1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37
38 #include "src/allocation.h"
39 #include "src/builtins.h"
40 #include "src/isolate.h"
41 #include "src/log.h"
42 #include "src/register-configuration.h"
43 #include "src/runtime/runtime.h"
44
45 namespace v8 {
46
47 // Forward declarations.
48 class ApiFunction;
49
50 namespace internal {
51
52 // Forward declarations.
53 class StatsCounter;
54
55 // -----------------------------------------------------------------------------
56 // Platform independent assembler base class.
57
58 enum class CodeObjectRequired { kNo, kYes };
59
60
61 class AssemblerBase: public Malloced {
62 public:
63 AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
64 virtual ~AssemblerBase();
65
isolate()66 Isolate* isolate() const { return isolate_; }
jit_cookie()67 int jit_cookie() const { return jit_cookie_; }
68
emit_debug_code()69 bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)70 void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
71
serializer_enabled()72 bool serializer_enabled() const { return serializer_enabled_; }
enable_serializer()73 void enable_serializer() { serializer_enabled_ = true; }
74
predictable_code_size()75 bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)76 void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
77
enabled_cpu_features()78 uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)79 void set_enabled_cpu_features(uint64_t features) {
80 enabled_cpu_features_ = features;
81 }
IsEnabled(CpuFeature f)82 bool IsEnabled(CpuFeature f) {
83 return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
84 }
85
is_constant_pool_available()86 bool is_constant_pool_available() const {
87 if (FLAG_enable_embedded_constant_pool) {
88 return constant_pool_available_;
89 } else {
90 // Embedded constant pool not supported on this architecture.
91 UNREACHABLE();
92 return false;
93 }
94 }
95
96 // Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for
97 // cross-snapshotting.
QuietNaN(HeapObject * nan)98 static void QuietNaN(HeapObject* nan) { }
99
pc_offset()100 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
101
102 // This function is called when code generation is aborted, so that
103 // the assembler could clean up internal data structures.
AbortedCodeGeneration()104 virtual void AbortedCodeGeneration() { }
105
106 // Debugging
107 void Print();
108
109 static const int kMinimalBufferSize = 4*KB;
110
111 static void FlushICache(Isolate* isolate, void* start, size_t size);
112
113 protected:
114 // The buffer into which code and relocation info are generated. It could
115 // either be owned by the assembler or be provided externally.
116 byte* buffer_;
117 int buffer_size_;
118 bool own_buffer_;
119
set_constant_pool_available(bool available)120 void set_constant_pool_available(bool available) {
121 if (FLAG_enable_embedded_constant_pool) {
122 constant_pool_available_ = available;
123 } else {
124 // Embedded constant pool not supported on this architecture.
125 UNREACHABLE();
126 }
127 }
128
129 // The program counter, which points into the buffer above and moves forward.
130 byte* pc_;
131
132 private:
133 Isolate* isolate_;
134 int jit_cookie_;
135 uint64_t enabled_cpu_features_;
136 bool emit_debug_code_;
137 bool predictable_code_size_;
138 bool serializer_enabled_;
139
140 // Indicates whether the constant pool can be accessed, which is only possible
141 // if the pp register points to the current code object's constant pool.
142 bool constant_pool_available_;
143
144 // Constant pool.
145 friend class FrameAndConstantPoolScope;
146 friend class ConstantPoolUnavailableScope;
147 };
148
149
150 // Avoids emitting debug code during the lifetime of this scope object.
151 class DontEmitDebugCodeScope BASE_EMBEDDED {
152 public:
DontEmitDebugCodeScope(AssemblerBase * assembler)153 explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
154 : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
155 assembler_->set_emit_debug_code(false);
156 }
~DontEmitDebugCodeScope()157 ~DontEmitDebugCodeScope() {
158 assembler_->set_emit_debug_code(old_value_);
159 }
160 private:
161 AssemblerBase* assembler_;
162 bool old_value_;
163 };
164
165
166 // Avoids using instructions that vary in size in unpredictable ways between the
167 // snapshot and the running VM.
168 class PredictableCodeSizeScope {
169 public:
170 explicit PredictableCodeSizeScope(AssemblerBase* assembler);
171 PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
172 ~PredictableCodeSizeScope();
ExpectSize(int expected_size)173 void ExpectSize(int expected_size) { expected_size_ = expected_size; }
174
175 private:
176 AssemblerBase* assembler_;
177 int expected_size_;
178 int start_offset_;
179 bool old_value_;
180 };
181
182
183 // Enable a specified feature within a scope.
184 class CpuFeatureScope BASE_EMBEDDED {
185 public:
186 #ifdef DEBUG
187 CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
188 ~CpuFeatureScope();
189
190 private:
191 AssemblerBase* assembler_;
192 uint64_t old_enabled_;
193 #else
194 CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
195 #endif
196 };
197
198
199 // CpuFeatures keeps track of which features are supported by the target CPU.
200 // Supported features must be enabled by a CpuFeatureScope before use.
201 // Example:
202 // if (assembler->IsSupported(SSE3)) {
203 // CpuFeatureScope fscope(assembler, SSE3);
204 // // Generate code containing SSE3 instructions.
205 // } else {
206 // // Generate alternative code.
207 // }
208 class CpuFeatures : public AllStatic {
209 public:
Probe(bool cross_compile)210 static void Probe(bool cross_compile) {
211 STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
212 if (initialized_) return;
213 initialized_ = true;
214 ProbeImpl(cross_compile);
215 }
216
SupportedFeatures()217 static unsigned SupportedFeatures() {
218 Probe(false);
219 return supported_;
220 }
221
IsSupported(CpuFeature f)222 static bool IsSupported(CpuFeature f) {
223 return (supported_ & (1u << f)) != 0;
224 }
225
226 static inline bool SupportsCrankshaft();
227
icache_line_size()228 static inline unsigned icache_line_size() {
229 DCHECK(icache_line_size_ != 0);
230 return icache_line_size_;
231 }
232
dcache_line_size()233 static inline unsigned dcache_line_size() {
234 DCHECK(dcache_line_size_ != 0);
235 return dcache_line_size_;
236 }
237
238 static void PrintTarget();
239 static void PrintFeatures();
240
241 private:
242 friend class ExternalReference;
243 friend class AssemblerBase;
244 // Flush instruction cache.
245 static void FlushICache(void* start, size_t size);
246
247 // Platform-dependent implementation.
248 static void ProbeImpl(bool cross_compile);
249
250 static unsigned supported_;
251 static unsigned icache_line_size_;
252 static unsigned dcache_line_size_;
253 static bool initialized_;
254 DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
255 };
256
257
258 // -----------------------------------------------------------------------------
259 // Labels represent pc locations; they are typically jump or call targets.
260 // After declaration, a label can be freely used to denote known or (yet)
261 // unknown pc location. Assembler::bind() is used to bind a label to the
262 // current pc. A label can be bound only once.
263
264 class Label {
265 public:
266 enum Distance {
267 kNear, kFar
268 };
269
INLINE(Label ())270 INLINE(Label()) {
271 Unuse();
272 UnuseNear();
273 }
274
INLINE(~Label ())275 INLINE(~Label()) {
276 DCHECK(!is_linked());
277 DCHECK(!is_near_linked());
278 }
279
INLINE(void Unuse ())280 INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())281 INLINE(void UnuseNear()) { near_link_pos_ = 0; }
282
INLINE(bool is_bound ()const)283 INLINE(bool is_bound() const) { return pos_ < 0; }
INLINE(bool is_unused ()const)284 INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)285 INLINE(bool is_linked() const) { return pos_ > 0; }
INLINE(bool is_near_linked ()const)286 INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
287
288 // Returns the position of bound or linked labels. Cannot be used
289 // for unused labels.
290 int pos() const;
near_link_pos()291 int near_link_pos() const { return near_link_pos_ - 1; }
292
293 private:
294 // pos_ encodes both the binding state (via its sign)
295 // and the binding position (via its value) of a label.
296 //
297 // pos_ < 0 bound label, pos() returns the jump target position
298 // pos_ == 0 unused label
299 // pos_ > 0 linked label, pos() returns the last reference position
300 int pos_;
301
302 // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
303 int near_link_pos_;
304
bind_to(int pos)305 void bind_to(int pos) {
306 pos_ = -pos - 1;
307 DCHECK(is_bound());
308 }
309 void link_to(int pos, Distance distance = kFar) {
310 if (distance == kNear) {
311 near_link_pos_ = pos + 1;
312 DCHECK(is_near_linked());
313 } else {
314 pos_ = pos + 1;
315 DCHECK(is_linked());
316 }
317 }
318
319 friend class Assembler;
320 friend class Displacement;
321 friend class RegExpMacroAssemblerIrregexp;
322
323 #if V8_TARGET_ARCH_ARM64
324 // On ARM64, the Assembler keeps track of pointers to Labels to resolve
325 // branches to distant targets. Copying labels would confuse the Assembler.
326 DISALLOW_COPY_AND_ASSIGN(Label); // NOLINT
327 #endif
328 };
329
330
331 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
332
333 enum ArgvMode { kArgvOnStack, kArgvInRegister };
334
335 // Specifies whether to perform icache flush operations on RelocInfo updates.
336 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
337 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
338 // skipped (only use this if you will flush the icache manually before it is
339 // executed).
340 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
341
342 // -----------------------------------------------------------------------------
343 // Relocation information
344
345
346 // Relocation information consists of the address (pc) of the datum
347 // to which the relocation information applies, the relocation mode
348 // (rmode), and an optional data field. The relocation mode may be
349 // "descriptive" and not indicate a need for relocation, but simply
350 // describe a property of the datum. Such rmodes are useful for GC
351 // and nice disassembly output.
352
353 class RelocInfo {
354 public:
355 // The constant kNoPosition is used with the collecting of source positions
356 // in the relocation information. Two types of source positions are collected
357 // "position" (RelocMode position) and "statement position" (RelocMode
358 // statement_position). The "position" is collected at places in the source
359 // code which are of interest when making stack traces to pin-point the source
360 // location of a stack frame as close as possible. The "statement position" is
361 // collected at the beginning at each statement, and is used to indicate
362 // possible break locations. kNoPosition is used to indicate an
363 // invalid/uninitialized position value.
364 static const int kNoPosition = -1;
365
366 // This string is used to add padding comments to the reloc info in cases
367 // where we are not sure to have enough space for patching in during
368 // lazy deoptimization. This is the case if we have indirect calls for which
369 // we do not normally record relocation info.
370 static const char* const kFillerCommentString;
371
372 // The minimum size of a comment is equal to two bytes for the extra tagged
373 // pc and kPointerSize for the actual pointer to the comment.
374 static const int kMinRelocCommentSize = 2 + kPointerSize;
375
376 // The maximum size for a call instruction including pc-jump.
377 static const int kMaxCallSize = 6;
378
379 // The maximum pc delta that will use the short encoding.
380 static const int kMaxSmallPCDelta;
381
382 enum Mode {
383 // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
384 CODE_TARGET, // Code target which is not any of the above.
385 CODE_TARGET_WITH_ID,
386 DEBUGGER_STATEMENT, // Code target for the debugger statement.
387 EMBEDDED_OBJECT,
388 // To relocate pointers into the wasm memory embedded in wasm code
389 WASM_MEMORY_REFERENCE,
390 WASM_GLOBAL_REFERENCE,
391 WASM_MEMORY_SIZE_REFERENCE,
392 CELL,
393
394 // Everything after runtime_entry (inclusive) is not GC'ed.
395 RUNTIME_ENTRY,
396 COMMENT,
397 POSITION, // See comment for kNoPosition above.
398 STATEMENT_POSITION, // See comment for kNoPosition above.
399
400 // Additional code inserted for debug break slot.
401 DEBUG_BREAK_SLOT_AT_POSITION,
402 DEBUG_BREAK_SLOT_AT_RETURN,
403 DEBUG_BREAK_SLOT_AT_CALL,
404 DEBUG_BREAK_SLOT_AT_TAIL_CALL,
405
406 EXTERNAL_REFERENCE, // The address of an external C++ function.
407 INTERNAL_REFERENCE, // An address inside the same function.
408
409 // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
410 INTERNAL_REFERENCE_ENCODED,
411
412 // Continuation points for a generator yield.
413 GENERATOR_CONTINUATION,
414
415 // Marks constant and veneer pools. Only used on ARM and ARM64.
416 // They use a custom noncompact encoding.
417 CONST_POOL,
418 VENEER_POOL,
419
420 DEOPT_REASON, // Deoptimization reason index.
421 DEOPT_ID, // Deoptimization inlining id.
422
423 // This is not an actual reloc mode, but used to encode a long pc jump that
424 // cannot be encoded as part of another record.
425 PC_JUMP,
426
427 // Pseudo-types
428 NUMBER_OF_MODES,
429 NONE32, // never recorded 32-bit value
430 NONE64, // never recorded 64-bit value
431 CODE_AGE_SEQUENCE, // Not stored in RelocInfo array, used explictly by
432 // code aging.
433
434 FIRST_REAL_RELOC_MODE = CODE_TARGET,
435 LAST_REAL_RELOC_MODE = VENEER_POOL,
436 LAST_CODE_ENUM = DEBUGGER_STATEMENT,
437 LAST_GCED_ENUM = WASM_MEMORY_SIZE_REFERENCE,
438 FIRST_SHAREABLE_RELOC_MODE = CELL,
439 };
440
441 STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);
442
RelocInfo(Isolate * isolate)443 explicit RelocInfo(Isolate* isolate) : isolate_(isolate) {
444 DCHECK_NOT_NULL(isolate);
445 }
446
RelocInfo(Isolate * isolate,byte * pc,Mode rmode,intptr_t data,Code * host)447 RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host)
448 : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) {
449 DCHECK_NOT_NULL(isolate);
450 }
451
IsRealRelocMode(Mode mode)452 static inline bool IsRealRelocMode(Mode mode) {
453 return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE;
454 }
IsCodeTarget(Mode mode)455 static inline bool IsCodeTarget(Mode mode) {
456 return mode <= LAST_CODE_ENUM;
457 }
IsEmbeddedObject(Mode mode)458 static inline bool IsEmbeddedObject(Mode mode) {
459 return mode == EMBEDDED_OBJECT;
460 }
IsCell(Mode mode)461 static inline bool IsCell(Mode mode) { return mode == CELL; }
IsRuntimeEntry(Mode mode)462 static inline bool IsRuntimeEntry(Mode mode) {
463 return mode == RUNTIME_ENTRY;
464 }
465 // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)466 static inline bool IsGCRelocMode(Mode mode) {
467 return mode <= LAST_GCED_ENUM;
468 }
IsComment(Mode mode)469 static inline bool IsComment(Mode mode) {
470 return mode == COMMENT;
471 }
IsConstPool(Mode mode)472 static inline bool IsConstPool(Mode mode) {
473 return mode == CONST_POOL;
474 }
IsVeneerPool(Mode mode)475 static inline bool IsVeneerPool(Mode mode) {
476 return mode == VENEER_POOL;
477 }
IsDeoptReason(Mode mode)478 static inline bool IsDeoptReason(Mode mode) {
479 return mode == DEOPT_REASON;
480 }
IsDeoptId(Mode mode)481 static inline bool IsDeoptId(Mode mode) {
482 return mode == DEOPT_ID;
483 }
IsPosition(Mode mode)484 static inline bool IsPosition(Mode mode) {
485 return mode == POSITION || mode == STATEMENT_POSITION;
486 }
IsStatementPosition(Mode mode)487 static inline bool IsStatementPosition(Mode mode) {
488 return mode == STATEMENT_POSITION;
489 }
IsExternalReference(Mode mode)490 static inline bool IsExternalReference(Mode mode) {
491 return mode == EXTERNAL_REFERENCE;
492 }
IsInternalReference(Mode mode)493 static inline bool IsInternalReference(Mode mode) {
494 return mode == INTERNAL_REFERENCE;
495 }
IsInternalReferenceEncoded(Mode mode)496 static inline bool IsInternalReferenceEncoded(Mode mode) {
497 return mode == INTERNAL_REFERENCE_ENCODED;
498 }
IsDebugBreakSlot(Mode mode)499 static inline bool IsDebugBreakSlot(Mode mode) {
500 return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) ||
501 IsDebugBreakSlotAtCall(mode) || IsDebugBreakSlotAtTailCall(mode);
502 }
IsDebugBreakSlotAtPosition(Mode mode)503 static inline bool IsDebugBreakSlotAtPosition(Mode mode) {
504 return mode == DEBUG_BREAK_SLOT_AT_POSITION;
505 }
IsDebugBreakSlotAtReturn(Mode mode)506 static inline bool IsDebugBreakSlotAtReturn(Mode mode) {
507 return mode == DEBUG_BREAK_SLOT_AT_RETURN;
508 }
IsDebugBreakSlotAtCall(Mode mode)509 static inline bool IsDebugBreakSlotAtCall(Mode mode) {
510 return mode == DEBUG_BREAK_SLOT_AT_CALL;
511 }
IsDebugBreakSlotAtTailCall(Mode mode)512 static inline bool IsDebugBreakSlotAtTailCall(Mode mode) {
513 return mode == DEBUG_BREAK_SLOT_AT_TAIL_CALL;
514 }
IsDebuggerStatement(Mode mode)515 static inline bool IsDebuggerStatement(Mode mode) {
516 return mode == DEBUGGER_STATEMENT;
517 }
IsNone(Mode mode)518 static inline bool IsNone(Mode mode) {
519 return mode == NONE32 || mode == NONE64;
520 }
IsCodeAgeSequence(Mode mode)521 static inline bool IsCodeAgeSequence(Mode mode) {
522 return mode == CODE_AGE_SEQUENCE;
523 }
IsGeneratorContinuation(Mode mode)524 static inline bool IsGeneratorContinuation(Mode mode) {
525 return mode == GENERATOR_CONTINUATION;
526 }
IsWasmMemoryReference(Mode mode)527 static inline bool IsWasmMemoryReference(Mode mode) {
528 return mode == WASM_MEMORY_REFERENCE;
529 }
IsWasmMemorySizeReference(Mode mode)530 static inline bool IsWasmMemorySizeReference(Mode mode) {
531 return mode == WASM_MEMORY_SIZE_REFERENCE;
532 }
IsWasmGlobalReference(Mode mode)533 static inline bool IsWasmGlobalReference(Mode mode) {
534 return mode == WASM_GLOBAL_REFERENCE;
535 }
ModeMask(Mode mode)536 static inline int ModeMask(Mode mode) { return 1 << mode; }
537
538 // Accessors
isolate()539 Isolate* isolate() const { return isolate_; }
pc()540 byte* pc() const { return pc_; }
set_pc(byte * pc)541 void set_pc(byte* pc) { pc_ = pc; }
rmode()542 Mode rmode() const { return rmode_; }
data()543 intptr_t data() const { return data_; }
host()544 Code* host() const { return host_; }
set_host(Code * host)545 void set_host(Code* host) { host_ = host; }
546
547 // Apply a relocation by delta bytes. When the code object is moved, PC
548 // relative addresses have to be updated as well as absolute addresses
549 // inside the code (internal references).
550 // Do not forget to flush the icache afterwards!
551 INLINE(void apply(intptr_t delta));
552
553 // Is the pointer this relocation info refers to coded like a plain pointer
554 // or is it strange in some way (e.g. relative or patched into a series of
555 // instructions).
556 bool IsCodedSpecially();
557
558 // If true, the pointer this relocation info refers to is an entry in the
559 // constant pool, otherwise the pointer is embedded in the instruction stream.
560 bool IsInConstantPool();
561
562 Address wasm_memory_reference();
563 Address wasm_global_reference();
564 uint32_t wasm_memory_size_reference();
565 void update_wasm_memory_reference(
566 Address old_base, Address new_base, uint32_t old_size, uint32_t new_size,
567 ICacheFlushMode icache_flush_mode = SKIP_ICACHE_FLUSH);
568 void update_wasm_global_reference(
569 Address old_base, Address new_base,
570 ICacheFlushMode icache_flush_mode = SKIP_ICACHE_FLUSH);
571
572 // this relocation applies to;
573 // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
574 INLINE(Address target_address());
575 INLINE(void set_target_address(
576 Address target,
577 WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
578 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
579 INLINE(Object* target_object());
580 INLINE(Handle<Object> target_object_handle(Assembler* origin));
581 INLINE(void set_target_object(
582 Object* target,
583 WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
584 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
585 INLINE(Address target_runtime_entry(Assembler* origin));
586 INLINE(void set_target_runtime_entry(
587 Address target,
588 WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
589 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
590 INLINE(Cell* target_cell());
591 INLINE(Handle<Cell> target_cell_handle());
592 INLINE(void set_target_cell(
593 Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
594 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
595 INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
596 INLINE(Code* code_age_stub());
597 INLINE(void set_code_age_stub(
598 Code* stub, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
599
600 // Returns the address of the constant pool entry where the target address
601 // is held. This should only be called if IsInConstantPool returns true.
602 INLINE(Address constant_pool_entry_address());
603
604 // Read the address of the word containing the target_address in an
605 // instruction stream. What this means exactly is architecture-independent.
606 // The only architecture-independent user of this function is the serializer.
607 // The serializer uses it to find out how many raw bytes of instruction to
608 // output before the next target. Architecture-independent code shouldn't
609 // dereference the pointer it gets back from this.
610 INLINE(Address target_address_address());
611
612 // This indicates how much space a target takes up when deserializing a code
613 // stream. For most architectures this is just the size of a pointer. For
614 // an instruction like movw/movt where the target bits are mixed into the
615 // instruction bits the size of the target will be zero, indicating that the
616 // serializer should not step forwards in memory after a target is resolved
617 // and written. In this case the target_address_address function above
618 // should return the end of the instructions to be patched, allowing the
619 // deserializer to deserialize the instructions as raw bytes and put them in
620 // place, ready to be patched with the target.
621 INLINE(int target_address_size());
622
623 // Read the reference in the instruction this relocation
624 // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
625 INLINE(Address target_external_reference());
626
627 // Read the reference in the instruction this relocation
628 // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
629 INLINE(Address target_internal_reference());
630
631 // Return the reference address this relocation applies to;
632 // can only be called if rmode_ is INTERNAL_REFERENCE.
633 INLINE(Address target_internal_reference_address());
634
635 // Read/modify the address of a call instruction. This is used to relocate
636 // the break points where straight-line code is patched with a call
637 // instruction.
638 INLINE(Address debug_call_address());
639 INLINE(void set_debug_call_address(Address target));
640
641 // Wipe out a relocation to a fixed value, used for making snapshots
642 // reproducible.
643 INLINE(void WipeOut());
644
645 template<typename StaticVisitor> inline void Visit(Heap* heap);
646
647 template <typename ObjectVisitor>
648 inline void Visit(Isolate* isolate, ObjectVisitor* v);
649
650 // Check whether this debug break slot has been patched with a call to the
651 // debugger.
652 bool IsPatchedDebugBreakSlotSequence();
653
654 #ifdef DEBUG
655 // Check whether the given code contains relocation information that
656 // either is position-relative or movable by the garbage collector.
657 static bool RequiresRelocation(const CodeDesc& desc);
658 #endif
659
660 #ifdef ENABLE_DISASSEMBLER
661 // Printing
662 static const char* RelocModeName(Mode rmode);
663 void Print(Isolate* isolate, std::ostream& os); // NOLINT
664 #endif // ENABLE_DISASSEMBLER
665 #ifdef VERIFY_HEAP
666 void Verify(Isolate* isolate);
667 #endif
668
669 static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
670 static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
671 static const int kDataMask =
672 (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
673 static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION |
674 1 << DEBUG_BREAK_SLOT_AT_RETURN |
675 1 << DEBUG_BREAK_SLOT_AT_CALL;
676 static const int kApplyMask; // Modes affected by apply. Depends on arch.
677
678 private:
679 void unchecked_update_wasm_memory_reference(Address address,
680 ICacheFlushMode flush_mode);
681 void unchecked_update_wasm_memory_size(uint32_t size,
682 ICacheFlushMode flush_mode);
683
684 Isolate* isolate_;
685 // On ARM, note that pc_ is the address of the constant pool entry
686 // to be relocated and not the address of the instruction
687 // referencing the constant pool entry (except when rmode_ ==
688 // comment).
689 byte* pc_;
690 Mode rmode_;
691 intptr_t data_;
692 Code* host_;
693 friend class RelocIterator;
694 };
695
696
697 // RelocInfoWriter serializes a stream of relocation info. It writes towards
698 // lower addresses.
699 class RelocInfoWriter BASE_EMBEDDED {
700 public:
RelocInfoWriter()701 RelocInfoWriter()
702 : pos_(NULL),
703 last_pc_(NULL),
704 last_id_(0),
705 last_position_(0),
706 last_mode_(RelocInfo::NUMBER_OF_MODES),
707 next_position_candidate_pos_delta_(0),
708 next_position_candidate_pc_delta_(0),
709 next_position_candidate_flushed_(true) {}
RelocInfoWriter(byte * pos,byte * pc)710 RelocInfoWriter(byte* pos, byte* pc)
711 : pos_(pos),
712 last_pc_(pc),
713 last_id_(0),
714 last_position_(0),
715 last_mode_(RelocInfo::NUMBER_OF_MODES),
716 next_position_candidate_pos_delta_(0),
717 next_position_candidate_pc_delta_(0),
718 next_position_candidate_flushed_(true) {}
719
pos()720 byte* pos() const { return pos_; }
last_pc()721 byte* last_pc() const { return last_pc_; }
722
723 void Write(const RelocInfo* rinfo);
724
725 // Update the state of the stream after reloc info buffer
726 // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)727 void Reposition(byte* pos, byte* pc) {
728 pos_ = pos;
729 last_pc_ = pc;
730 }
731
Finish()732 void Finish() { FlushPosition(); }
733
734 // Max size (bytes) of a written RelocInfo. Longest encoding is
735 // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
736 // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11.
737 // On x64 this is 1 + 4 + 1 + 1 + 8 == 15;
738 // Here we use the maximum of the two.
739 static const int kMaxSize = 15;
740
741 private:
742 inline uint32_t WriteLongPCJump(uint32_t pc_delta);
743
744 inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
745 inline void WriteShortTaggedData(intptr_t data_delta, int tag);
746
747 inline void WriteMode(RelocInfo::Mode rmode);
748 inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
749 inline void WriteIntData(int data_delta);
750 inline void WriteData(intptr_t data_delta);
751 inline void WritePosition(int pc_delta, int pos_delta, RelocInfo::Mode rmode);
752
753 void FlushPosition();
754
755 byte* pos_;
756 byte* last_pc_;
757 int last_id_;
758 int last_position_;
759 RelocInfo::Mode last_mode_;
760 int next_position_candidate_pos_delta_;
761 uint32_t next_position_candidate_pc_delta_;
762 bool next_position_candidate_flushed_;
763
764 DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
765 };
766
767
768 // A RelocIterator iterates over relocation information.
769 // Typical use:
770 //
771 // for (RelocIterator it(code); !it.done(); it.next()) {
772 // // do something with it.rinfo() here
773 // }
774 //
775 // A mask can be specified to skip unwanted modes.
776 class RelocIterator: public Malloced {
777 public:
778 // Create a new iterator positioned at
779 // the beginning of the reloc info.
780 // Relocation information with mode k is included in the
781 // iteration iff bit k of mode_mask is set.
782 explicit RelocIterator(Code* code, int mode_mask = -1);
783 explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
784
785 // Iteration
done()786 bool done() const { return done_; }
787 void next();
788
789 // Return pointer valid until next next().
rinfo()790 RelocInfo* rinfo() {
791 DCHECK(!done());
792 return &rinfo_;
793 }
794
795 private:
796 // Advance* moves the position before/after reading.
797 // *Read* reads from current byte(s) into rinfo_.
798 // *Get* just reads and returns info on current byte.
799 void Advance(int bytes = 1) { pos_ -= bytes; }
800 int AdvanceGetTag();
801 RelocInfo::Mode GetMode();
802
803 void AdvanceReadLongPCJump();
804
805 int GetShortDataTypeTag();
806 void ReadShortTaggedPC();
807 void ReadShortTaggedId();
808 void ReadShortTaggedPosition();
809 void ReadShortTaggedData();
810
811 void AdvanceReadPC();
812 void AdvanceReadId();
813 void AdvanceReadInt();
814 void AdvanceReadPosition();
815 void AdvanceReadData();
816
817 // If the given mode is wanted, set it in rinfo_ and return true.
818 // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)819 bool SetMode(RelocInfo::Mode mode) {
820 return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
821 }
822
823 byte* pos_;
824 byte* end_;
825 byte* code_age_sequence_;
826 RelocInfo rinfo_;
827 bool done_;
828 int mode_mask_;
829 int last_id_;
830 int last_position_;
831 DISALLOW_COPY_AND_ASSIGN(RelocIterator);
832 };
833
834
835 //------------------------------------------------------------------------------
836 // External function
837
838 //----------------------------------------------------------------------------
839 class SCTableReference;
840 class Debug_Address;
841
842
843 // An ExternalReference represents a C++ address used in the generated
844 // code. All references to C++ functions and variables must be encapsulated in
845 // an ExternalReference instance. This is done in order to track the origin of
846 // all external references in the code so that they can be bound to the correct
847 // addresses when deserializing a heap.
848 class ExternalReference BASE_EMBEDDED {
849 public:
850 // Used in the simulator to support different native api calls.
851 enum Type {
852 // Builtin call.
853 // Object* f(v8::internal::Arguments).
854 BUILTIN_CALL, // default
855
856 // Builtin call returning object pair.
857 // ObjectPair f(v8::internal::Arguments).
858 BUILTIN_CALL_PAIR,
859
860 // Builtin call that returns .
861 // ObjectTriple f(v8::internal::Arguments).
862 BUILTIN_CALL_TRIPLE,
863
864 // Builtin that takes float arguments and returns an int.
865 // int f(double, double).
866 BUILTIN_COMPARE_CALL,
867
868 // Builtin call that returns floating point.
869 // double f(double, double).
870 BUILTIN_FP_FP_CALL,
871
872 // Builtin call that returns floating point.
873 // double f(double).
874 BUILTIN_FP_CALL,
875
876 // Builtin call that returns floating point.
877 // double f(double, int).
878 BUILTIN_FP_INT_CALL,
879
880 // Direct call to API function callback.
881 // void f(v8::FunctionCallbackInfo&)
882 DIRECT_API_CALL,
883
884 // Call to function callback via InvokeFunctionCallback.
885 // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
886 PROFILING_API_CALL,
887
888 // Direct call to accessor getter callback.
889 // void f(Local<Name> property, PropertyCallbackInfo& info)
890 DIRECT_GETTER_CALL,
891
892 // Call to accessor getter callback via InvokeAccessorGetterCallback.
893 // void f(Local<Name> property, PropertyCallbackInfo& info,
894 // AccessorNameGetterCallback callback)
895 PROFILING_GETTER_CALL
896 };
897
898 static void SetUp();
899
900 typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original,
901 Type type);
902
ExternalReference()903 ExternalReference() : address_(NULL) {}
904
905 ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
906
907 ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
908
909 ExternalReference(Builtins::Name name, Isolate* isolate);
910
911 ExternalReference(Runtime::FunctionId id, Isolate* isolate);
912
913 ExternalReference(const Runtime::Function* f, Isolate* isolate);
914
915 explicit ExternalReference(StatsCounter* counter);
916
917 ExternalReference(Isolate::AddressId id, Isolate* isolate);
918
919 explicit ExternalReference(const SCTableReference& table_ref);
920
921 // Isolate as an external reference.
922 static ExternalReference isolate_address(Isolate* isolate);
923
924 // One-of-a-kind references. These references are not part of a general
925 // pattern. This means that they have to be added to the
926 // ExternalReferenceTable in serialize.cc manually.
927
928 static ExternalReference interpreter_dispatch_table_address(Isolate* isolate);
929 static ExternalReference interpreter_dispatch_counters(Isolate* isolate);
930
931 static ExternalReference incremental_marking_record_write_function(
932 Isolate* isolate);
933 static ExternalReference incremental_marking_record_write_code_entry_function(
934 Isolate* isolate);
935 static ExternalReference store_buffer_overflow_function(
936 Isolate* isolate);
937 static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
938
939 static ExternalReference get_date_field_function(Isolate* isolate);
940 static ExternalReference date_cache_stamp(Isolate* isolate);
941
942 static ExternalReference get_make_code_young_function(Isolate* isolate);
943 static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
944
945 // Deoptimization support.
946 static ExternalReference new_deoptimizer_function(Isolate* isolate);
947 static ExternalReference compute_output_frames_function(Isolate* isolate);
948
949 static ExternalReference wasm_f32_trunc(Isolate* isolate);
950 static ExternalReference wasm_f32_floor(Isolate* isolate);
951 static ExternalReference wasm_f32_ceil(Isolate* isolate);
952 static ExternalReference wasm_f32_nearest_int(Isolate* isolate);
953 static ExternalReference wasm_f64_trunc(Isolate* isolate);
954 static ExternalReference wasm_f64_floor(Isolate* isolate);
955 static ExternalReference wasm_f64_ceil(Isolate* isolate);
956 static ExternalReference wasm_f64_nearest_int(Isolate* isolate);
957 static ExternalReference wasm_int64_to_float32(Isolate* isolate);
958 static ExternalReference wasm_uint64_to_float32(Isolate* isolate);
959 static ExternalReference wasm_int64_to_float64(Isolate* isolate);
960 static ExternalReference wasm_uint64_to_float64(Isolate* isolate);
961 static ExternalReference wasm_float32_to_int64(Isolate* isolate);
962 static ExternalReference wasm_float32_to_uint64(Isolate* isolate);
963 static ExternalReference wasm_float64_to_int64(Isolate* isolate);
964 static ExternalReference wasm_float64_to_uint64(Isolate* isolate);
965 static ExternalReference wasm_int64_div(Isolate* isolate);
966 static ExternalReference wasm_int64_mod(Isolate* isolate);
967 static ExternalReference wasm_uint64_div(Isolate* isolate);
968 static ExternalReference wasm_uint64_mod(Isolate* isolate);
969 static ExternalReference wasm_word32_ctz(Isolate* isolate);
970 static ExternalReference wasm_word64_ctz(Isolate* isolate);
971 static ExternalReference wasm_word32_popcnt(Isolate* isolate);
972 static ExternalReference wasm_word64_popcnt(Isolate* isolate);
973
974 static ExternalReference f64_acos_wrapper_function(Isolate* isolate);
975 static ExternalReference f64_asin_wrapper_function(Isolate* isolate);
976 static ExternalReference f64_pow_wrapper_function(Isolate* isolate);
977 static ExternalReference f64_mod_wrapper_function(Isolate* isolate);
978
979 // Log support.
980 static ExternalReference log_enter_external_function(Isolate* isolate);
981 static ExternalReference log_leave_external_function(Isolate* isolate);
982
983 // Static data in the keyed lookup cache.
984 static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
985 static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
986
987 // Static variable Heap::roots_array_start()
988 static ExternalReference roots_array_start(Isolate* isolate);
989
990 // Static variable Heap::allocation_sites_list_address()
991 static ExternalReference allocation_sites_list_address(Isolate* isolate);
992
993 // Static variable StackGuard::address_of_jslimit()
994 static ExternalReference address_of_stack_limit(Isolate* isolate);
995
996 // Static variable StackGuard::address_of_real_jslimit()
997 static ExternalReference address_of_real_stack_limit(Isolate* isolate);
998
999 // Static variable RegExpStack::limit_address()
1000 static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
1001
1002 // Static variables for RegExp.
1003 static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
1004 static ExternalReference address_of_regexp_stack_memory_address(
1005 Isolate* isolate);
1006 static ExternalReference address_of_regexp_stack_memory_size(
1007 Isolate* isolate);
1008
1009 // Write barrier.
1010 static ExternalReference store_buffer_top(Isolate* isolate);
1011
1012 // Used for fast allocation in generated code.
1013 static ExternalReference new_space_allocation_top_address(Isolate* isolate);
1014 static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
1015 static ExternalReference old_space_allocation_top_address(Isolate* isolate);
1016 static ExternalReference old_space_allocation_limit_address(Isolate* isolate);
1017
1018 static ExternalReference mod_two_doubles_operation(Isolate* isolate);
1019 static ExternalReference power_double_double_function(Isolate* isolate);
1020 static ExternalReference power_double_int_function(Isolate* isolate);
1021
1022 static ExternalReference handle_scope_next_address(Isolate* isolate);
1023 static ExternalReference handle_scope_limit_address(Isolate* isolate);
1024 static ExternalReference handle_scope_level_address(Isolate* isolate);
1025
1026 static ExternalReference scheduled_exception_address(Isolate* isolate);
1027 static ExternalReference address_of_pending_message_obj(Isolate* isolate);
1028
1029 // Static variables containing common double constants.
1030 static ExternalReference address_of_min_int();
1031 static ExternalReference address_of_one_half();
1032 static ExternalReference address_of_minus_one_half();
1033 static ExternalReference address_of_negative_infinity();
1034 static ExternalReference address_of_the_hole_nan();
1035 static ExternalReference address_of_uint32_bias();
1036
1037 // IEEE 754 functions.
1038 static ExternalReference ieee754_atan_function(Isolate* isolate);
1039 static ExternalReference ieee754_atan2_function(Isolate* isolate);
1040 static ExternalReference ieee754_atanh_function(Isolate* isolate);
1041 static ExternalReference ieee754_cbrt_function(Isolate* isolate);
1042 static ExternalReference ieee754_cos_function(Isolate* isolate);
1043 static ExternalReference ieee754_exp_function(Isolate* isolate);
1044 static ExternalReference ieee754_expm1_function(Isolate* isolate);
1045 static ExternalReference ieee754_log_function(Isolate* isolate);
1046 static ExternalReference ieee754_log1p_function(Isolate* isolate);
1047 static ExternalReference ieee754_log10_function(Isolate* isolate);
1048 static ExternalReference ieee754_log2_function(Isolate* isolate);
1049 static ExternalReference ieee754_sin_function(Isolate* isolate);
1050 static ExternalReference ieee754_tan_function(Isolate* isolate);
1051
1052 static ExternalReference page_flags(Page* page);
1053
1054 static ExternalReference ForDeoptEntry(Address entry);
1055
1056 static ExternalReference cpu_features();
1057
1058 static ExternalReference is_tail_call_elimination_enabled_address(
1059 Isolate* isolate);
1060
1061 static ExternalReference debug_is_active_address(Isolate* isolate);
1062 static ExternalReference debug_after_break_target_address(Isolate* isolate);
1063
1064 static ExternalReference is_profiling_address(Isolate* isolate);
1065 static ExternalReference invoke_function_callback(Isolate* isolate);
1066 static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
1067
1068 static ExternalReference virtual_handler_register(Isolate* isolate);
1069 static ExternalReference virtual_slot_register(Isolate* isolate);
1070
1071 static ExternalReference runtime_function_table_address(Isolate* isolate);
1072
address()1073 Address address() const { return reinterpret_cast<Address>(address_); }
1074
1075 // Used to read out the last step action of the debugger.
1076 static ExternalReference debug_last_step_action_address(Isolate* isolate);
1077
1078 // Used to check for suspended generator, used for stepping across await call.
1079 static ExternalReference debug_suspended_generator_address(Isolate* isolate);
1080
1081 #ifndef V8_INTERPRETED_REGEXP
1082 // C functions called from RegExp generated code.
1083
1084 // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
1085 static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
1086
1087 // Function RegExpMacroAssembler*::CheckStackGuardState()
1088 static ExternalReference re_check_stack_guard_state(Isolate* isolate);
1089
1090 // Function NativeRegExpMacroAssembler::GrowStack()
1091 static ExternalReference re_grow_stack(Isolate* isolate);
1092
1093 // byte NativeRegExpMacroAssembler::word_character_bitmap
1094 static ExternalReference re_word_character_map();
1095
1096 #endif
1097
1098 // This lets you register a function that rewrites all external references.
1099 // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)1100 static void set_redirector(Isolate* isolate,
1101 ExternalReferenceRedirector* redirector) {
1102 // We can't stack them.
1103 DCHECK(isolate->external_reference_redirector() == NULL);
1104 isolate->set_external_reference_redirector(
1105 reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
1106 }
1107
1108 static ExternalReference stress_deopt_count(Isolate* isolate);
1109
1110 static ExternalReference fixed_typed_array_base_data_offset();
1111
1112 private:
ExternalReference(void * address)1113 explicit ExternalReference(void* address)
1114 : address_(address) {}
1115
1116 static void* Redirect(Isolate* isolate,
1117 Address address_arg,
1118 Type type = ExternalReference::BUILTIN_CALL) {
1119 ExternalReferenceRedirector* redirector =
1120 reinterpret_cast<ExternalReferenceRedirector*>(
1121 isolate->external_reference_redirector());
1122 void* address = reinterpret_cast<void*>(address_arg);
1123 void* answer =
1124 (redirector == NULL) ? address : (*redirector)(isolate, address, type);
1125 return answer;
1126 }
1127
1128 void* address_;
1129 };
1130
1131 bool operator==(ExternalReference, ExternalReference);
1132 bool operator!=(ExternalReference, ExternalReference);
1133
1134 size_t hash_value(ExternalReference);
1135
1136 std::ostream& operator<<(std::ostream&, ExternalReference);
1137
1138
1139 // -----------------------------------------------------------------------------
1140 // Position recording support
1141
1142 class AssemblerPositionsRecorder : public PositionsRecorder {
1143 public:
AssemblerPositionsRecorder(Assembler * assembler)1144 explicit AssemblerPositionsRecorder(Assembler* assembler)
1145 : assembler_(assembler),
1146 current_position_(RelocInfo::kNoPosition),
1147 written_position_(RelocInfo::kNoPosition),
1148 current_statement_position_(RelocInfo::kNoPosition),
1149 written_statement_position_(RelocInfo::kNoPosition) {}
1150
1151 // Set current position to pos.
1152 void RecordPosition(int pos);
1153
1154 // Set current statement position to pos.
1155 void RecordStatementPosition(int pos);
1156
1157 private:
1158 // Write recorded positions to relocation information.
1159 void WriteRecordedPositions();
1160
1161 Assembler* assembler_;
1162
1163 int current_position_;
1164 int written_position_;
1165
1166 int current_statement_position_;
1167 int written_statement_position_;
1168
1169 DISALLOW_COPY_AND_ASSIGN(AssemblerPositionsRecorder);
1170 };
1171
1172
1173 // -----------------------------------------------------------------------------
1174 // Utility functions
1175
NumberOfBitsSet(uint32_t x)1176 inline int NumberOfBitsSet(uint32_t x) {
1177 unsigned int num_bits_set;
1178 for (num_bits_set = 0; x; x >>= 1) {
1179 num_bits_set += x & 1;
1180 }
1181 return num_bits_set;
1182 }
1183
1184 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1185 double power_helper(Isolate* isolate, double x, double y);
1186 double power_double_int(double x, int y);
1187 double power_double_double(double x, double y);
1188
1189 // Helper class for generating code or data associated with the code
1190 // right after a call instruction. As an example this can be used to
1191 // generate safepoint data after calls for crankshaft.
1192 class CallWrapper {
1193 public:
CallWrapper()1194 CallWrapper() { }
~CallWrapper()1195 virtual ~CallWrapper() { }
1196 // Called just before emitting a call. Argument is the size of the generated
1197 // call code.
1198 virtual void BeforeCall(int call_size) const = 0;
1199 // Called just after emitting a call, i.e., at the return site for the call.
1200 virtual void AfterCall() const = 0;
1201 // Return whether call needs to check for debug stepping.
NeedsDebugStepCheck()1202 virtual bool NeedsDebugStepCheck() const { return false; }
1203 };
1204
1205
1206 class NullCallWrapper : public CallWrapper {
1207 public:
NullCallWrapper()1208 NullCallWrapper() { }
~NullCallWrapper()1209 virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1210 virtual void BeforeCall(int call_size) const { }
AfterCall()1211 virtual void AfterCall() const { }
1212 };
1213
1214
1215 class CheckDebugStepCallWrapper : public CallWrapper {
1216 public:
CheckDebugStepCallWrapper()1217 CheckDebugStepCallWrapper() {}
~CheckDebugStepCallWrapper()1218 virtual ~CheckDebugStepCallWrapper() {}
BeforeCall(int call_size)1219 virtual void BeforeCall(int call_size) const {}
AfterCall()1220 virtual void AfterCall() const {}
NeedsDebugStepCheck()1221 virtual bool NeedsDebugStepCheck() const { return true; }
1222 };
1223
1224
1225 // -----------------------------------------------------------------------------
1226 // Constant pool support
1227
1228 class ConstantPoolEntry {
1229 public:
ConstantPoolEntry()1230 ConstantPoolEntry() {}
ConstantPoolEntry(int position,intptr_t value,bool sharing_ok)1231 ConstantPoolEntry(int position, intptr_t value, bool sharing_ok)
1232 : position_(position),
1233 merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
1234 value_(value) {}
ConstantPoolEntry(int position,double value)1235 ConstantPoolEntry(int position, double value)
1236 : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {}
1237
position()1238 int position() const { return position_; }
sharing_ok()1239 bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
is_merged()1240 bool is_merged() const { return merged_index_ >= 0; }
merged_index(void)1241 int merged_index(void) const {
1242 DCHECK(is_merged());
1243 return merged_index_;
1244 }
set_merged_index(int index)1245 void set_merged_index(int index) {
1246 merged_index_ = index;
1247 DCHECK(is_merged());
1248 }
offset(void)1249 int offset(void) const {
1250 DCHECK(merged_index_ >= 0);
1251 return merged_index_;
1252 }
set_offset(int offset)1253 void set_offset(int offset) {
1254 DCHECK(offset >= 0);
1255 merged_index_ = offset;
1256 }
value()1257 intptr_t value() const { return value_; }
value64()1258 uint64_t value64() const { return bit_cast<uint64_t>(value64_); }
1259
1260 enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };
1261
size(Type type)1262 static int size(Type type) {
1263 return (type == INTPTR) ? kPointerSize : kDoubleSize;
1264 }
1265
1266 enum Access { REGULAR, OVERFLOWED };
1267
1268 private:
1269 int position_;
1270 int merged_index_;
1271 union {
1272 intptr_t value_;
1273 double value64_;
1274 };
1275 enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
1276 };
1277
1278
1279 // -----------------------------------------------------------------------------
1280 // Embedded constant pool support
1281
1282 class ConstantPoolBuilder BASE_EMBEDDED {
1283 public:
1284 ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);
1285
1286 // Add pointer-sized constant to the embedded constant pool
AddEntry(int position,intptr_t value,bool sharing_ok)1287 ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
1288 bool sharing_ok) {
1289 ConstantPoolEntry entry(position, value, sharing_ok);
1290 return AddEntry(entry, ConstantPoolEntry::INTPTR);
1291 }
1292
1293 // Add double constant to the embedded constant pool
AddEntry(int position,double value)1294 ConstantPoolEntry::Access AddEntry(int position, double value) {
1295 ConstantPoolEntry entry(position, value);
1296 return AddEntry(entry, ConstantPoolEntry::DOUBLE);
1297 }
1298
1299 // Previews the access type required for the next new entry to be added.
1300 ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;
1301
IsEmpty()1302 bool IsEmpty() {
1303 return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
1304 info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
1305 info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
1306 info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
1307 }
1308
1309 // Emit the constant pool. Invoke only after all entries have been
1310 // added and all instructions have been emitted.
1311 // Returns position of the emitted pool (zero implies no constant pool).
1312 int Emit(Assembler* assm);
1313
1314 // Returns the label associated with the start of the constant pool.
1315 // Linking to this label in the function prologue may provide an
1316 // efficient means of constant pool pointer register initialization
1317 // on some architectures.
EmittedPosition()1318 inline Label* EmittedPosition() { return &emitted_label_; }
1319
1320 private:
1321 ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
1322 ConstantPoolEntry::Type type);
1323 void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
1324 void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
1325 ConstantPoolEntry::Type type);
1326
1327 struct PerTypeEntryInfo {
PerTypeEntryInfoPerTypeEntryInfo1328 PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
overflowPerTypeEntryInfo1329 bool overflow() const {
1330 return (overflow_start >= 0 &&
1331 overflow_start < static_cast<int>(entries.size()));
1332 }
1333 int regular_reach_bits;
1334 int regular_count;
1335 int overflow_start;
1336 std::vector<ConstantPoolEntry> entries;
1337 std::vector<ConstantPoolEntry> shared_entries;
1338 };
1339
1340 Label emitted_label_; // Records pc_offset of emitted pool
1341 PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
1342 };
1343
1344 } // namespace internal
1345 } // namespace v8
1346 #endif // V8_ASSEMBLER_H_
1347