/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/raw/ |
D | Nat192.java | 717 long x_3 = x[3] & M; in square() local 721 zz_3 += x_3 * x_0; in square() 725 zz_4 += (zz_3 >>> 32) + x_3 * x_1; in square() 726 zz_5 += (zz_4 >>> 32) + x_3 * x_2; in square() 743 zz_7 += (zz_6 >>> 32) + x_4 * x_3; in square() 759 zz_8 += (zz_7 >>> 32) + x_5 * x_3; in square() 833 long x_3 = x[xOff + 3] & M; in square() local 837 zz_3 += x_3 * x_0; in square() 841 zz_4 += (zz_3 >>> 32) + x_3 * x_1; in square() 842 zz_5 += (zz_4 >>> 32) + x_3 * x_2; in square() [all …]
|
D | Nat256.java | 928 long x_3 = x[3] & M; in square() local 932 zz_3 += x_3 * x_0; in square() 936 zz_4 += (zz_3 >>> 32) + x_3 * x_1; in square() 937 zz_5 += (zz_4 >>> 32) + x_3 * x_2; in square() 954 zz_7 += (zz_6 >>> 32) + x_4 * x_3; in square() 971 zz_8 += (zz_7 >>> 32) + x_5 * x_3; in square() 990 zz_9 += (zz_8 >>> 32) + x_6 * x_3; in square() 1010 zz_10 += (zz_9 >>> 32) + x_7 * x_3; in square() 1092 long x_3 = x[xOff + 3] & M; in square() local 1096 zz_3 += x_3 * x_0; in square() [all …]
|
D | Nat224.java | 795 long x_3 = x[3] & M; in square() local 799 zz_3 += x_3 * x_0; in square() 803 zz_4 += (zz_3 >>> 32) + x_3 * x_1; in square() 804 zz_5 += (zz_4 >>> 32) + x_3 * x_2; in square() 821 zz_7 += (zz_6 >>> 32) + x_4 * x_3; in square() 838 zz_8 += (zz_7 >>> 32) + x_5 * x_3; in square() 856 zz_9 += (zz_8 >>> 32) + x_6 * x_3; in square() 934 long x_3 = x[xOff + 3] & M; in square() local 938 zz_3 += x_3 * x_0; in square() 942 zz_4 += (zz_3 >>> 32) + x_3 * x_1; in square() [all …]
|
/external/libopus/celt/arm/ |
D | celt_pitch_xcorr_arm.s | 57 ; q3 = x_7|x_6|x_5|x_4|x_3|x_2|x_1|x_0 299 SMLATT r6, r14, r11, r6 ; sum[0] = MAC16_16(sum[0],x_3,y_3) 301 SMLATB r7, r14, r10, r7 ; sum[1] = MAC16_16(sum[1],x_3,y_4) 302 SMLATT r8, r14, r10, r8 ; sum[2] = MAC16_16(sum[2],x_3,y_5) 303 SMLATB r9, r14, r11, r9 ; sum[3] = MAC16_16(sum[3],x_3,y_6) 383 SMLATB r14, r7, r8, r14 ; sum = MAC16_16(sum, x_3, y_3) 456 SMLATT r10, r7, r9, r10 ; sum0 = MAC16_16(sum0, x_3, y_3) 458 SMLATB r11, r7, r8, r11 ; sum1 = MAC16_16(sum1, x_3, y_4) 517 SMLATT r14, r7, r9, r14 ; sum = MAC16_16(sum, x_3, y_3)
|
/external/mesa3d/src/gallium/auxiliary/gallivm/ |
D | lp_bld_arit.c | 2144 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3"); in lp_build_sin() local 2151 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z"); in lp_build_sin() 2212 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8"); in lp_build_sin() 2213 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9"); in lp_build_sin() 2362 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3"); in lp_build_cos() local 2369 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z"); in lp_build_cos() 2430 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8"); in lp_build_cos() 2431 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9"); in lp_build_cos()
|
/external/ceres-solver/docs/source/ |
D | tutorial.rst | 313 of Powell's function. Let :math:`x = \left[x_1, x_2, x_3, x_4 \right]` 320 f_2(x) &= \sqrt{5} (x_3 - x_4)\\ 321 f_3(x) &= (x_2 - 2x_3)^2\\ 347 :math:`f_1(x_1, x_2)`, :math:`f_2(x_3, x_4)` and :math:`f_3(x_2, x_3)` 437 :math:`x_1=0, x_2=0, x_3=0, x_4=0` with an objective function value of
|
D | solving.rst | 640 .. math:: x_3 &= Ex_2\\ 642 .. math:: Sx &= x_4 - x_3
|