/external/eigen/test/ |
D | eigensolver_complex.cpp | 50 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); in eigensolver() 54 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 57 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); in eigensolver() 63 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver() 72 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver() 77 VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); in eigensolver() 95 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
|
D | eigensolver_selfadjoint.cpp | 61 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); in selfadjointeigensolver() 62 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); in selfadjointeigensolver() 66 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); in selfadjointeigensolver() 67 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); in selfadjointeigensolver() 71 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); in selfadjointeigensolver() 77 …plate selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal())… in selfadjointeigensolver() 83 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver() 89 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver() 102 VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); in selfadjointeigensolver()
|
D | eigensolver_generic.cpp | 37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); in eigensolver() 43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); in eigensolver() 51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver() 60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver() 81 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
|
D | eigensolver_generalized_real.cpp | 37 VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); in generalized_eigensolver_real() 39 VectorType realEigenvalues = eig.eigenvalues().real(); in generalized_eigensolver_real() 41 VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); in generalized_eigensolver_real()
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | MatrixBaseEigenvalues.h | 27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); in run() 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); 67 MatrixBase<Derived>::eigenvalues() const 89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const 93 return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues(); 131 .eigenvalues() 155 return eigenvalues().cwiseAbs().maxCoeff();
|
/external/eigen/test/eigen2/ |
D | eigen2_eigensolver.cpp | 66 VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); in selfadjointeigensolver() 78 VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); in selfadjointeigensolver() 89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); in selfadjointeigensolver() 93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver() 123 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); in eigensolver() 128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver()
|
/external/eigen/doc/snippets/ |
D | ComplexEigenSolver_compute.cpp | 6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl; 9 complex<float> lambda = ces.eigenvalues()[0]; 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
D | EigenSolver_EigenSolver_MatrixType.cpp | 5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 8 complex<double> lambda = es.eigenvalues()[0]; 14 MatrixXcd D = es.eigenvalues().asDiagonal();
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 9 double lambda = es.eigenvalues()[0]; 15 MatrixXd D = es.eigenvalues().asDiagonal();
|
D | EigenSolver_compute.cpp | 4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
D | SelfAdjointEigenSolver_compute_MatrixType.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
D | SelfAdjointEigenSolver_compute_MatrixType2.cpp | 7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 12 double lambda = es.eigenvalues()[0];
|
D | MatrixBase_eigenvalues.cpp | 2 VectorXcd eivals = ones.eigenvalues();
|
D | EigenSolver_eigenvalues.cpp | 4 << endl << es.eigenvalues() << endl;
|
D | SelfAdjointEigenSolver_eigenvalues.cpp | 4 << endl << es.eigenvalues() << endl;
|
D | ComplexEigenSolver_eigenvalues.cpp | 4 << endl << ces.eigenvalues() << endl;
|
D | SelfAdjointView_eigenvalues.cpp | 2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues();
|
D | GeneralizedEigenSolver.cpp | 7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose…
|
/external/eigen/Eigen/src/Eigen2Support/ |
D | LeastSquares.h | 160 *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
|
/external/eigen/doc/examples/ |
D | TutorialLinAlgSelfAdjointEigenSolver.cpp | 14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; in main()
|
/external/eigen/unsupported/Eigen/ |
D | Polynomials | 99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio… 101 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of 112 …However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with sa…
|
/external/eigen/lapack/ |
D | eigenvalues.cpp | 74 vector(w,*n) = eig.eigenvalues();
|
/external/eigen/unsupported/test/ |
D | matrix_functions.h | 24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|