• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
6 #define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
7 
8 #include <vector>
9 
10 #include "src/arm64/assembler-arm64.h"
11 #include "src/bailout-reason.h"
12 #include "src/base/bits.h"
13 #include "src/globals.h"
14 
15 // Simulator specific helpers.
16 #if USE_SIMULATOR
17   // TODO(all): If possible automatically prepend an indicator like
18   // UNIMPLEMENTED or LOCATION.
19   #define ASM_UNIMPLEMENTED(message)                                         \
20   __ Debug(message, __LINE__, NO_PARAM)
21   #define ASM_UNIMPLEMENTED_BREAK(message)                                   \
22   __ Debug(message, __LINE__,                                                \
23            FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
24 #if DEBUG
25 #define ASM_LOCATION(message) __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
26 #else
27 #define ASM_LOCATION(message)
28 #endif
29 #else
30 #define ASM_UNIMPLEMENTED(message)
31 #define ASM_UNIMPLEMENTED_BREAK(message)
32 #define ASM_LOCATION(message)
33 #endif
34 
35 
36 namespace v8 {
37 namespace internal {
38 
39 // Give alias names to registers for calling conventions.
40 #define kReturnRegister0 x0
41 #define kReturnRegister1 x1
42 #define kReturnRegister2 x2
43 #define kJSFunctionRegister x1
44 #define kContextRegister cp
45 #define kAllocateSizeRegister x1
46 #define kInterpreterAccumulatorRegister x0
47 #define kInterpreterBytecodeOffsetRegister x19
48 #define kInterpreterBytecodeArrayRegister x20
49 #define kInterpreterDispatchTableRegister x21
50 #define kJavaScriptCallArgCountRegister x0
51 #define kJavaScriptCallNewTargetRegister x3
52 #define kRuntimeCallFunctionRegister x1
53 #define kRuntimeCallArgCountRegister x0
54 
55 #define LS_MACRO_LIST(V)                                      \
56   V(Ldrb, Register&, rt, LDRB_w)                              \
57   V(Strb, Register&, rt, STRB_w)                              \
58   V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w)  \
59   V(Ldrh, Register&, rt, LDRH_w)                              \
60   V(Strh, Register&, rt, STRH_w)                              \
61   V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w)  \
62   V(Ldr, CPURegister&, rt, LoadOpFor(rt))                     \
63   V(Str, CPURegister&, rt, StoreOpFor(rt))                    \
64   V(Ldrsw, Register&, rt, LDRSW_x)
65 
66 #define LSPAIR_MACRO_LIST(V)                             \
67   V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2))  \
68   V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
69   V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
70 
71 #define LDA_STL_MACRO_LIST(V) \
72   V(Ldarb, ldarb)             \
73   V(Ldarh, ldarh)             \
74   V(Ldar, ldar)               \
75   V(Ldaxrb, ldaxrb)           \
76   V(Ldaxrh, ldaxrh)           \
77   V(Ldaxr, ldaxr)             \
78   V(Stlrb, stlrb)             \
79   V(Stlrh, stlrh)             \
80   V(Stlr, stlr)
81 
82 #define STLX_MACRO_LIST(V) \
83   V(Stlxrb, stlxrb)        \
84   V(Stlxrh, stlxrh)        \
85   V(Stlxr, stlxr)
86 
87 // ----------------------------------------------------------------------------
88 // Static helper functions
89 
90 // Generate a MemOperand for loading a field from an object.
91 inline MemOperand FieldMemOperand(Register object, int offset);
92 inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
93 
94 // Generate a MemOperand for loading a SMI from memory.
95 inline MemOperand UntagSmiMemOperand(Register object, int offset);
96 
97 
98 // ----------------------------------------------------------------------------
99 // MacroAssembler
100 
101 enum BranchType {
102   // Copies of architectural conditions.
103   // The associated conditions can be used in place of those, the code will
104   // take care of reinterpreting them with the correct type.
105   integer_eq = eq,
106   integer_ne = ne,
107   integer_hs = hs,
108   integer_lo = lo,
109   integer_mi = mi,
110   integer_pl = pl,
111   integer_vs = vs,
112   integer_vc = vc,
113   integer_hi = hi,
114   integer_ls = ls,
115   integer_ge = ge,
116   integer_lt = lt,
117   integer_gt = gt,
118   integer_le = le,
119   integer_al = al,
120   integer_nv = nv,
121 
122   // These two are *different* from the architectural codes al and nv.
123   // 'always' is used to generate unconditional branches.
124   // 'never' is used to not generate a branch (generally as the inverse
125   // branch type of 'always).
126   always, never,
127   // cbz and cbnz
128   reg_zero, reg_not_zero,
129   // tbz and tbnz
130   reg_bit_clear, reg_bit_set,
131 
132   // Aliases.
133   kBranchTypeFirstCondition = eq,
134   kBranchTypeLastCondition = nv,
135   kBranchTypeFirstUsingReg = reg_zero,
136   kBranchTypeFirstUsingBit = reg_bit_clear
137 };
138 
InvertBranchType(BranchType type)139 inline BranchType InvertBranchType(BranchType type) {
140   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
141     return static_cast<BranchType>(
142         NegateCondition(static_cast<Condition>(type)));
143   } else {
144     return static_cast<BranchType>(type ^ 1);
145   }
146 }
147 
148 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
149 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
150 enum PointersToHereCheck {
151   kPointersToHereMaybeInteresting,
152   kPointersToHereAreAlwaysInteresting
153 };
154 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
155 enum TargetAddressStorageMode {
156   CAN_INLINE_TARGET_ADDRESS,
157   NEVER_INLINE_TARGET_ADDRESS
158 };
159 enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
160 enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
161 enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
162 enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
163 enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
164 
165 class MacroAssembler : public Assembler {
166  public:
167   MacroAssembler(Isolate* isolate, byte* buffer, unsigned buffer_size,
168                  CodeObjectRequired create_code_object);
169 
170   inline Handle<Object> CodeObject();
171 
172   // Instruction set functions ------------------------------------------------
173   // Logical macros.
174   inline void And(const Register& rd,
175                   const Register& rn,
176                   const Operand& operand);
177   inline void Ands(const Register& rd,
178                    const Register& rn,
179                    const Operand& operand);
180   inline void Bic(const Register& rd,
181                   const Register& rn,
182                   const Operand& operand);
183   inline void Bics(const Register& rd,
184                    const Register& rn,
185                    const Operand& operand);
186   inline void Orr(const Register& rd,
187                   const Register& rn,
188                   const Operand& operand);
189   inline void Orn(const Register& rd,
190                   const Register& rn,
191                   const Operand& operand);
192   inline void Eor(const Register& rd,
193                   const Register& rn,
194                   const Operand& operand);
195   inline void Eon(const Register& rd,
196                   const Register& rn,
197                   const Operand& operand);
198   inline void Tst(const Register& rn, const Operand& operand);
199   void LogicalMacro(const Register& rd,
200                     const Register& rn,
201                     const Operand& operand,
202                     LogicalOp op);
203 
204   // Add and sub macros.
205   inline void Add(const Register& rd,
206                   const Register& rn,
207                   const Operand& operand);
208   inline void Adds(const Register& rd,
209                    const Register& rn,
210                    const Operand& operand);
211   inline void Sub(const Register& rd,
212                   const Register& rn,
213                   const Operand& operand);
214   inline void Subs(const Register& rd,
215                    const Register& rn,
216                    const Operand& operand);
217   inline void Cmn(const Register& rn, const Operand& operand);
218   inline void Cmp(const Register& rn, const Operand& operand);
219   inline void Neg(const Register& rd,
220                   const Operand& operand);
221   inline void Negs(const Register& rd,
222                    const Operand& operand);
223 
224   void AddSubMacro(const Register& rd,
225                    const Register& rn,
226                    const Operand& operand,
227                    FlagsUpdate S,
228                    AddSubOp op);
229 
230   // Add/sub with carry macros.
231   inline void Adc(const Register& rd,
232                   const Register& rn,
233                   const Operand& operand);
234   inline void Adcs(const Register& rd,
235                    const Register& rn,
236                    const Operand& operand);
237   inline void Sbc(const Register& rd,
238                   const Register& rn,
239                   const Operand& operand);
240   inline void Sbcs(const Register& rd,
241                    const Register& rn,
242                    const Operand& operand);
243   inline void Ngc(const Register& rd,
244                   const Operand& operand);
245   inline void Ngcs(const Register& rd,
246                    const Operand& operand);
247   void AddSubWithCarryMacro(const Register& rd,
248                             const Register& rn,
249                             const Operand& operand,
250                             FlagsUpdate S,
251                             AddSubWithCarryOp op);
252 
253   // Move macros.
254   void Mov(const Register& rd,
255            const Operand& operand,
256            DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
257   void Mov(const Register& rd, uint64_t imm);
258   inline void Mvn(const Register& rd, uint64_t imm);
259   void Mvn(const Register& rd, const Operand& operand);
260   static bool IsImmMovn(uint64_t imm, unsigned reg_size);
261   static bool IsImmMovz(uint64_t imm, unsigned reg_size);
262   static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
263 
264   // Try to move an immediate into the destination register in a single
265   // instruction. Returns true for success, and updates the contents of dst.
266   // Returns false, otherwise.
267   bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
268 
269   // Move an immediate into register dst, and return an Operand object for use
270   // with a subsequent instruction that accepts a shift. The value moved into
271   // dst is not necessarily equal to imm; it may have had a shifting operation
272   // applied to it that will be subsequently undone by the shift applied in the
273   // Operand.
274   Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm);
275 
276   // Conditional macros.
277   inline void Ccmp(const Register& rn,
278                    const Operand& operand,
279                    StatusFlags nzcv,
280                    Condition cond);
281   inline void Ccmn(const Register& rn,
282                    const Operand& operand,
283                    StatusFlags nzcv,
284                    Condition cond);
285   void ConditionalCompareMacro(const Register& rn,
286                                const Operand& operand,
287                                StatusFlags nzcv,
288                                Condition cond,
289                                ConditionalCompareOp op);
290   void Csel(const Register& rd,
291             const Register& rn,
292             const Operand& operand,
293             Condition cond);
294 
295   // Load/store macros.
296 #define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
297   inline void FN(const REGTYPE REG, const MemOperand& addr);
298   LS_MACRO_LIST(DECLARE_FUNCTION)
299 #undef DECLARE_FUNCTION
300 
301   void LoadStoreMacro(const CPURegister& rt,
302                       const MemOperand& addr,
303                       LoadStoreOp op);
304 
305 #define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
306   inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
307   LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
308 #undef DECLARE_FUNCTION
309 
310   void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
311                           const MemOperand& addr, LoadStorePairOp op);
312 
313 // Load-acquire/store-release macros.
314 #define DECLARE_FUNCTION(FN, OP) \
315   inline void FN(const Register& rt, const Register& rn);
316   LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
317 #undef DECLARE_FUNCTION
318 
319 #define DECLARE_FUNCTION(FN, OP) \
320   inline void FN(const Register& rs, const Register& rt, const Register& rn);
321   STLX_MACRO_LIST(DECLARE_FUNCTION)
322 #undef DECLARE_FUNCTION
323 
324   // V8-specific load/store helpers.
325   void Load(const Register& rt, const MemOperand& addr, Representation r);
326   void Store(const Register& rt, const MemOperand& addr, Representation r);
327 
328   enum AdrHint {
329     // The target must be within the immediate range of adr.
330     kAdrNear,
331     // The target may be outside of the immediate range of adr. Additional
332     // instructions may be emitted.
333     kAdrFar
334   };
335   void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
336 
337   // Remaining instructions are simple pass-through calls to the assembler.
338   inline void Asr(const Register& rd, const Register& rn, unsigned shift);
339   inline void Asr(const Register& rd, const Register& rn, const Register& rm);
340 
341   // Branch type inversion relies on these relations.
342   STATIC_ASSERT((reg_zero      == (reg_not_zero ^ 1)) &&
343                 (reg_bit_clear == (reg_bit_set ^ 1)) &&
344                 (always        == (never ^ 1)));
345 
346   void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
347 
348   inline void B(Label* label);
349   inline void B(Condition cond, Label* label);
350   void B(Label* label, Condition cond);
351   inline void Bfi(const Register& rd,
352                   const Register& rn,
353                   unsigned lsb,
354                   unsigned width);
355   inline void Bfxil(const Register& rd,
356                     const Register& rn,
357                     unsigned lsb,
358                     unsigned width);
359   inline void Bind(Label* label);
360   inline void Bl(Label* label);
361   inline void Blr(const Register& xn);
362   inline void Br(const Register& xn);
363   inline void Brk(int code);
364   void Cbnz(const Register& rt, Label* label);
365   void Cbz(const Register& rt, Label* label);
366   inline void Cinc(const Register& rd, const Register& rn, Condition cond);
367   inline void Cinv(const Register& rd, const Register& rn, Condition cond);
368   inline void Cls(const Register& rd, const Register& rn);
369   inline void Clz(const Register& rd, const Register& rn);
370   inline void Cneg(const Register& rd, const Register& rn, Condition cond);
371   inline void CzeroX(const Register& rd, Condition cond);
372   inline void CmovX(const Register& rd, const Register& rn, Condition cond);
373   inline void Cset(const Register& rd, Condition cond);
374   inline void Csetm(const Register& rd, Condition cond);
375   inline void Csinc(const Register& rd,
376                     const Register& rn,
377                     const Register& rm,
378                     Condition cond);
379   inline void Csinv(const Register& rd,
380                     const Register& rn,
381                     const Register& rm,
382                     Condition cond);
383   inline void Csneg(const Register& rd,
384                     const Register& rn,
385                     const Register& rm,
386                     Condition cond);
387   inline void Dmb(BarrierDomain domain, BarrierType type);
388   inline void Dsb(BarrierDomain domain, BarrierType type);
389   inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
390   inline void Extr(const Register& rd,
391                    const Register& rn,
392                    const Register& rm,
393                    unsigned lsb);
394   inline void Fabs(const FPRegister& fd, const FPRegister& fn);
395   inline void Fadd(const FPRegister& fd,
396                    const FPRegister& fn,
397                    const FPRegister& fm);
398   inline void Fccmp(const FPRegister& fn,
399                     const FPRegister& fm,
400                     StatusFlags nzcv,
401                     Condition cond);
402   inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
403   inline void Fcmp(const FPRegister& fn, double value);
404   inline void Fcsel(const FPRegister& fd,
405                     const FPRegister& fn,
406                     const FPRegister& fm,
407                     Condition cond);
408   inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
409   inline void Fcvtas(const Register& rd, const FPRegister& fn);
410   inline void Fcvtau(const Register& rd, const FPRegister& fn);
411   inline void Fcvtms(const Register& rd, const FPRegister& fn);
412   inline void Fcvtmu(const Register& rd, const FPRegister& fn);
413   inline void Fcvtns(const Register& rd, const FPRegister& fn);
414   inline void Fcvtnu(const Register& rd, const FPRegister& fn);
415   inline void Fcvtzs(const Register& rd, const FPRegister& fn);
416   inline void Fcvtzu(const Register& rd, const FPRegister& fn);
417   inline void Fdiv(const FPRegister& fd,
418                    const FPRegister& fn,
419                    const FPRegister& fm);
420   inline void Fmadd(const FPRegister& fd,
421                     const FPRegister& fn,
422                     const FPRegister& fm,
423                     const FPRegister& fa);
424   inline void Fmax(const FPRegister& fd,
425                    const FPRegister& fn,
426                    const FPRegister& fm);
427   inline void Fmaxnm(const FPRegister& fd,
428                      const FPRegister& fn,
429                      const FPRegister& fm);
430   inline void Fmin(const FPRegister& fd,
431                    const FPRegister& fn,
432                    const FPRegister& fm);
433   inline void Fminnm(const FPRegister& fd,
434                      const FPRegister& fn,
435                      const FPRegister& fm);
436   inline void Fmov(FPRegister fd, FPRegister fn);
437   inline void Fmov(FPRegister fd, Register rn);
438   // Provide explicit double and float interfaces for FP immediate moves, rather
439   // than relying on implicit C++ casts. This allows signalling NaNs to be
440   // preserved when the immediate matches the format of fd. Most systems convert
441   // signalling NaNs to quiet NaNs when converting between float and double.
442   inline void Fmov(FPRegister fd, double imm);
443   inline void Fmov(FPRegister fd, float imm);
444   // Provide a template to allow other types to be converted automatically.
445   template<typename T>
Fmov(FPRegister fd,T imm)446   void Fmov(FPRegister fd, T imm) {
447     DCHECK(allow_macro_instructions_);
448     Fmov(fd, static_cast<double>(imm));
449   }
450   inline void Fmov(Register rd, FPRegister fn);
451   inline void Fmsub(const FPRegister& fd,
452                     const FPRegister& fn,
453                     const FPRegister& fm,
454                     const FPRegister& fa);
455   inline void Fmul(const FPRegister& fd,
456                    const FPRegister& fn,
457                    const FPRegister& fm);
458   inline void Fneg(const FPRegister& fd, const FPRegister& fn);
459   inline void Fnmadd(const FPRegister& fd,
460                      const FPRegister& fn,
461                      const FPRegister& fm,
462                      const FPRegister& fa);
463   inline void Fnmsub(const FPRegister& fd,
464                      const FPRegister& fn,
465                      const FPRegister& fm,
466                      const FPRegister& fa);
467   inline void Frinta(const FPRegister& fd, const FPRegister& fn);
468   inline void Frintm(const FPRegister& fd, const FPRegister& fn);
469   inline void Frintn(const FPRegister& fd, const FPRegister& fn);
470   inline void Frintp(const FPRegister& fd, const FPRegister& fn);
471   inline void Frintz(const FPRegister& fd, const FPRegister& fn);
472   inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
473   inline void Fsub(const FPRegister& fd,
474                    const FPRegister& fn,
475                    const FPRegister& fm);
476   inline void Hint(SystemHint code);
477   inline void Hlt(int code);
478   inline void Isb();
479   inline void Ldnp(const CPURegister& rt,
480                    const CPURegister& rt2,
481                    const MemOperand& src);
482   // Load a literal from the inline constant pool.
483   inline void Ldr(const CPURegister& rt, const Immediate& imm);
484   // Helper function for double immediate.
485   inline void Ldr(const CPURegister& rt, double imm);
486   inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
487   inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
488   inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
489   inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
490   inline void Madd(const Register& rd,
491                    const Register& rn,
492                    const Register& rm,
493                    const Register& ra);
494   inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
495   inline void Mov(const Register& rd, const Register& rm);
496   inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
497   inline void Mrs(const Register& rt, SystemRegister sysreg);
498   inline void Msr(SystemRegister sysreg, const Register& rt);
499   inline void Msub(const Register& rd,
500                    const Register& rn,
501                    const Register& rm,
502                    const Register& ra);
503   inline void Mul(const Register& rd, const Register& rn, const Register& rm);
Nop()504   inline void Nop() { nop(); }
505   inline void Rbit(const Register& rd, const Register& rn);
506   inline void Ret(const Register& xn = lr);
507   inline void Rev(const Register& rd, const Register& rn);
508   inline void Rev16(const Register& rd, const Register& rn);
509   inline void Rev32(const Register& rd, const Register& rn);
510   inline void Ror(const Register& rd, const Register& rs, unsigned shift);
511   inline void Ror(const Register& rd, const Register& rn, const Register& rm);
512   inline void Sbfiz(const Register& rd,
513                     const Register& rn,
514                     unsigned lsb,
515                     unsigned width);
516   inline void Sbfx(const Register& rd,
517                    const Register& rn,
518                    unsigned lsb,
519                    unsigned width);
520   inline void Scvtf(const FPRegister& fd,
521                     const Register& rn,
522                     unsigned fbits = 0);
523   inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
524   inline void Smaddl(const Register& rd,
525                      const Register& rn,
526                      const Register& rm,
527                      const Register& ra);
528   inline void Smsubl(const Register& rd,
529                      const Register& rn,
530                      const Register& rm,
531                      const Register& ra);
532   inline void Smull(const Register& rd,
533                     const Register& rn,
534                     const Register& rm);
535   inline void Smulh(const Register& rd,
536                     const Register& rn,
537                     const Register& rm);
538   inline void Umull(const Register& rd, const Register& rn, const Register& rm);
539   inline void Stnp(const CPURegister& rt,
540                    const CPURegister& rt2,
541                    const MemOperand& dst);
542   inline void Sxtb(const Register& rd, const Register& rn);
543   inline void Sxth(const Register& rd, const Register& rn);
544   inline void Sxtw(const Register& rd, const Register& rn);
545   void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
546   void Tbz(const Register& rt, unsigned bit_pos, Label* label);
547   inline void Ubfiz(const Register& rd,
548                     const Register& rn,
549                     unsigned lsb,
550                     unsigned width);
551   inline void Ubfx(const Register& rd,
552                    const Register& rn,
553                    unsigned lsb,
554                    unsigned width);
555   inline void Ucvtf(const FPRegister& fd,
556                     const Register& rn,
557                     unsigned fbits = 0);
558   inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
559   inline void Umaddl(const Register& rd,
560                      const Register& rn,
561                      const Register& rm,
562                      const Register& ra);
563   inline void Umsubl(const Register& rd,
564                      const Register& rn,
565                      const Register& rm,
566                      const Register& ra);
567   inline void Uxtb(const Register& rd, const Register& rn);
568   inline void Uxth(const Register& rd, const Register& rn);
569   inline void Uxtw(const Register& rd, const Register& rn);
570 
571   // Pseudo-instructions ------------------------------------------------------
572 
573   // Compute rd = abs(rm).
574   // This function clobbers the condition flags. On output the overflow flag is
575   // set iff the negation overflowed.
576   //
577   // If rm is the minimum representable value, the result is not representable.
578   // Handlers for each case can be specified using the relevant labels.
579   void Abs(const Register& rd, const Register& rm,
580            Label * is_not_representable = NULL,
581            Label * is_representable = NULL);
582 
583   // Push or pop up to 4 registers of the same width to or from the stack,
584   // using the current stack pointer as set by SetStackPointer.
585   //
586   // If an argument register is 'NoReg', all further arguments are also assumed
587   // to be 'NoReg', and are thus not pushed or popped.
588   //
589   // Arguments are ordered such that "Push(a, b);" is functionally equivalent
590   // to "Push(a); Push(b);".
591   //
592   // It is valid to push the same register more than once, and there is no
593   // restriction on the order in which registers are specified.
594   //
595   // It is not valid to pop into the same register more than once in one
596   // operation, not even into the zero register.
597   //
598   // If the current stack pointer (as set by SetStackPointer) is csp, then it
599   // must be aligned to 16 bytes on entry and the total size of the specified
600   // registers must also be a multiple of 16 bytes.
601   //
602   // Even if the current stack pointer is not the system stack pointer (csp),
603   // Push (and derived methods) will still modify the system stack pointer in
604   // order to comply with ABI rules about accessing memory below the system
605   // stack pointer.
606   //
607   // Other than the registers passed into Pop, the stack pointer and (possibly)
608   // the system stack pointer, these methods do not modify any other registers.
609   void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
610             const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
611   void Push(const CPURegister& src0, const CPURegister& src1,
612             const CPURegister& src2, const CPURegister& src3,
613             const CPURegister& src4, const CPURegister& src5 = NoReg,
614             const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
615   void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
616            const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
617   void Pop(const CPURegister& dst0, const CPURegister& dst1,
618            const CPURegister& dst2, const CPURegister& dst3,
619            const CPURegister& dst4, const CPURegister& dst5 = NoReg,
620            const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg);
621   void Push(const Register& src0, const FPRegister& src1);
622 
623   // Alternative forms of Push and Pop, taking a RegList or CPURegList that
624   // specifies the registers that are to be pushed or popped. Higher-numbered
625   // registers are associated with higher memory addresses (as in the A32 push
626   // and pop instructions).
627   //
628   // (Push|Pop)SizeRegList allow you to specify the register size as a
629   // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
630   // kSRegSizeInBits are supported.
631   //
632   // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
633   void PushCPURegList(CPURegList registers);
634   void PopCPURegList(CPURegList registers);
635 
636   inline void PushSizeRegList(RegList registers, unsigned reg_size,
637       CPURegister::RegisterType type = CPURegister::kRegister) {
638     PushCPURegList(CPURegList(type, reg_size, registers));
639   }
640   inline void PopSizeRegList(RegList registers, unsigned reg_size,
641       CPURegister::RegisterType type = CPURegister::kRegister) {
642     PopCPURegList(CPURegList(type, reg_size, registers));
643   }
PushXRegList(RegList regs)644   inline void PushXRegList(RegList regs) {
645     PushSizeRegList(regs, kXRegSizeInBits);
646   }
PopXRegList(RegList regs)647   inline void PopXRegList(RegList regs) {
648     PopSizeRegList(regs, kXRegSizeInBits);
649   }
PushWRegList(RegList regs)650   inline void PushWRegList(RegList regs) {
651     PushSizeRegList(regs, kWRegSizeInBits);
652   }
PopWRegList(RegList regs)653   inline void PopWRegList(RegList regs) {
654     PopSizeRegList(regs, kWRegSizeInBits);
655   }
PushDRegList(RegList regs)656   inline void PushDRegList(RegList regs) {
657     PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
658   }
PopDRegList(RegList regs)659   inline void PopDRegList(RegList regs) {
660     PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
661   }
PushSRegList(RegList regs)662   inline void PushSRegList(RegList regs) {
663     PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
664   }
PopSRegList(RegList regs)665   inline void PopSRegList(RegList regs) {
666     PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
667   }
668 
669   // Push the specified register 'count' times.
670   void PushMultipleTimes(CPURegister src, Register count);
671   void PushMultipleTimes(CPURegister src, int count);
672 
673   // This is a convenience method for pushing a single Handle<Object>.
674   inline void Push(Handle<Object> handle);
Push(Smi * smi)675   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
676 
677   // Aliases of Push and Pop, required for V8 compatibility.
push(Register src)678   inline void push(Register src) {
679     Push(src);
680   }
pop(Register dst)681   inline void pop(Register dst) {
682     Pop(dst);
683   }
684 
685   // Sometimes callers need to push or pop multiple registers in a way that is
686   // difficult to structure efficiently for fixed Push or Pop calls. This scope
687   // allows push requests to be queued up, then flushed at once. The
688   // MacroAssembler will try to generate the most efficient sequence required.
689   //
690   // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
691   // register sizes and types.
692   class PushPopQueue {
693    public:
PushPopQueue(MacroAssembler * masm)694     explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
695 
~PushPopQueue()696     ~PushPopQueue() {
697       DCHECK(queued_.empty());
698     }
699 
Queue(const CPURegister & rt)700     void Queue(const CPURegister& rt) {
701       size_ += rt.SizeInBytes();
702       queued_.push_back(rt);
703     }
704 
705     enum PreambleDirective {
706       WITH_PREAMBLE,
707       SKIP_PREAMBLE
708     };
709     void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
710     void PopQueued();
711 
712    private:
713     MacroAssembler* masm_;
714     int size_;
715     std::vector<CPURegister> queued_;
716   };
717 
718   // Poke 'src' onto the stack. The offset is in bytes.
719   //
720   // If the current stack pointer (according to StackPointer()) is csp, then
721   // csp must be aligned to 16 bytes.
722   void Poke(const CPURegister& src, const Operand& offset);
723 
724   // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
725   //
726   // If the current stack pointer (according to StackPointer()) is csp, then
727   // csp must be aligned to 16 bytes.
728   void Peek(const CPURegister& dst, const Operand& offset);
729 
730   // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
731   // with 'src2' at a higher address than 'src1'. The offset is in bytes.
732   //
733   // If the current stack pointer (according to StackPointer()) is csp, then
734   // csp must be aligned to 16 bytes.
735   void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
736 
737   // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
738   // values peeked will be adjacent, with the value in 'dst2' being from a
739   // higher address than 'dst1'. The offset is in bytes.
740   //
741   // If the current stack pointer (according to StackPointer()) is csp, then
742   // csp must be aligned to 16 bytes.
743   void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
744 
745   // Claim or drop stack space without actually accessing memory.
746   //
747   // In debug mode, both of these will write invalid data into the claimed or
748   // dropped space.
749   //
750   // If the current stack pointer (according to StackPointer()) is csp, then it
751   // must be aligned to 16 bytes and the size claimed or dropped must be a
752   // multiple of 16 bytes.
753   //
754   // Note that unit_size must be specified in bytes. For variants which take a
755   // Register count, the unit size must be a power of two.
756   inline void Claim(int64_t count, uint64_t unit_size = kXRegSize);
757   inline void Claim(const Register& count,
758                     uint64_t unit_size = kXRegSize);
759   inline void Drop(int64_t count, uint64_t unit_size = kXRegSize);
760   inline void Drop(const Register& count,
761                    uint64_t unit_size = kXRegSize);
762 
763   // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
764   // register.
765   inline void ClaimBySMI(const Register& count_smi,
766                          uint64_t unit_size = kXRegSize);
767   inline void DropBySMI(const Register& count_smi,
768                         uint64_t unit_size = kXRegSize);
769 
770   // Compare a register with an operand, and branch to label depending on the
771   // condition. May corrupt the status flags.
772   inline void CompareAndBranch(const Register& lhs,
773                                const Operand& rhs,
774                                Condition cond,
775                                Label* label);
776 
777   // Test the bits of register defined by bit_pattern, and branch if ANY of
778   // those bits are set. May corrupt the status flags.
779   inline void TestAndBranchIfAnySet(const Register& reg,
780                                     const uint64_t bit_pattern,
781                                     Label* label);
782 
783   // Test the bits of register defined by bit_pattern, and branch if ALL of
784   // those bits are clear (ie. not set.) May corrupt the status flags.
785   inline void TestAndBranchIfAllClear(const Register& reg,
786                                       const uint64_t bit_pattern,
787                                       Label* label);
788 
789   // Insert one or more instructions into the instruction stream that encode
790   // some caller-defined data. The instructions used will be executable with no
791   // side effects.
792   inline void InlineData(uint64_t data);
793 
794   // Insert an instrumentation enable marker into the instruction stream.
795   inline void EnableInstrumentation();
796 
797   // Insert an instrumentation disable marker into the instruction stream.
798   inline void DisableInstrumentation();
799 
800   // Insert an instrumentation event marker into the instruction stream. These
801   // will be picked up by the instrumentation system to annotate an instruction
802   // profile. The argument marker_name must be a printable two character string;
803   // it will be encoded in the event marker.
804   inline void AnnotateInstrumentation(const char* marker_name);
805 
806   // If emit_debug_code() is true, emit a run-time check to ensure that
807   // StackPointer() does not point below the system stack pointer.
808   //
809   // Whilst it is architecturally legal for StackPointer() to point below csp,
810   // it can be evidence of a potential bug because the ABI forbids accesses
811   // below csp.
812   //
813   // If StackPointer() is the system stack pointer (csp), then csp will be
814   // dereferenced to cause the processor (or simulator) to abort if it is not
815   // properly aligned.
816   //
817   // If emit_debug_code() is false, this emits no code.
818   void AssertStackConsistency();
819 
820   // Emits a runtime assert that the CSP is aligned.
821   void AssertCspAligned();
822 
823   // Preserve the callee-saved registers (as defined by AAPCS64).
824   //
825   // Higher-numbered registers are pushed before lower-numbered registers, and
826   // thus get higher addresses.
827   // Floating-point registers are pushed before general-purpose registers, and
828   // thus get higher addresses.
829   //
830   // Note that registers are not checked for invalid values. Use this method
831   // only if you know that the GC won't try to examine the values on the stack.
832   //
833   // This method must not be called unless the current stack pointer (as set by
834   // SetStackPointer) is the system stack pointer (csp), and is aligned to
835   // ActivationFrameAlignment().
836   void PushCalleeSavedRegisters();
837 
838   // Restore the callee-saved registers (as defined by AAPCS64).
839   //
840   // Higher-numbered registers are popped after lower-numbered registers, and
841   // thus come from higher addresses.
842   // Floating-point registers are popped after general-purpose registers, and
843   // thus come from higher addresses.
844   //
845   // This method must not be called unless the current stack pointer (as set by
846   // SetStackPointer) is the system stack pointer (csp), and is aligned to
847   // ActivationFrameAlignment().
848   void PopCalleeSavedRegisters();
849 
850   // Set the current stack pointer, but don't generate any code.
SetStackPointer(const Register & stack_pointer)851   inline void SetStackPointer(const Register& stack_pointer) {
852     DCHECK(!TmpList()->IncludesAliasOf(stack_pointer));
853     sp_ = stack_pointer;
854   }
855 
856   // Return the current stack pointer, as set by SetStackPointer.
StackPointer()857   inline const Register& StackPointer() const {
858     return sp_;
859   }
860 
861   // Align csp for a frame, as per ActivationFrameAlignment, and make it the
862   // current stack pointer.
AlignAndSetCSPForFrame()863   inline void AlignAndSetCSPForFrame() {
864     int sp_alignment = ActivationFrameAlignment();
865     // AAPCS64 mandates at least 16-byte alignment.
866     DCHECK(sp_alignment >= 16);
867     DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
868     Bic(csp, StackPointer(), sp_alignment - 1);
869     SetStackPointer(csp);
870   }
871 
872   // Push the system stack pointer (csp) down to allow the same to be done to
873   // the current stack pointer (according to StackPointer()). This must be
874   // called _before_ accessing the memory.
875   //
876   // This is necessary when pushing or otherwise adding things to the stack, to
877   // satisfy the AAPCS64 constraint that the memory below the system stack
878   // pointer is not accessed.  The amount pushed will be increased as necessary
879   // to ensure csp remains aligned to 16 bytes.
880   //
881   // This method asserts that StackPointer() is not csp, since the call does
882   // not make sense in that context.
883   inline void BumpSystemStackPointer(const Operand& space);
884 
885   // Re-synchronizes the system stack pointer (csp) with the current stack
886   // pointer (according to StackPointer()).
887   //
888   // This method asserts that StackPointer() is not csp, since the call does
889   // not make sense in that context.
890   inline void SyncSystemStackPointer();
891 
892   // Helpers ------------------------------------------------------------------
893   // Root register.
894   inline void InitializeRootRegister();
895 
896   void AssertFPCRState(Register fpcr = NoReg);
897   void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
CanonicalizeNaN(const FPRegister & reg)898   void CanonicalizeNaN(const FPRegister& reg) {
899     CanonicalizeNaN(reg, reg);
900   }
901 
902   // Load an object from the root table.
903   void LoadRoot(CPURegister destination,
904                 Heap::RootListIndex index);
905   // Store an object to the root table.
906   void StoreRoot(Register source,
907                  Heap::RootListIndex index);
908 
909   // Load both TrueValue and FalseValue roots.
910   void LoadTrueFalseRoots(Register true_root, Register false_root);
911 
912   void LoadHeapObject(Register dst, Handle<HeapObject> object);
913 
LoadObject(Register result,Handle<Object> object)914   void LoadObject(Register result, Handle<Object> object) {
915     AllowDeferredHandleDereference heap_object_check;
916     if (object->IsHeapObject()) {
917       LoadHeapObject(result, Handle<HeapObject>::cast(object));
918     } else {
919       DCHECK(object->IsSmi());
920       Mov(result, Operand(object));
921     }
922   }
923 
924   static int SafepointRegisterStackIndex(int reg_code);
925 
926   // This is required for compatibility with architecture independant code.
927   // Remove if not needed.
Move(Register dst,Register src)928   inline void Move(Register dst, Register src) { Mov(dst, src); }
Move(Register dst,Handle<Object> x)929   inline void Move(Register dst, Handle<Object> x) { LoadObject(dst, x); }
Move(Register dst,Smi * src)930   inline void Move(Register dst, Smi* src) { Mov(dst, src); }
931 
932   void LoadInstanceDescriptors(Register map,
933                                Register descriptors);
934   void EnumLengthUntagged(Register dst, Register map);
935   void EnumLengthSmi(Register dst, Register map);
936   void NumberOfOwnDescriptors(Register dst, Register map);
937   void LoadAccessor(Register dst, Register holder, int accessor_index,
938                     AccessorComponent accessor);
939 
940   template<typename Field>
DecodeField(Register dst,Register src)941   void DecodeField(Register dst, Register src) {
942     static const int shift = Field::kShift;
943     static const int setbits = CountSetBits(Field::kMask, 32);
944     Ubfx(dst, src, shift, setbits);
945   }
946 
947   template<typename Field>
DecodeField(Register reg)948   void DecodeField(Register reg) {
949     DecodeField<Field>(reg, reg);
950   }
951 
952   // ---- SMI and Number Utilities ----
953 
954   inline void SmiTag(Register dst, Register src);
955   inline void SmiTag(Register smi);
956   inline void SmiUntag(Register dst, Register src);
957   inline void SmiUntag(Register smi);
958   inline void SmiUntagToDouble(FPRegister dst,
959                                Register src,
960                                UntagMode mode = kNotSpeculativeUntag);
961   inline void SmiUntagToFloat(FPRegister dst,
962                               Register src,
963                               UntagMode mode = kNotSpeculativeUntag);
964 
965   // Tag and push in one step.
966   inline void SmiTagAndPush(Register src);
967   inline void SmiTagAndPush(Register src1, Register src2);
968 
969   inline void JumpIfSmi(Register value,
970                         Label* smi_label,
971                         Label* not_smi_label = NULL);
972   inline void JumpIfNotSmi(Register value, Label* not_smi_label);
973   inline void JumpIfBothSmi(Register value1,
974                             Register value2,
975                             Label* both_smi_label,
976                             Label* not_smi_label = NULL);
977   inline void JumpIfEitherSmi(Register value1,
978                               Register value2,
979                               Label* either_smi_label,
980                               Label* not_smi_label = NULL);
981   inline void JumpIfEitherNotSmi(Register value1,
982                                  Register value2,
983                                  Label* not_smi_label);
984   inline void JumpIfBothNotSmi(Register value1,
985                                Register value2,
986                                Label* not_smi_label);
987 
988   // Abort execution if argument is a smi, enabled via --debug-code.
989   void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
990   void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
991 
992   inline void ObjectTag(Register tagged_obj, Register obj);
993   inline void ObjectUntag(Register untagged_obj, Register obj);
994 
995   // Abort execution if argument is not a name, enabled via --debug-code.
996   void AssertName(Register object);
997 
998   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
999   void AssertFunction(Register object);
1000 
1001   // Abort execution if argument is not a JSGeneratorObject,
1002   // enabled via --debug-code.
1003   void AssertGeneratorObject(Register object);
1004 
1005   // Abort execution if argument is not a JSBoundFunction,
1006   // enabled via --debug-code.
1007   void AssertBoundFunction(Register object);
1008 
1009   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1010   void AssertReceiver(Register object);
1011 
1012   // Abort execution if argument is not undefined or an AllocationSite, enabled
1013   // via --debug-code.
1014   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1015 
1016   // Abort execution if argument is not a string, enabled via --debug-code.
1017   void AssertString(Register object);
1018 
1019   // Abort execution if argument is not a positive or zero integer, enabled via
1020   // --debug-code.
1021   void AssertPositiveOrZero(Register value);
1022 
1023   // Abort execution if argument is not a number (heap number or smi).
1024   void AssertNumber(Register value);
1025   void AssertNotNumber(Register value);
1026 
1027   void JumpIfHeapNumber(Register object, Label* on_heap_number,
1028                         SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
1029   void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number,
1030                            SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
1031 
1032   // Sets the vs flag if the input is -0.0.
1033   void TestForMinusZero(DoubleRegister input);
1034 
1035   // Jump to label if the input double register contains -0.0.
1036   void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
1037 
1038   // Jump to label if the input integer register contains the double precision
1039   // floating point representation of -0.0.
1040   void JumpIfMinusZero(Register input, Label* on_negative_zero);
1041 
1042   // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
1043   // output.
1044   void ClampInt32ToUint8(Register in_out);
1045   void ClampInt32ToUint8(Register output, Register input);
1046 
1047   // Saturate a double in input to an unsigned 8-bit integer in output.
1048   void ClampDoubleToUint8(Register output,
1049                           DoubleRegister input,
1050                           DoubleRegister dbl_scratch);
1051 
1052   // Try to represent a double as a signed 32-bit int.
1053   // This succeeds if the result compares equal to the input, so inputs of -0.0
1054   // are represented as 0 and handled as a success.
1055   //
1056   // On output the Z flag is set if the operation was successful.
1057   void TryRepresentDoubleAsInt32(Register as_int,
1058                                  FPRegister value,
1059                                  FPRegister scratch_d,
1060                                  Label* on_successful_conversion = NULL,
1061                                  Label* on_failed_conversion = NULL) {
1062     DCHECK(as_int.Is32Bits());
1063     TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1064                             on_failed_conversion);
1065   }
1066 
1067   // Try to represent a double as a signed 64-bit int.
1068   // This succeeds if the result compares equal to the input, so inputs of -0.0
1069   // are represented as 0 and handled as a success.
1070   //
1071   // On output the Z flag is set if the operation was successful.
1072   void TryRepresentDoubleAsInt64(Register as_int,
1073                                  FPRegister value,
1074                                  FPRegister scratch_d,
1075                                  Label* on_successful_conversion = NULL,
1076                                  Label* on_failed_conversion = NULL) {
1077     DCHECK(as_int.Is64Bits());
1078     TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1079                             on_failed_conversion);
1080   }
1081 
1082   // ---- Object Utilities ----
1083 
1084   // Initialize fields with filler values.  Fields starting at |current_address|
1085   // not including |end_address| are overwritten with the value in |filler|.  At
1086   // the end the loop, |current_address| takes the value of |end_address|.
1087   void InitializeFieldsWithFiller(Register current_address,
1088                                   Register end_address, Register filler);
1089 
1090   // Copies a number of bytes from src to dst. All passed registers are
1091   // clobbered. On exit src and dst will point to the place just after where the
1092   // last byte was read or written and length will be zero. Hint may be used to
1093   // determine which is the most efficient algorithm to use for copying.
1094   void CopyBytes(Register dst,
1095                  Register src,
1096                  Register length,
1097                  Register scratch,
1098                  CopyHint hint = kCopyUnknown);
1099 
1100   // ---- String Utilities ----
1101 
1102 
1103   // Jump to label if either object is not a sequential one-byte string.
1104   // Optionally perform a smi check on the objects first.
1105   void JumpIfEitherIsNotSequentialOneByteStrings(
1106       Register first, Register second, Register scratch1, Register scratch2,
1107       Label* failure, SmiCheckType smi_check = DO_SMI_CHECK);
1108 
1109   // Check if instance type is sequential one-byte string and jump to label if
1110   // it is not.
1111   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1112                                                 Label* failure);
1113 
1114   // Checks if both instance types are sequential one-byte strings and jumps to
1115   // label if either is not.
1116   void JumpIfEitherInstanceTypeIsNotSequentialOneByte(
1117       Register first_object_instance_type, Register second_object_instance_type,
1118       Register scratch1, Register scratch2, Label* failure);
1119 
1120   // Checks if both instance types are sequential one-byte strings and jumps to
1121   // label if either is not.
1122   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1123       Register first_object_instance_type, Register second_object_instance_type,
1124       Register scratch1, Register scratch2, Label* failure);
1125 
1126   void JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name);
1127 
1128   // ---- Calling / Jumping helpers ----
1129 
1130   // This is required for compatibility in architecture indepenedant code.
jmp(Label * L)1131   inline void jmp(Label* L) { B(L); }
1132 
1133   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1134   void TailCallStub(CodeStub* stub);
1135 
1136   void CallRuntime(const Runtime::Function* f,
1137                    int num_arguments,
1138                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1139 
1140   // Convenience function: Same as above, but takes the fid instead.
1141   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1142                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1143     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1144   }
1145 
1146   // Convenience function: Same as above, but takes the fid instead.
1147   void CallRuntime(Runtime::FunctionId fid,
1148                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1149     const Runtime::Function* function = Runtime::FunctionForId(fid);
1150     CallRuntime(function, function->nargs, save_doubles);
1151   }
1152 
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1153   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1154     const Runtime::Function* function = Runtime::FunctionForId(fid);
1155     CallRuntime(function, function->nargs, kSaveFPRegs);
1156   }
1157 
1158   void TailCallRuntime(Runtime::FunctionId fid);
1159 
1160   int ActivationFrameAlignment();
1161 
1162   // Calls a C function.
1163   // The called function is not allowed to trigger a
1164   // garbage collection, since that might move the code and invalidate the
1165   // return address (unless this is somehow accounted for by the called
1166   // function).
1167   void CallCFunction(ExternalReference function,
1168                      int num_reg_arguments);
1169   void CallCFunction(ExternalReference function,
1170                      int num_reg_arguments,
1171                      int num_double_arguments);
1172   void CallCFunction(Register function,
1173                      int num_reg_arguments,
1174                      int num_double_arguments);
1175 
1176   // Jump to a runtime routine.
1177   void JumpToExternalReference(const ExternalReference& builtin);
1178 
1179   // Convenience function: call an external reference.
1180   void CallExternalReference(const ExternalReference& ext,
1181                              int num_arguments);
1182 
1183 
1184   void Jump(Register target);
1185   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
1186   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
1187   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1188 
1189   void Call(Register target);
1190   void Call(Label* target);
1191   void Call(Address target, RelocInfo::Mode rmode);
1192   void Call(Handle<Code> code,
1193             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1194             TypeFeedbackId ast_id = TypeFeedbackId::None());
1195 
1196   // For every Call variant, there is a matching CallSize function that returns
1197   // the size (in bytes) of the call sequence.
1198   static int CallSize(Register target);
1199   static int CallSize(Label* target);
1200   static int CallSize(Address target, RelocInfo::Mode rmode);
1201   static int CallSize(Handle<Code> code,
1202                       RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1203                       TypeFeedbackId ast_id = TypeFeedbackId::None());
1204 
1205   // Removes current frame and its arguments from the stack preserving
1206   // the arguments and a return address pushed to the stack for the next call.
1207   // Both |callee_args_count| and |caller_args_count_reg| do not include
1208   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1209   // is trashed.
1210   void PrepareForTailCall(const ParameterCount& callee_args_count,
1211                           Register caller_args_count_reg, Register scratch0,
1212                           Register scratch1);
1213 
1214   // Registers used through the invocation chain are hard-coded.
1215   // We force passing the parameters to ensure the contracts are correctly
1216   // honoured by the caller.
1217   // 'function' must be x1.
1218   // 'actual' must use an immediate or x0.
1219   // 'expected' must use an immediate or x2.
1220   // 'call_kind' must be x5.
1221   void InvokePrologue(const ParameterCount& expected,
1222                       const ParameterCount& actual,
1223                       Label* done,
1224                       InvokeFlag flag,
1225                       bool* definitely_mismatches,
1226                       const CallWrapper& call_wrapper);
1227   void FloodFunctionIfStepping(Register fun, Register new_target,
1228                                const ParameterCount& expected,
1229                                const ParameterCount& actual);
1230   void InvokeFunctionCode(Register function, Register new_target,
1231                           const ParameterCount& expected,
1232                           const ParameterCount& actual, InvokeFlag flag,
1233                           const CallWrapper& call_wrapper);
1234   // Invoke the JavaScript function in the given register.
1235   // Changes the current context to the context in the function before invoking.
1236   void InvokeFunction(Register function,
1237                       Register new_target,
1238                       const ParameterCount& actual,
1239                       InvokeFlag flag,
1240                       const CallWrapper& call_wrapper);
1241   void InvokeFunction(Register function,
1242                       const ParameterCount& expected,
1243                       const ParameterCount& actual,
1244                       InvokeFlag flag,
1245                       const CallWrapper& call_wrapper);
1246   void InvokeFunction(Handle<JSFunction> function,
1247                       const ParameterCount& expected,
1248                       const ParameterCount& actual,
1249                       InvokeFlag flag,
1250                       const CallWrapper& call_wrapper);
1251 
1252 
1253   // ---- Floating point helpers ----
1254 
1255   // Perform a conversion from a double to a signed int64. If the input fits in
1256   // range of the 64-bit result, execution branches to done. Otherwise,
1257   // execution falls through, and the sign of the result can be used to
1258   // determine if overflow was towards positive or negative infinity.
1259   //
1260   // On successful conversion, the least significant 32 bits of the result are
1261   // equivalent to the ECMA-262 operation "ToInt32".
1262   //
1263   // Only public for the test code in test-code-stubs-arm64.cc.
1264   void TryConvertDoubleToInt64(Register result,
1265                                DoubleRegister input,
1266                                Label* done);
1267 
1268   // Performs a truncating conversion of a floating point number as used by
1269   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1270   // Exits with 'result' holding the answer.
1271   void TruncateDoubleToI(Register result, DoubleRegister double_input);
1272 
1273   // Performs a truncating conversion of a heap number as used by
1274   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1275   // must be different registers.  Exits with 'result' holding the answer.
1276   void TruncateHeapNumberToI(Register result, Register object);
1277 
1278   // Converts the smi or heap number in object to an int32 using the rules
1279   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1280   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1281   // different registers.
1282   void TruncateNumberToI(Register object,
1283                          Register result,
1284                          Register heap_number_map,
1285                          Label* not_int32);
1286 
1287   // ---- Code generation helpers ----
1288 
set_generating_stub(bool value)1289   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1290   bool generating_stub() const { return generating_stub_; }
1291 #if DEBUG
set_allow_macro_instructions(bool value)1292   void set_allow_macro_instructions(bool value) {
1293     allow_macro_instructions_ = value;
1294   }
allow_macro_instructions()1295   bool allow_macro_instructions() const { return allow_macro_instructions_; }
1296 #endif
use_real_aborts()1297   bool use_real_aborts() const { return use_real_aborts_; }
set_has_frame(bool value)1298   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1299   bool has_frame() const { return has_frame_; }
1300   bool AllowThisStubCall(CodeStub* stub);
1301 
1302   class NoUseRealAbortsScope {
1303    public:
NoUseRealAbortsScope(MacroAssembler * masm)1304     explicit NoUseRealAbortsScope(MacroAssembler* masm) :
1305         saved_(masm->use_real_aborts_), masm_(masm) {
1306       masm_->use_real_aborts_ = false;
1307     }
~NoUseRealAbortsScope()1308     ~NoUseRealAbortsScope() {
1309       masm_->use_real_aborts_ = saved_;
1310     }
1311    private:
1312     bool saved_;
1313     MacroAssembler* masm_;
1314   };
1315 
1316   // ---------------------------------------------------------------------------
1317   // Debugger Support
1318 
1319   void DebugBreak();
1320 
1321   // ---------------------------------------------------------------------------
1322   // Exception handling
1323 
1324   // Push a new stack handler and link into stack handler chain.
1325   void PushStackHandler();
1326 
1327   // Unlink the stack handler on top of the stack from the stack handler chain.
1328   // Must preserve the result register.
1329   void PopStackHandler();
1330 
1331 
1332   // ---------------------------------------------------------------------------
1333   // Allocation support
1334 
1335   // Allocate an object in new space or old space. The object_size is
1336   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1337   // is passed. The allocated object is returned in result.
1338   //
1339   // If the new space is exhausted control continues at the gc_required label.
1340   // In this case, the result and scratch registers may still be clobbered.
1341   void Allocate(Register object_size, Register result, Register result_end,
1342                 Register scratch, Label* gc_required, AllocationFlags flags);
1343 
1344   void Allocate(int object_size,
1345                 Register result,
1346                 Register scratch1,
1347                 Register scratch2,
1348                 Label* gc_required,
1349                 AllocationFlags flags);
1350 
1351   // FastAllocate is right now only used for folded allocations. It just
1352   // increments the top pointer without checking against limit. This can only
1353   // be done if it was proved earlier that the allocation will succeed.
1354   void FastAllocate(Register object_size, Register result, Register result_end,
1355                     Register scratch, AllocationFlags flags);
1356 
1357   void FastAllocate(int object_size, Register result, Register scratch1,
1358                     Register scratch2, AllocationFlags flags);
1359 
1360   void AllocateTwoByteString(Register result,
1361                              Register length,
1362                              Register scratch1,
1363                              Register scratch2,
1364                              Register scratch3,
1365                              Label* gc_required);
1366   void AllocateOneByteString(Register result, Register length,
1367                              Register scratch1, Register scratch2,
1368                              Register scratch3, Label* gc_required);
1369   void AllocateTwoByteConsString(Register result,
1370                                  Register length,
1371                                  Register scratch1,
1372                                  Register scratch2,
1373                                  Label* gc_required);
1374   void AllocateOneByteConsString(Register result, Register length,
1375                                  Register scratch1, Register scratch2,
1376                                  Label* gc_required);
1377   void AllocateTwoByteSlicedString(Register result,
1378                                    Register length,
1379                                    Register scratch1,
1380                                    Register scratch2,
1381                                    Label* gc_required);
1382   void AllocateOneByteSlicedString(Register result, Register length,
1383                                    Register scratch1, Register scratch2,
1384                                    Label* gc_required);
1385 
1386   // Allocates a heap number or jumps to the gc_required label if the young
1387   // space is full and a scavenge is needed.
1388   // All registers are clobbered.
1389   // If no heap_number_map register is provided, the function will take care of
1390   // loading it.
1391   void AllocateHeapNumber(Register result,
1392                           Label* gc_required,
1393                           Register scratch1,
1394                           Register scratch2,
1395                           CPURegister value = NoFPReg,
1396                           CPURegister heap_number_map = NoReg,
1397                           MutableMode mode = IMMUTABLE);
1398 
1399   // Allocate and initialize a JSValue wrapper with the specified {constructor}
1400   // and {value}.
1401   void AllocateJSValue(Register result, Register constructor, Register value,
1402                        Register scratch1, Register scratch2,
1403                        Label* gc_required);
1404 
1405   // ---------------------------------------------------------------------------
1406   // Support functions.
1407 
1408   // Machine code version of Map::GetConstructor().
1409   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1410   void GetMapConstructor(Register result, Register map, Register temp,
1411                          Register temp2);
1412 
1413   void TryGetFunctionPrototype(Register function, Register result,
1414                                Register scratch, Label* miss);
1415 
1416   // Compare object type for heap object.  heap_object contains a non-Smi
1417   // whose object type should be compared with the given type.  This both
1418   // sets the flags and leaves the object type in the type_reg register.
1419   // It leaves the map in the map register (unless the type_reg and map register
1420   // are the same register).  It leaves the heap object in the heap_object
1421   // register unless the heap_object register is the same register as one of the
1422   // other registers.
1423   void CompareObjectType(Register heap_object,
1424                          Register map,
1425                          Register type_reg,
1426                          InstanceType type);
1427 
1428 
1429   // Compare object type for heap object, and branch if equal (or not.)
1430   // heap_object contains a non-Smi whose object type should be compared with
1431   // the given type.  This both sets the flags and leaves the object type in
1432   // the type_reg register. It leaves the map in the map register (unless the
1433   // type_reg and map register are the same register).  It leaves the heap
1434   // object in the heap_object register unless the heap_object register is the
1435   // same register as one of the other registers.
1436   void JumpIfObjectType(Register object,
1437                         Register map,
1438                         Register type_reg,
1439                         InstanceType type,
1440                         Label* if_cond_pass,
1441                         Condition cond = eq);
1442 
1443   void JumpIfNotObjectType(Register object,
1444                            Register map,
1445                            Register type_reg,
1446                            InstanceType type,
1447                            Label* if_not_object);
1448 
1449   // Compare instance type in a map.  map contains a valid map object whose
1450   // object type should be compared with the given type.  This both
1451   // sets the flags and leaves the object type in the type_reg register.
1452   void CompareInstanceType(Register map,
1453                            Register type_reg,
1454                            InstanceType type);
1455 
1456   // Compare an object's map with the specified map. Condition flags are set
1457   // with result of map compare.
1458   void CompareObjectMap(Register obj, Heap::RootListIndex index);
1459 
1460   // Compare an object's map with the specified map. Condition flags are set
1461   // with result of map compare.
1462   void CompareObjectMap(Register obj, Register scratch, Handle<Map> map);
1463 
1464   // As above, but the map of the object is already loaded into the register
1465   // which is preserved by the code generated.
1466   void CompareMap(Register obj_map,
1467                   Handle<Map> map);
1468 
1469   // Check if the map of an object is equal to a specified map and branch to
1470   // label if not. Skip the smi check if not required (object is known to be a
1471   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1472   // against maps that are ElementsKind transition maps of the specified map.
1473   void CheckMap(Register obj,
1474                 Register scratch,
1475                 Handle<Map> map,
1476                 Label* fail,
1477                 SmiCheckType smi_check_type);
1478 
1479 
1480   void CheckMap(Register obj,
1481                 Register scratch,
1482                 Heap::RootListIndex index,
1483                 Label* fail,
1484                 SmiCheckType smi_check_type);
1485 
1486   // As above, but the map of the object is already loaded into obj_map, and is
1487   // preserved.
1488   void CheckMap(Register obj_map,
1489                 Handle<Map> map,
1490                 Label* fail,
1491                 SmiCheckType smi_check_type);
1492 
1493   // Check if the map of an object is equal to a specified weak map and branch
1494   // to a specified target if equal. Skip the smi check if not required
1495   // (object is known to be a heap object)
1496   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1497                        Handle<WeakCell> cell, Handle<Code> success,
1498                        SmiCheckType smi_check_type);
1499 
1500   // Compare the given value and the value of weak cell.
1501   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
1502 
1503   void GetWeakValue(Register value, Handle<WeakCell> cell);
1504 
1505   // Load the value of the weak cell in the value register. Branch to the given
1506   // miss label if the weak cell was cleared.
1507   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1508 
1509   // Test the bitfield of the heap object map with mask and set the condition
1510   // flags. The object register is preserved.
1511   void TestMapBitfield(Register object, uint64_t mask);
1512 
1513   // Load the elements kind field from a map, and return it in the result
1514   // register.
1515   void LoadElementsKindFromMap(Register result, Register map);
1516 
1517   // Load the value from the root list and push it onto the stack.
1518   void PushRoot(Heap::RootListIndex index);
1519 
1520   // Compare the object in a register to a value from the root list.
1521   void CompareRoot(const Register& obj, Heap::RootListIndex index);
1522 
1523   // Compare the object in a register to a value and jump if they are equal.
1524   void JumpIfRoot(const Register& obj,
1525                   Heap::RootListIndex index,
1526                   Label* if_equal);
1527 
1528   // Compare the object in a register to a value and jump if they are not equal.
1529   void JumpIfNotRoot(const Register& obj,
1530                      Heap::RootListIndex index,
1531                      Label* if_not_equal);
1532 
1533   // Load and check the instance type of an object for being a unique name.
1534   // Loads the type into the second argument register.
1535   // The object and type arguments can be the same register; in that case it
1536   // will be overwritten with the type.
1537   // Fall-through if the object was a string and jump on fail otherwise.
1538   inline void IsObjectNameType(Register object, Register type, Label* fail);
1539 
1540   // Load and check the instance type of an object for being a string.
1541   // Loads the type into the second argument register.
1542   // The object and type arguments can be the same register; in that case it
1543   // will be overwritten with the type.
1544   // Jumps to not_string or string appropriate. If the appropriate label is
1545   // NULL, fall through.
1546   inline void IsObjectJSStringType(Register object, Register type,
1547                                    Label* not_string, Label* string = NULL);
1548 
1549   // Compare the contents of a register with an operand, and branch to true,
1550   // false or fall through, depending on condition.
1551   void CompareAndSplit(const Register& lhs,
1552                        const Operand& rhs,
1553                        Condition cond,
1554                        Label* if_true,
1555                        Label* if_false,
1556                        Label* fall_through);
1557 
1558   // Test the bits of register defined by bit_pattern, and branch to
1559   // if_any_set, if_all_clear or fall_through accordingly.
1560   void TestAndSplit(const Register& reg,
1561                     uint64_t bit_pattern,
1562                     Label* if_all_clear,
1563                     Label* if_any_set,
1564                     Label* fall_through);
1565 
1566   // Check if a map for a JSObject indicates that the object has fast elements.
1567   // Jump to the specified label if it does not.
1568   void CheckFastElements(Register map, Register scratch, Label* fail);
1569 
1570   // Check if a map for a JSObject indicates that the object can have both smi
1571   // and HeapObject elements.  Jump to the specified label if it does not.
1572   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1573 
1574   // Check to see if number can be stored as a double in FastDoubleElements.
1575   // If it can, store it at the index specified by key_reg in the array,
1576   // otherwise jump to fail.
1577   void StoreNumberToDoubleElements(Register value_reg,
1578                                    Register key_reg,
1579                                    Register elements_reg,
1580                                    Register scratch1,
1581                                    FPRegister fpscratch1,
1582                                    Label* fail,
1583                                    int elements_offset = 0);
1584 
1585   // Picks out an array index from the hash field.
1586   // Register use:
1587   //   hash - holds the index's hash. Clobbered.
1588   //   index - holds the overwritten index on exit.
1589   void IndexFromHash(Register hash, Register index);
1590 
1591   // ---------------------------------------------------------------------------
1592   // Inline caching support.
1593 
1594   void EmitSeqStringSetCharCheck(Register string,
1595                                  Register index,
1596                                  SeqStringSetCharCheckIndexType index_type,
1597                                  Register scratch,
1598                                  uint32_t encoding_mask);
1599 
1600   // Generate code for checking access rights - used for security checks
1601   // on access to global objects across environments. The holder register
1602   // is left untouched, whereas both scratch registers are clobbered.
1603   void CheckAccessGlobalProxy(Register holder_reg,
1604                               Register scratch1,
1605                               Register scratch2,
1606                               Label* miss);
1607 
1608   // Hash the interger value in 'key' register.
1609   // It uses the same algorithm as ComputeIntegerHash in utils.h.
1610   void GetNumberHash(Register key, Register scratch);
1611 
1612   // Load value from the dictionary.
1613   //
1614   // elements - holds the slow-case elements of the receiver on entry.
1615   //            Unchanged unless 'result' is the same register.
1616   //
1617   // key      - holds the smi key on entry.
1618   //            Unchanged unless 'result' is the same register.
1619   //
1620   // result   - holds the result on exit if the load succeeded.
1621   //            Allowed to be the same as 'key' or 'result'.
1622   //            Unchanged on bailout so 'key' or 'result' can be used
1623   //            in further computation.
1624   void LoadFromNumberDictionary(Label* miss,
1625                                 Register elements,
1626                                 Register key,
1627                                 Register result,
1628                                 Register scratch0,
1629                                 Register scratch1,
1630                                 Register scratch2,
1631                                 Register scratch3);
1632 
1633   // ---------------------------------------------------------------------------
1634   // Frames.
1635 
1636   // Load the type feedback vector from a JavaScript frame.
1637   void EmitLoadTypeFeedbackVector(Register vector);
1638 
1639   // Activation support.
1640   void EnterFrame(StackFrame::Type type);
1641   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1642   void LeaveFrame(StackFrame::Type type);
1643 
1644   // Returns map with validated enum cache in object register.
1645   void CheckEnumCache(Register object, Register scratch0, Register scratch1,
1646                       Register scratch2, Register scratch3, Register scratch4,
1647                       Label* call_runtime);
1648 
1649   // AllocationMemento support. Arrays may have an associated
1650   // AllocationMemento object that can be checked for in order to pretransition
1651   // to another type.
1652   // On entry, receiver should point to the array object.
1653   // If allocation info is present, the Z flag is set (so that the eq
1654   // condition will pass).
1655   void TestJSArrayForAllocationMemento(Register receiver,
1656                                        Register scratch1,
1657                                        Register scratch2,
1658                                        Label* no_memento_found);
1659 
JumpIfJSArrayHasAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * memento_found)1660   void JumpIfJSArrayHasAllocationMemento(Register receiver,
1661                                          Register scratch1,
1662                                          Register scratch2,
1663                                          Label* memento_found) {
1664     Label no_memento_found;
1665     TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
1666                                     &no_memento_found);
1667     B(eq, memento_found);
1668     Bind(&no_memento_found);
1669   }
1670 
1671   // The stack pointer has to switch between csp and jssp when setting up and
1672   // destroying the exit frame. Hence preserving/restoring the registers is
1673   // slightly more complicated than simple push/pop operations.
1674   void ExitFramePreserveFPRegs();
1675   void ExitFrameRestoreFPRegs();
1676 
1677   // Generates function and stub prologue code.
1678   void StubPrologue(StackFrame::Type type, int frame_slots);
1679   void Prologue(bool code_pre_aging);
1680 
1681   // Enter exit frame. Exit frames are used when calling C code from generated
1682   // (JavaScript) code.
1683   //
1684   // The stack pointer must be jssp on entry, and will be set to csp by this
1685   // function. The frame pointer is also configured, but the only other
1686   // registers modified by this function are the provided scratch register, and
1687   // jssp.
1688   //
1689   // The 'extra_space' argument can be used to allocate some space in the exit
1690   // frame that will be ignored by the GC. This space will be reserved in the
1691   // bottom of the frame immediately above the return address slot.
1692   //
1693   // Set up a stack frame and registers as follows:
1694   //         fp[8]: CallerPC (lr)
1695   //   fp -> fp[0]: CallerFP (old fp)
1696   //         fp[-8]: SPOffset (new csp)
1697   //         fp[-16]: CodeObject()
1698   //         fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
1699   //         csp[8]: Memory reserved for the caller if extra_space != 0.
1700   //                 Alignment padding, if necessary.
1701   //  csp -> csp[0]: Space reserved for the return address.
1702   //
1703   // This function also stores the new frame information in the top frame, so
1704   // that the new frame becomes the current frame.
1705   void EnterExitFrame(bool save_doubles,
1706                       const Register& scratch,
1707                       int extra_space = 0);
1708 
1709   // Leave the current exit frame, after a C function has returned to generated
1710   // (JavaScript) code.
1711   //
1712   // This effectively unwinds the operation of EnterExitFrame:
1713   //  * Preserved doubles are restored (if restore_doubles is true).
1714   //  * The frame information is removed from the top frame.
1715   //  * The exit frame is dropped.
1716   //  * The stack pointer is reset to jssp.
1717   //
1718   // The stack pointer must be csp on entry.
1719   void LeaveExitFrame(bool save_doubles,
1720                       const Register& scratch,
1721                       bool restore_context);
1722 
1723   void LoadContext(Register dst, int context_chain_length);
1724 
1725   // Load the global object from the current context.
LoadGlobalObject(Register dst)1726   void LoadGlobalObject(Register dst) {
1727     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1728   }
1729 
1730   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1731   void LoadGlobalProxy(Register dst) {
1732     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1733   }
1734 
1735   // Emit code for a truncating division by a constant. The dividend register is
1736   // unchanged. Dividend and result must be different.
1737   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1738 
1739   // ---------------------------------------------------------------------------
1740   // StatsCounter support
1741 
1742   void SetCounter(StatsCounter* counter, int value, Register scratch1,
1743                   Register scratch2);
1744   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1745                         Register scratch2);
1746   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1747                         Register scratch2);
1748 
1749   // ---------------------------------------------------------------------------
1750   // Garbage collector support (GC).
1751 
1752   enum RememberedSetFinalAction {
1753     kReturnAtEnd,
1754     kFallThroughAtEnd
1755   };
1756 
1757   // Record in the remembered set the fact that we have a pointer to new space
1758   // at the address pointed to by the addr register. Only works if addr is not
1759   // in new space.
1760   void RememberedSetHelper(Register object,  // Used for debug code.
1761                            Register addr,
1762                            Register scratch1,
1763                            SaveFPRegsMode save_fp,
1764                            RememberedSetFinalAction and_then);
1765 
1766   // Push and pop the registers that can hold pointers, as defined by the
1767   // RegList constant kSafepointSavedRegisters.
1768   void PushSafepointRegisters();
1769   void PopSafepointRegisters();
1770 
1771   void PushSafepointRegistersAndDoubles();
1772   void PopSafepointRegistersAndDoubles();
1773 
1774   // Store value in register src in the safepoint stack slot for register dst.
StoreToSafepointRegisterSlot(Register src,Register dst)1775   void StoreToSafepointRegisterSlot(Register src, Register dst) {
1776     Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1777   }
1778 
1779   // Load the value of the src register from its safepoint stack slot
1780   // into register dst.
LoadFromSafepointRegisterSlot(Register dst,Register src)1781   void LoadFromSafepointRegisterSlot(Register dst, Register src) {
1782     Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1783   }
1784 
1785   void CheckPageFlag(const Register& object, const Register& scratch, int mask,
1786                      Condition cc, Label* condition_met);
1787 
1788   void CheckPageFlagSet(const Register& object,
1789                         const Register& scratch,
1790                         int mask,
1791                         Label* if_any_set);
1792 
1793   void CheckPageFlagClear(const Register& object,
1794                           const Register& scratch,
1795                           int mask,
1796                           Label* if_all_clear);
1797 
1798   // Check if object is in new space and jump accordingly.
1799   // Register 'object' is preserved.
JumpIfNotInNewSpace(Register object,Label * branch)1800   void JumpIfNotInNewSpace(Register object,
1801                            Label* branch) {
1802     InNewSpace(object, ne, branch);
1803   }
1804 
JumpIfInNewSpace(Register object,Label * branch)1805   void JumpIfInNewSpace(Register object,
1806                         Label* branch) {
1807     InNewSpace(object, eq, branch);
1808   }
1809 
1810   // Notify the garbage collector that we wrote a pointer into an object.
1811   // |object| is the object being stored into, |value| is the object being
1812   // stored.  value and scratch registers are clobbered by the operation.
1813   // The offset is the offset from the start of the object, not the offset from
1814   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
1815   void RecordWriteField(
1816       Register object,
1817       int offset,
1818       Register value,
1819       Register scratch,
1820       LinkRegisterStatus lr_status,
1821       SaveFPRegsMode save_fp,
1822       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1823       SmiCheck smi_check = INLINE_SMI_CHECK,
1824       PointersToHereCheck pointers_to_here_check_for_value =
1825           kPointersToHereMaybeInteresting);
1826 
1827   // As above, but the offset has the tag presubtracted. For use with
1828   // MemOperand(reg, off).
1829   inline void RecordWriteContextSlot(
1830       Register context,
1831       int offset,
1832       Register value,
1833       Register scratch,
1834       LinkRegisterStatus lr_status,
1835       SaveFPRegsMode save_fp,
1836       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1837       SmiCheck smi_check = INLINE_SMI_CHECK,
1838       PointersToHereCheck pointers_to_here_check_for_value =
1839           kPointersToHereMaybeInteresting) {
1840     RecordWriteField(context,
1841                      offset + kHeapObjectTag,
1842                      value,
1843                      scratch,
1844                      lr_status,
1845                      save_fp,
1846                      remembered_set_action,
1847                      smi_check,
1848                      pointers_to_here_check_for_value);
1849   }
1850 
1851   // Notify the garbage collector that we wrote a code entry into a
1852   // JSFunction. Only scratch is clobbered by the operation.
1853   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
1854                                  Register scratch);
1855 
1856   void RecordWriteForMap(
1857       Register object,
1858       Register map,
1859       Register dst,
1860       LinkRegisterStatus lr_status,
1861       SaveFPRegsMode save_fp);
1862 
1863   // For a given |object| notify the garbage collector that the slot |address|
1864   // has been written.  |value| is the object being stored. The value and
1865   // address registers are clobbered by the operation.
1866   void RecordWrite(
1867       Register object,
1868       Register address,
1869       Register value,
1870       LinkRegisterStatus lr_status,
1871       SaveFPRegsMode save_fp,
1872       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1873       SmiCheck smi_check = INLINE_SMI_CHECK,
1874       PointersToHereCheck pointers_to_here_check_for_value =
1875           kPointersToHereMaybeInteresting);
1876 
1877   // Checks the color of an object.  If the object is white we jump to the
1878   // incremental marker.
1879   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
1880                    Register scratch3, Register scratch4, Label* value_is_white);
1881 
1882   // Helper for finding the mark bits for an address.
1883   // Note that the behaviour slightly differs from other architectures.
1884   // On exit:
1885   //  - addr_reg is unchanged.
1886   //  - The bitmap register points at the word with the mark bits.
1887   //  - The shift register contains the index of the first color bit for this
1888   //    object in the bitmap.
1889   inline void GetMarkBits(Register addr_reg,
1890                           Register bitmap_reg,
1891                           Register shift_reg);
1892 
1893   // Check if an object has a given incremental marking color.
1894   void HasColor(Register object,
1895                 Register scratch0,
1896                 Register scratch1,
1897                 Label* has_color,
1898                 int first_bit,
1899                 int second_bit);
1900 
1901   void JumpIfBlack(Register object,
1902                    Register scratch0,
1903                    Register scratch1,
1904                    Label* on_black);
1905 
1906 
1907   // ---------------------------------------------------------------------------
1908   // Debugging.
1909 
1910   // Calls Abort(msg) if the condition cond is not satisfied.
1911   // Use --debug_code to enable.
1912   void Assert(Condition cond, BailoutReason reason);
1913   void AssertRegisterIsClear(Register reg, BailoutReason reason);
1914   void AssertRegisterIsRoot(
1915       Register reg,
1916       Heap::RootListIndex index,
1917       BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
1918   void AssertFastElements(Register elements);
1919 
1920   // Abort if the specified register contains the invalid color bit pattern.
1921   // The pattern must be in bits [1:0] of 'reg' register.
1922   //
1923   // If emit_debug_code() is false, this emits no code.
1924   void AssertHasValidColor(const Register& reg);
1925 
1926   // Abort if 'object' register doesn't point to a string object.
1927   //
1928   // If emit_debug_code() is false, this emits no code.
1929   void AssertIsString(const Register& object);
1930 
1931   // Like Assert(), but always enabled.
1932   void Check(Condition cond, BailoutReason reason);
1933   void CheckRegisterIsClear(Register reg, BailoutReason reason);
1934 
1935   // Print a message to stderr and abort execution.
1936   void Abort(BailoutReason reason);
1937 
1938   // Conditionally load the cached Array transitioned map of type
1939   // transitioned_kind from the native context if the map in register
1940   // map_in_out is the cached Array map in the native context of
1941   // expected_kind.
1942   void LoadTransitionedArrayMapConditional(
1943       ElementsKind expected_kind,
1944       ElementsKind transitioned_kind,
1945       Register map_in_out,
1946       Register scratch1,
1947       Register scratch2,
1948       Label* no_map_match);
1949 
1950   void LoadNativeContextSlot(int index, Register dst);
1951 
1952   // Load the initial map from the global function. The registers function and
1953   // map can be the same, function is then overwritten.
1954   void LoadGlobalFunctionInitialMap(Register function,
1955                                     Register map,
1956                                     Register scratch);
1957 
TmpList()1958   CPURegList* TmpList() { return &tmp_list_; }
FPTmpList()1959   CPURegList* FPTmpList() { return &fptmp_list_; }
1960 
1961   static CPURegList DefaultTmpList();
1962   static CPURegList DefaultFPTmpList();
1963 
1964   // Like printf, but print at run-time from generated code.
1965   //
1966   // The caller must ensure that arguments for floating-point placeholders
1967   // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
1968   // placeholders are Registers.
1969   //
1970   // At the moment it is only possible to print the value of csp if it is the
1971   // current stack pointer. Otherwise, the MacroAssembler will automatically
1972   // update csp on every push (using BumpSystemStackPointer), so determining its
1973   // value is difficult.
1974   //
1975   // Format placeholders that refer to more than one argument, or to a specific
1976   // argument, are not supported. This includes formats like "%1$d" or "%.*d".
1977   //
1978   // This function automatically preserves caller-saved registers so that
1979   // calling code can use Printf at any point without having to worry about
1980   // corruption. The preservation mechanism generates a lot of code. If this is
1981   // a problem, preserve the important registers manually and then call
1982   // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
1983   // implicitly preserved.
1984   void Printf(const char * format,
1985               CPURegister arg0 = NoCPUReg,
1986               CPURegister arg1 = NoCPUReg,
1987               CPURegister arg2 = NoCPUReg,
1988               CPURegister arg3 = NoCPUReg);
1989 
1990   // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
1991   //
1992   // The return code from the system printf call will be returned in x0.
1993   void PrintfNoPreserve(const char * format,
1994                         const CPURegister& arg0 = NoCPUReg,
1995                         const CPURegister& arg1 = NoCPUReg,
1996                         const CPURegister& arg2 = NoCPUReg,
1997                         const CPURegister& arg3 = NoCPUReg);
1998 
1999   // Code ageing support functions.
2000 
2001   // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
2002   // function as old, it replaces some of the function prologue (generated by
2003   // FullCodeGenerator::Generate) with a call to a special stub (ultimately
2004   // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
2005   // function prologue to its initial young state (indicating that it has been
2006   // recently run) and continues. A young function is therefore one which has a
2007   // normal frame setup sequence, and an old function has a code age sequence
2008   // which calls a code ageing stub.
2009 
2010   // Set up a basic stack frame for young code (or code exempt from ageing) with
2011   // type FUNCTION. It may be patched later for code ageing support. This is
2012   // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
2013   //
2014   // This function takes an Assembler so it can be called from either a
2015   // MacroAssembler or a PatchingAssembler context.
2016   static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
2017 
2018   // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
2019   void EmitFrameSetupForCodeAgePatching();
2020 
2021   // Emit a code age sequence that calls the relevant code age stub. The code
2022   // generated by this sequence is expected to replace the code generated by
2023   // EmitFrameSetupForCodeAgePatching, and represents an old function.
2024   //
2025   // If stub is NULL, this function generates the code age sequence but omits
2026   // the stub address that is normally embedded in the instruction stream. This
2027   // can be used by debug code to verify code age sequences.
2028   static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
2029 
2030   // Call EmitCodeAgeSequence from a MacroAssembler context.
2031   void EmitCodeAgeSequence(Code* stub);
2032 
2033   // Return true if the sequence is a young sequence geneated by
2034   // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
2035   // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
2036   static bool IsYoungSequence(Isolate* isolate, byte* sequence);
2037 
2038   // Jumps to found label if a prototype map has dictionary elements.
2039   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
2040                                         Register scratch1, Label* found);
2041 
2042   // Perform necessary maintenance operations before a push or after a pop.
2043   //
2044   // Note that size is specified in bytes.
2045   void PushPreamble(Operand total_size);
2046   void PopPostamble(Operand total_size);
2047 
PushPreamble(int count,int size)2048   void PushPreamble(int count, int size) { PushPreamble(count * size); }
PopPostamble(int count,int size)2049   void PopPostamble(int count, int size) { PopPostamble(count * size); }
2050 
2051  private:
2052   // The actual Push and Pop implementations. These don't generate any code
2053   // other than that required for the push or pop. This allows
2054   // (Push|Pop)CPURegList to bundle together run-time assertions for a large
2055   // block of registers.
2056   //
2057   // Note that size is per register, and is specified in bytes.
2058   void PushHelper(int count, int size,
2059                   const CPURegister& src0, const CPURegister& src1,
2060                   const CPURegister& src2, const CPURegister& src3);
2061   void PopHelper(int count, int size,
2062                  const CPURegister& dst0, const CPURegister& dst1,
2063                  const CPURegister& dst2, const CPURegister& dst3);
2064 
2065   // Call Printf. On a native build, a simple call will be generated, but if the
2066   // simulator is being used then a suitable pseudo-instruction is used. The
2067   // arguments and stack (csp) must be prepared by the caller as for a normal
2068   // AAPCS64 call to 'printf'.
2069   //
2070   // The 'args' argument should point to an array of variable arguments in their
2071   // proper PCS registers (and in calling order). The argument registers can
2072   // have mixed types. The format string (x0) should not be included.
2073   void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
2074 
2075   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
2076   void InNewSpace(Register object,
2077                   Condition cond,  // eq for new space, ne otherwise.
2078                   Label* branch);
2079 
2080   // Try to represent a double as an int so that integer fast-paths may be
2081   // used. Not every valid integer value is guaranteed to be caught.
2082   // It supports both 32-bit and 64-bit integers depending whether 'as_int'
2083   // is a W or X register.
2084   //
2085   // This does not distinguish between +0 and -0, so if this distinction is
2086   // important it must be checked separately.
2087   //
2088   // On output the Z flag is set if the operation was successful.
2089   void TryRepresentDoubleAsInt(Register as_int,
2090                                FPRegister value,
2091                                FPRegister scratch_d,
2092                                Label* on_successful_conversion = NULL,
2093                                Label* on_failed_conversion = NULL);
2094 
2095   bool generating_stub_;
2096 #if DEBUG
2097   // Tell whether any of the macro instruction can be used. When false the
2098   // MacroAssembler will assert if a method which can emit a variable number
2099   // of instructions is called.
2100   bool allow_macro_instructions_;
2101 #endif
2102   bool has_frame_;
2103 
2104   // The Abort method should call a V8 runtime function, but the CallRuntime
2105   // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
2106   // use a simpler abort mechanism that doesn't depend on CEntryStub.
2107   //
2108   // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
2109   // being generated.
2110   bool use_real_aborts_;
2111 
2112   // This handle will be patched with the code object on installation.
2113   Handle<Object> code_object_;
2114 
2115   // The register to use as a stack pointer for stack operations.
2116   Register sp_;
2117 
2118   // Scratch registers available for use by the MacroAssembler.
2119   CPURegList tmp_list_;
2120   CPURegList fptmp_list_;
2121 
2122   void InitializeNewString(Register string,
2123                            Register length,
2124                            Heap::RootListIndex map_index,
2125                            Register scratch1,
2126                            Register scratch2);
2127 
2128  public:
2129   // Far branches resolving.
2130   //
2131   // The various classes of branch instructions with immediate offsets have
2132   // different ranges. While the Assembler will fail to assemble a branch
2133   // exceeding its range, the MacroAssembler offers a mechanism to resolve
2134   // branches to too distant targets, either by tweaking the generated code to
2135   // use branch instructions with wider ranges or generating veneers.
2136   //
2137   // Currently branches to distant targets are resolved using unconditional
2138   // branch isntructions with a range of +-128MB. If that becomes too little
2139   // (!), the mechanism can be extended to generate special veneers for really
2140   // far targets.
2141 
2142   // Helps resolve branching to labels potentially out of range.
2143   // If the label is not bound, it registers the information necessary to later
2144   // be able to emit a veneer for this branch if necessary.
2145   // If the label is bound, it returns true if the label (or the previous link
2146   // in the label chain) is out of range. In that case the caller is responsible
2147   // for generating appropriate code.
2148   // Otherwise it returns false.
2149   // This function also checks wether veneers need to be emitted.
2150   bool NeedExtraInstructionsOrRegisterBranch(Label *label,
2151                                              ImmBranchType branch_type);
2152 };
2153 
2154 
2155 // Use this scope when you need a one-to-one mapping bewteen methods and
2156 // instructions. This scope prevents the MacroAssembler from being called and
2157 // literal pools from being emitted. It also asserts the number of instructions
2158 // emitted is what you specified when creating the scope.
2159 class InstructionAccurateScope BASE_EMBEDDED {
2160  public:
2161   explicit InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
masm_(masm)2162       : masm_(masm)
2163 #ifdef DEBUG
2164         ,
2165         size_(count * kInstructionSize)
2166 #endif
2167   {
2168     // Before blocking the const pool, see if it needs to be emitted.
2169     masm_->CheckConstPool(false, true);
2170     masm_->CheckVeneerPool(false, true);
2171 
2172     masm_->StartBlockPools();
2173 #ifdef DEBUG
2174     if (count != 0) {
2175       masm_->bind(&start_);
2176     }
2177     previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
2178     masm_->set_allow_macro_instructions(false);
2179 #endif
2180   }
2181 
~InstructionAccurateScope()2182   ~InstructionAccurateScope() {
2183     masm_->EndBlockPools();
2184 #ifdef DEBUG
2185     if (start_.is_bound()) {
2186       DCHECK(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
2187     }
2188     masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
2189 #endif
2190   }
2191 
2192  private:
2193   MacroAssembler* masm_;
2194 #ifdef DEBUG
2195   size_t size_;
2196   Label start_;
2197   bool previous_allow_macro_instructions_;
2198 #endif
2199 };
2200 
2201 
2202 // This scope utility allows scratch registers to be managed safely. The
2203 // MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
2204 // registers. These registers can be allocated on demand, and will be returned
2205 // at the end of the scope.
2206 //
2207 // When the scope ends, the MacroAssembler's lists will be restored to their
2208 // original state, even if the lists were modified by some other means.
2209 class UseScratchRegisterScope {
2210  public:
UseScratchRegisterScope(MacroAssembler * masm)2211   explicit UseScratchRegisterScope(MacroAssembler* masm)
2212       : available_(masm->TmpList()),
2213         availablefp_(masm->FPTmpList()),
2214         old_available_(available_->list()),
2215         old_availablefp_(availablefp_->list()) {
2216     DCHECK(available_->type() == CPURegister::kRegister);
2217     DCHECK(availablefp_->type() == CPURegister::kFPRegister);
2218   }
2219 
2220   ~UseScratchRegisterScope();
2221 
2222   // Take a register from the appropriate temps list. It will be returned
2223   // automatically when the scope ends.
AcquireW()2224   Register AcquireW() { return AcquireNextAvailable(available_).W(); }
AcquireX()2225   Register AcquireX() { return AcquireNextAvailable(available_).X(); }
AcquireS()2226   FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
AcquireD()2227   FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
2228 
UnsafeAcquire(const Register & reg)2229   Register UnsafeAcquire(const Register& reg) {
2230     return Register(UnsafeAcquire(available_, reg));
2231   }
2232 
2233   Register AcquireSameSizeAs(const Register& reg);
2234   FPRegister AcquireSameSizeAs(const FPRegister& reg);
2235 
2236  private:
2237   static CPURegister AcquireNextAvailable(CPURegList* available);
2238   static CPURegister UnsafeAcquire(CPURegList* available,
2239                                    const CPURegister& reg);
2240 
2241   // Available scratch registers.
2242   CPURegList* available_;     // kRegister
2243   CPURegList* availablefp_;   // kFPRegister
2244 
2245   // The state of the available lists at the start of this scope.
2246   RegList old_available_;     // kRegister
2247   RegList old_availablefp_;   // kFPRegister
2248 };
2249 
2250 
2251 inline MemOperand ContextMemOperand(Register context, int index = 0) {
2252   return MemOperand(context, Context::SlotOffset(index));
2253 }
2254 
NativeContextMemOperand()2255 inline MemOperand NativeContextMemOperand() {
2256   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
2257 }
2258 
2259 
2260 // Encode and decode information about patchable inline SMI checks.
2261 class InlineSmiCheckInfo {
2262  public:
2263   explicit InlineSmiCheckInfo(Address info);
2264 
HasSmiCheck()2265   bool HasSmiCheck() const {
2266     return smi_check_ != NULL;
2267   }
2268 
SmiRegister()2269   const Register& SmiRegister() const {
2270     return reg_;
2271   }
2272 
SmiCheck()2273   Instruction* SmiCheck() const {
2274     return smi_check_;
2275   }
2276 
2277   // Use MacroAssembler::InlineData to emit information about patchable inline
2278   // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
2279   // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
2280   //
2281   // The generated patch information can be read using the InlineSMICheckInfo
2282   // class.
2283   static void Emit(MacroAssembler* masm, const Register& reg,
2284                    const Label* smi_check);
2285 
2286   // Emit information to indicate that there is no inline SMI check.
EmitNotInlined(MacroAssembler * masm)2287   static void EmitNotInlined(MacroAssembler* masm) {
2288     Label unbound;
2289     Emit(masm, NoReg, &unbound);
2290   }
2291 
2292  private:
2293   Register reg_;
2294   Instruction* smi_check_;
2295 
2296   // Fields in the data encoded by InlineData.
2297 
2298   // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
2299   // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
2300   // used in a patchable check. The Emit() method checks this.
2301   //
2302   // Note that the total size of the fields is restricted by the underlying
2303   // storage size handled by the BitField class, which is a uint32_t.
2304   class RegisterBits : public BitField<unsigned, 0, 5> {};
2305   class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
2306 };
2307 
2308 }  // namespace internal
2309 }  // namespace v8
2310 
2311 #ifdef GENERATED_CODE_COVERAGE
2312 #error "Unsupported option"
2313 #define CODE_COVERAGE_STRINGIFY(x) #x
2314 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2315 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2316 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2317 #else
2318 #define ACCESS_MASM(masm) masm->
2319 #endif
2320 
2321 #endif  // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
2322