register b2,
1400                       const Disp d2);
1401 
1402   inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2);
1403   inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2);
1404 
1405   inline void rsy_form(Opcode op, Register r1, Register r3, Register b2,
1406                        const Disp d2);
1407   inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2,
1408                        const Disp d2);
1409 
1410   inline void rxe_form(Opcode op, Register r1, Register x2, Register b2,
1411                        Disp d2);
1412 
1413   inline void rxf_form(Opcode op, Register r1, Register r3, Register b2,
1414                        Register x2, Disp d2);
1415 
1416   inline void rxy_form(Opcode op, Register r1, Register x2, Register b2,
1417                        Disp d2);
1418   inline void rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
1419                        Disp d2);
1420 
1421   inline void s_form(Opcode op, Register b1, Disp d2);
1422 
1423   inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1);
1424   inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1);
1425 
1426   inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2);
1427 
1428   inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2,
1429                       Disp d2);
1430   inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1,
1431                       Register b2, Disp d2);
1432   inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1,
1433                       Disp d1, Register b2, Disp d2);
1434   inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1,
1435                       Register b2, Disp d2);
1436   inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2);
1437   inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1,
1438                        Register b2, Disp d2);
1439 
1440   // Labels
1441   void print(Label* L);
1442   int max_reach_from(int pos);
1443   void bind_to(Label* L, int pos);
1444   void next(Label* L);
1445 
1446   friend class RegExpMacroAssemblerS390;
1447   friend class RelocInfo;
1448   friend class CodePatcher;
1449 
1450   List<Handle<Code> > code_targets_;
1451 
1452   AssemblerPositionsRecorder positions_recorder_;
1453   friend class AssemblerPositionsRecorder;
1454   friend class EnsureSpace;
1455 };
1456 
1457 class EnsureSpace BASE_EMBEDDED {
1458  public:
EnsureSpace(Assembler * assembler)1459   explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
1460 };
1461 
1462 }  // namespace internal
1463 }  // namespace v8
1464 
1465 #endif  // V8_S390_ASSEMBLER_S390_H_
1466