Home
last modified time | relevance | path

Searched refs:eigenvalues (Results 1 – 25 of 47) sorted by relevance

12

/external/eigen/test/
Deigensolver_complex.cpp50 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); in eigensolver()
54 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver()
57 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); in eigensolver()
63 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver()
72 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver()
77 VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); in eigensolver()
95 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
Deigensolver_selfadjoint.cpp61 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); in selfadjointeigensolver()
62 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); in selfadjointeigensolver()
66 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); in selfadjointeigensolver()
67 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); in selfadjointeigensolver()
71 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); in selfadjointeigensolver()
77 …plate selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal())… in selfadjointeigensolver()
83 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver()
89 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver()
102 VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); in selfadjointeigensolver()
Deigensolver_generic.cpp37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); in eigensolver()
43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver()
45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); in eigensolver()
51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver()
60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver()
81 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
Deigensolver_generalized_real.cpp37 VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); in generalized_eigensolver_real()
39 VectorType realEigenvalues = eig.eigenvalues().real(); in generalized_eigensolver_real()
41 VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); in generalized_eigensolver_real()
/external/eigen/Eigen/src/Eigenvalues/
DMatrixBaseEigenvalues.h27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); in run()
39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
67 MatrixBase<Derived>::eigenvalues() const
89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
93 return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
131 .eigenvalues()
155 return eigenvalues().cwiseAbs().maxCoeff();
/external/eigen/test/eigen2/
Deigen2_eigensolver.cpp66 VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); in selfadjointeigensolver()
78 VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); in selfadjointeigensolver()
89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); in selfadjointeigensolver()
93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver()
123 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); in eigensolver()
128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver()
/external/eigen/doc/snippets/
DComplexEigenSolver_compute.cpp6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl;
9 complex<float> lambda = ces.eigenvalues()[0];
16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
DEigenSolver_EigenSolver_MatrixType.cpp5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
8 complex<double> lambda = es.eigenvalues()[0];
14 MatrixXcd D = es.eigenvalues().asDiagonal();
DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
9 double lambda = es.eigenvalues()[0];
15 MatrixXd D = es.eigenvalues().asDiagonal();
DEigenSolver_compute.cpp4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
DSelfAdjointEigenSolver_compute_MatrixType.cpp5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
DSelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
DSelfAdjointEigenSolver_compute_MatrixType2.cpp7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
12 double lambda = es.eigenvalues()[0];
DMatrixBase_eigenvalues.cpp2 VectorXcd eivals = ones.eigenvalues();
DEigenSolver_eigenvalues.cpp4 << endl << es.eigenvalues() << endl;
DSelfAdjointEigenSolver_eigenvalues.cpp4 << endl << es.eigenvalues() << endl;
DComplexEigenSolver_eigenvalues.cpp4 << endl << ces.eigenvalues() << endl;
DSelfAdjointView_eigenvalues.cpp2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues();
DGeneralizedEigenSolver.cpp7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose…
/external/eigen/Eigen/src/Eigen2Support/
DLeastSquares.h160 *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
/external/eigen/doc/examples/
DTutorialLinAlgSelfAdjointEigenSolver.cpp14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; in main()
/external/eigen/unsupported/Eigen/
DPolynomials99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio…
101 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
112 …However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with sa…
/external/eigen/lapack/
Deigenvalues.cpp74 vector(w,*n) = eig.eigenvalues();
/external/eigen/unsupported/test/
Dmatrix_functions.h24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();

12