• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/objects.h"
6 
7 #include <cmath>
8 #include <iomanip>
9 #include <sstream>
10 
11 #include "src/objects-inl.h"
12 
13 #include "src/accessors.h"
14 #include "src/allocation-site-scopes.h"
15 #include "src/api-arguments-inl.h"
16 #include "src/api-natives.h"
17 #include "src/api.h"
18 #include "src/base/bits.h"
19 #include "src/base/utils/random-number-generator.h"
20 #include "src/bootstrapper.h"
21 #include "src/code-stubs.h"
22 #include "src/codegen.h"
23 #include "src/compilation-dependencies.h"
24 #include "src/compiler.h"
25 #include "src/counters-inl.h"
26 #include "src/counters.h"
27 #include "src/date.h"
28 #include "src/debug/debug.h"
29 #include "src/deoptimizer.h"
30 #include "src/elements.h"
31 #include "src/execution.h"
32 #include "src/field-index-inl.h"
33 #include "src/field-index.h"
34 #include "src/field-type.h"
35 #include "src/frames-inl.h"
36 #include "src/full-codegen/full-codegen.h"
37 #include "src/ic/ic.h"
38 #include "src/identity-map.h"
39 #include "src/interpreter/bytecode-array-iterator.h"
40 #include "src/interpreter/interpreter.h"
41 #include "src/interpreter/source-position-table.h"
42 #include "src/isolate-inl.h"
43 #include "src/keys.h"
44 #include "src/list.h"
45 #include "src/log.h"
46 #include "src/lookup.h"
47 #include "src/macro-assembler.h"
48 #include "src/messages.h"
49 #include "src/objects-body-descriptors-inl.h"
50 #include "src/property-descriptor.h"
51 #include "src/prototype.h"
52 #include "src/regexp/jsregexp.h"
53 #include "src/safepoint-table.h"
54 #include "src/string-builder.h"
55 #include "src/string-search.h"
56 #include "src/string-stream.h"
57 #include "src/utils.h"
58 #include "src/zone.h"
59 
60 #ifdef ENABLE_DISASSEMBLER
61 #include "src/disasm.h"
62 #include "src/disassembler.h"
63 #endif
64 
65 namespace v8 {
66 namespace internal {
67 
operator <<(std::ostream & os,InstanceType instance_type)68 std::ostream& operator<<(std::ostream& os, InstanceType instance_type) {
69   switch (instance_type) {
70 #define WRITE_TYPE(TYPE) \
71   case TYPE:             \
72     return os << #TYPE;
73     INSTANCE_TYPE_LIST(WRITE_TYPE)
74 #undef WRITE_TYPE
75   }
76   UNREACHABLE();
77   return os << "UNKNOWN";  // Keep the compiler happy.
78 }
79 
OptimalType(Isolate * isolate,Representation representation)80 Handle<FieldType> Object::OptimalType(Isolate* isolate,
81                                       Representation representation) {
82   if (representation.IsNone()) return FieldType::None(isolate);
83   if (FLAG_track_field_types) {
84     if (representation.IsHeapObject() && IsHeapObject()) {
85       // We can track only JavaScript objects with stable maps.
86       Handle<Map> map(HeapObject::cast(this)->map(), isolate);
87       if (map->is_stable() && map->IsJSReceiverMap()) {
88         return FieldType::Class(map, isolate);
89       }
90     }
91   }
92   return FieldType::Any(isolate);
93 }
94 
95 
ToObject(Isolate * isolate,Handle<Object> object,Handle<Context> native_context)96 MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
97                                          Handle<Object> object,
98                                          Handle<Context> native_context) {
99   if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
100   Handle<JSFunction> constructor;
101   if (object->IsSmi()) {
102     constructor = handle(native_context->number_function(), isolate);
103   } else {
104     int constructor_function_index =
105         Handle<HeapObject>::cast(object)->map()->GetConstructorFunctionIndex();
106     if (constructor_function_index == Map::kNoConstructorFunctionIndex) {
107       THROW_NEW_ERROR(isolate,
108                       NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
109                       JSReceiver);
110     }
111     constructor = handle(
112         JSFunction::cast(native_context->get(constructor_function_index)),
113         isolate);
114   }
115   Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
116   Handle<JSValue>::cast(result)->set_value(*object);
117   return result;
118 }
119 
120 // ES6 section 9.2.1.2, OrdinaryCallBindThis for sloppy callee.
121 // static
ConvertReceiver(Isolate * isolate,Handle<Object> object)122 MaybeHandle<JSReceiver> Object::ConvertReceiver(Isolate* isolate,
123                                                 Handle<Object> object) {
124   if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
125   if (*object == isolate->heap()->null_value() ||
126       object->IsUndefined(isolate)) {
127     return isolate->global_proxy();
128   }
129   return Object::ToObject(isolate, object);
130 }
131 
132 // static
ToNumber(Handle<Object> input)133 MaybeHandle<Object> Object::ToNumber(Handle<Object> input) {
134   while (true) {
135     if (input->IsNumber()) {
136       return input;
137     }
138     if (input->IsString()) {
139       return String::ToNumber(Handle<String>::cast(input));
140     }
141     if (input->IsOddball()) {
142       return Oddball::ToNumber(Handle<Oddball>::cast(input));
143     }
144     Isolate* const isolate = Handle<HeapObject>::cast(input)->GetIsolate();
145     if (input->IsSymbol()) {
146       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber),
147                       Object);
148     }
149     if (input->IsSimd128Value()) {
150       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSimdToNumber),
151                       Object);
152     }
153     ASSIGN_RETURN_ON_EXCEPTION(
154         isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
155                                                 ToPrimitiveHint::kNumber),
156         Object);
157   }
158 }
159 
160 
161 // static
ToInteger(Isolate * isolate,Handle<Object> input)162 MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
163   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
164   return isolate->factory()->NewNumber(DoubleToInteger(input->Number()));
165 }
166 
167 
168 // static
ToInt32(Isolate * isolate,Handle<Object> input)169 MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
170   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
171   return isolate->factory()->NewNumberFromInt(DoubleToInt32(input->Number()));
172 }
173 
174 
175 // static
ToUint32(Isolate * isolate,Handle<Object> input)176 MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
177   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
178   return isolate->factory()->NewNumberFromUint(DoubleToUint32(input->Number()));
179 }
180 
181 
182 // static
ConvertToName(Isolate * isolate,Handle<Object> input)183 MaybeHandle<Name> Object::ConvertToName(Isolate* isolate,
184                                         Handle<Object> input) {
185   ASSIGN_RETURN_ON_EXCEPTION(
186       isolate, input, Object::ToPrimitive(input, ToPrimitiveHint::kString),
187       Name);
188   if (input->IsName()) return Handle<Name>::cast(input);
189   return ToString(isolate, input);
190 }
191 
192 // static
ToString(Isolate * isolate,Handle<Object> input)193 MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
194   while (true) {
195     if (input->IsString()) {
196       return Handle<String>::cast(input);
197     }
198     if (input->IsOddball()) {
199       return handle(Handle<Oddball>::cast(input)->to_string(), isolate);
200     }
201     if (input->IsNumber()) {
202       return isolate->factory()->NumberToString(input);
203     }
204     if (input->IsSymbol()) {
205       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString),
206                       String);
207     }
208     if (input->IsSimd128Value()) {
209       return Simd128Value::ToString(Handle<Simd128Value>::cast(input));
210     }
211     ASSIGN_RETURN_ON_EXCEPTION(
212         isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
213                                                 ToPrimitiveHint::kString),
214         String);
215   }
216 }
217 
218 
219 // static
ToLength(Isolate * isolate,Handle<Object> input)220 MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
221   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
222   double len = DoubleToInteger(input->Number());
223   if (len <= 0.0) {
224     len = 0.0;
225   } else if (len >= kMaxSafeInteger) {
226     len = kMaxSafeInteger;
227   }
228   return isolate->factory()->NewNumber(len);
229 }
230 
231 
BooleanValue()232 bool Object::BooleanValue() {
233   if (IsSmi()) return Smi::cast(this)->value() != 0;
234   DCHECK(IsHeapObject());
235   Isolate* isolate = HeapObject::cast(this)->GetIsolate();
236   if (IsBoolean()) return IsTrue(isolate);
237   if (IsUndefined(isolate) || IsNull(isolate)) return false;
238   if (IsUndetectable()) return false;  // Undetectable object is false.
239   if (IsString()) return String::cast(this)->length() != 0;
240   if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue();
241   return true;
242 }
243 
244 
245 namespace {
246 
247 // TODO(bmeurer): Maybe we should introduce a marker interface Number,
248 // where we put all these methods at some point?
NumberCompare(double x,double y)249 ComparisonResult NumberCompare(double x, double y) {
250   if (std::isnan(x) || std::isnan(y)) {
251     return ComparisonResult::kUndefined;
252   } else if (x < y) {
253     return ComparisonResult::kLessThan;
254   } else if (x > y) {
255     return ComparisonResult::kGreaterThan;
256   } else {
257     return ComparisonResult::kEqual;
258   }
259 }
260 
261 
NumberEquals(double x,double y)262 bool NumberEquals(double x, double y) {
263   // Must check explicitly for NaN's on Windows, but -0 works fine.
264   if (std::isnan(x)) return false;
265   if (std::isnan(y)) return false;
266   return x == y;
267 }
268 
269 
NumberEquals(const Object * x,const Object * y)270 bool NumberEquals(const Object* x, const Object* y) {
271   return NumberEquals(x->Number(), y->Number());
272 }
273 
274 
NumberEquals(Handle<Object> x,Handle<Object> y)275 bool NumberEquals(Handle<Object> x, Handle<Object> y) {
276   return NumberEquals(*x, *y);
277 }
278 
279 }  // namespace
280 
281 
282 // static
Compare(Handle<Object> x,Handle<Object> y)283 Maybe<ComparisonResult> Object::Compare(Handle<Object> x, Handle<Object> y) {
284   // ES6 section 7.2.11 Abstract Relational Comparison step 3 and 4.
285   if (!Object::ToPrimitive(x, ToPrimitiveHint::kNumber).ToHandle(&x) ||
286       !Object::ToPrimitive(y, ToPrimitiveHint::kNumber).ToHandle(&y)) {
287     return Nothing<ComparisonResult>();
288   }
289   if (x->IsString() && y->IsString()) {
290     // ES6 section 7.2.11 Abstract Relational Comparison step 5.
291     return Just(
292         String::Compare(Handle<String>::cast(x), Handle<String>::cast(y)));
293   }
294   // ES6 section 7.2.11 Abstract Relational Comparison step 6.
295   if (!Object::ToNumber(x).ToHandle(&x) || !Object::ToNumber(y).ToHandle(&y)) {
296     return Nothing<ComparisonResult>();
297   }
298   return Just(NumberCompare(x->Number(), y->Number()));
299 }
300 
301 
302 // static
Equals(Handle<Object> x,Handle<Object> y)303 Maybe<bool> Object::Equals(Handle<Object> x, Handle<Object> y) {
304   // This is the generic version of Abstract Equality Comparison; a version in
305   // JavaScript land is available in the EqualStub and NotEqualStub. Whenever
306   // you change something functionality wise in here, remember to update the
307   // TurboFan code stubs as well.
308   while (true) {
309     if (x->IsNumber()) {
310       if (y->IsNumber()) {
311         return Just(NumberEquals(x, y));
312       } else if (y->IsBoolean()) {
313         return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
314       } else if (y->IsString()) {
315         return Just(NumberEquals(x, String::ToNumber(Handle<String>::cast(y))));
316       } else if (y->IsJSReceiver()) {
317         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
318                  .ToHandle(&y)) {
319           return Nothing<bool>();
320         }
321       } else {
322         return Just(false);
323       }
324     } else if (x->IsString()) {
325       if (y->IsString()) {
326         return Just(
327             String::Equals(Handle<String>::cast(x), Handle<String>::cast(y)));
328       } else if (y->IsNumber()) {
329         x = String::ToNumber(Handle<String>::cast(x));
330         return Just(NumberEquals(x, y));
331       } else if (y->IsBoolean()) {
332         x = String::ToNumber(Handle<String>::cast(x));
333         return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
334       } else if (y->IsJSReceiver()) {
335         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
336                  .ToHandle(&y)) {
337           return Nothing<bool>();
338         }
339       } else {
340         return Just(false);
341       }
342     } else if (x->IsBoolean()) {
343       if (y->IsOddball()) {
344         return Just(x.is_identical_to(y));
345       } else if (y->IsNumber()) {
346         return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
347       } else if (y->IsString()) {
348         y = String::ToNumber(Handle<String>::cast(y));
349         return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
350       } else if (y->IsJSReceiver()) {
351         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
352                  .ToHandle(&y)) {
353           return Nothing<bool>();
354         }
355         x = Oddball::ToNumber(Handle<Oddball>::cast(x));
356       } else {
357         return Just(false);
358       }
359     } else if (x->IsSymbol()) {
360       if (y->IsSymbol()) {
361         return Just(x.is_identical_to(y));
362       } else if (y->IsJSReceiver()) {
363         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
364                  .ToHandle(&y)) {
365           return Nothing<bool>();
366         }
367       } else {
368         return Just(false);
369       }
370     } else if (x->IsSimd128Value()) {
371       if (y->IsSimd128Value()) {
372         return Just(Simd128Value::Equals(Handle<Simd128Value>::cast(x),
373                                          Handle<Simd128Value>::cast(y)));
374       } else if (y->IsJSReceiver()) {
375         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
376                  .ToHandle(&y)) {
377           return Nothing<bool>();
378         }
379       } else {
380         return Just(false);
381       }
382     } else if (x->IsJSReceiver()) {
383       if (y->IsJSReceiver()) {
384         return Just(x.is_identical_to(y));
385       } else if (y->IsUndetectable()) {
386         return Just(x->IsUndetectable());
387       } else if (y->IsBoolean()) {
388         y = Oddball::ToNumber(Handle<Oddball>::cast(y));
389       } else if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(x))
390                       .ToHandle(&x)) {
391         return Nothing<bool>();
392       }
393     } else {
394       return Just(x->IsUndetectable() && y->IsUndetectable());
395     }
396   }
397 }
398 
399 
StrictEquals(Object * that)400 bool Object::StrictEquals(Object* that) {
401   if (this->IsNumber()) {
402     if (!that->IsNumber()) return false;
403     return NumberEquals(this, that);
404   } else if (this->IsString()) {
405     if (!that->IsString()) return false;
406     return String::cast(this)->Equals(String::cast(that));
407   } else if (this->IsSimd128Value()) {
408     if (!that->IsSimd128Value()) return false;
409     return Simd128Value::cast(this)->Equals(Simd128Value::cast(that));
410   }
411   return this == that;
412 }
413 
414 
415 // static
TypeOf(Isolate * isolate,Handle<Object> object)416 Handle<String> Object::TypeOf(Isolate* isolate, Handle<Object> object) {
417   if (object->IsNumber()) return isolate->factory()->number_string();
418   if (object->IsOddball()) return handle(Oddball::cast(*object)->type_of());
419   if (object->IsUndetectable()) {
420     return isolate->factory()->undefined_string();
421   }
422   if (object->IsString()) return isolate->factory()->string_string();
423   if (object->IsSymbol()) return isolate->factory()->symbol_string();
424   if (object->IsString()) return isolate->factory()->string_string();
425 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
426   if (object->Is##Type()) return isolate->factory()->type##_string();
427   SIMD128_TYPES(SIMD128_TYPE)
428 #undef SIMD128_TYPE
429   if (object->IsCallable()) return isolate->factory()->function_string();
430   return isolate->factory()->object_string();
431 }
432 
433 
434 // static
Multiply(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)435 MaybeHandle<Object> Object::Multiply(Isolate* isolate, Handle<Object> lhs,
436                                      Handle<Object> rhs) {
437   if (!lhs->IsNumber() || !rhs->IsNumber()) {
438     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
439     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
440   }
441   return isolate->factory()->NewNumber(lhs->Number() * rhs->Number());
442 }
443 
444 
445 // static
Divide(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)446 MaybeHandle<Object> Object::Divide(Isolate* isolate, Handle<Object> lhs,
447                                    Handle<Object> rhs) {
448   if (!lhs->IsNumber() || !rhs->IsNumber()) {
449     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
450     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
451   }
452   return isolate->factory()->NewNumber(lhs->Number() / rhs->Number());
453 }
454 
455 
456 // static
Modulus(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)457 MaybeHandle<Object> Object::Modulus(Isolate* isolate, Handle<Object> lhs,
458                                     Handle<Object> rhs) {
459   if (!lhs->IsNumber() || !rhs->IsNumber()) {
460     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
461     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
462   }
463   return isolate->factory()->NewNumber(modulo(lhs->Number(), rhs->Number()));
464 }
465 
466 
467 // static
Add(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)468 MaybeHandle<Object> Object::Add(Isolate* isolate, Handle<Object> lhs,
469                                 Handle<Object> rhs) {
470   if (lhs->IsNumber() && rhs->IsNumber()) {
471     return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
472   } else if (lhs->IsString() && rhs->IsString()) {
473     return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
474                                              Handle<String>::cast(rhs));
475   }
476   ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object);
477   ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object);
478   if (lhs->IsString() || rhs->IsString()) {
479     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs),
480                                Object);
481     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs),
482                                Object);
483     return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
484                                              Handle<String>::cast(rhs));
485   }
486   ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
487   ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
488   return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
489 }
490 
491 
492 // static
Subtract(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)493 MaybeHandle<Object> Object::Subtract(Isolate* isolate, Handle<Object> lhs,
494                                      Handle<Object> rhs) {
495   if (!lhs->IsNumber() || !rhs->IsNumber()) {
496     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
497     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
498   }
499   return isolate->factory()->NewNumber(lhs->Number() - rhs->Number());
500 }
501 
502 
503 // static
ShiftLeft(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)504 MaybeHandle<Object> Object::ShiftLeft(Isolate* isolate, Handle<Object> lhs,
505                                       Handle<Object> rhs) {
506   if (!lhs->IsNumber() || !rhs->IsNumber()) {
507     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
508     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
509   }
510   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs)
511                                               << (NumberToUint32(*rhs) & 0x1F));
512 }
513 
514 
515 // static
ShiftRight(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)516 MaybeHandle<Object> Object::ShiftRight(Isolate* isolate, Handle<Object> lhs,
517                                        Handle<Object> rhs) {
518   if (!lhs->IsNumber() || !rhs->IsNumber()) {
519     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
520     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
521   }
522   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) >>
523                                               (NumberToUint32(*rhs) & 0x1F));
524 }
525 
526 
527 // static
ShiftRightLogical(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)528 MaybeHandle<Object> Object::ShiftRightLogical(Isolate* isolate,
529                                               Handle<Object> lhs,
530                                               Handle<Object> rhs) {
531   if (!lhs->IsNumber() || !rhs->IsNumber()) {
532     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
533     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
534   }
535   return isolate->factory()->NewNumberFromUint(NumberToUint32(*lhs) >>
536                                                (NumberToUint32(*rhs) & 0x1F));
537 }
538 
539 
540 // static
BitwiseAnd(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)541 MaybeHandle<Object> Object::BitwiseAnd(Isolate* isolate, Handle<Object> lhs,
542                                        Handle<Object> rhs) {
543   if (!lhs->IsNumber() || !rhs->IsNumber()) {
544     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
545     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
546   }
547   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) &
548                                               NumberToInt32(*rhs));
549 }
550 
551 
552 // static
BitwiseOr(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)553 MaybeHandle<Object> Object::BitwiseOr(Isolate* isolate, Handle<Object> lhs,
554                                       Handle<Object> rhs) {
555   if (!lhs->IsNumber() || !rhs->IsNumber()) {
556     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
557     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
558   }
559   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) |
560                                               NumberToInt32(*rhs));
561 }
562 
563 
564 // static
BitwiseXor(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)565 MaybeHandle<Object> Object::BitwiseXor(Isolate* isolate, Handle<Object> lhs,
566                                        Handle<Object> rhs) {
567   if (!lhs->IsNumber() || !rhs->IsNumber()) {
568     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
569     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
570   }
571   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) ^
572                                               NumberToInt32(*rhs));
573 }
574 
575 // static
OrdinaryHasInstance(Isolate * isolate,Handle<Object> callable,Handle<Object> object)576 MaybeHandle<Object> Object::OrdinaryHasInstance(Isolate* isolate,
577                                                 Handle<Object> callable,
578                                                 Handle<Object> object) {
579   // The {callable} must have a [[Call]] internal method.
580   if (!callable->IsCallable()) return isolate->factory()->false_value();
581 
582   // Check if {callable} is a bound function, and if so retrieve its
583   // [[BoundTargetFunction]] and use that instead of {callable}.
584   if (callable->IsJSBoundFunction()) {
585     Handle<Object> bound_callable(
586         Handle<JSBoundFunction>::cast(callable)->bound_target_function(),
587         isolate);
588     return Object::InstanceOf(isolate, object, bound_callable);
589   }
590 
591   // If {object} is not a receiver, return false.
592   if (!object->IsJSReceiver()) return isolate->factory()->false_value();
593 
594   // Get the "prototype" of {callable}; raise an error if it's not a receiver.
595   Handle<Object> prototype;
596   ASSIGN_RETURN_ON_EXCEPTION(
597       isolate, prototype,
598       Object::GetProperty(callable, isolate->factory()->prototype_string()),
599       Object);
600   if (!prototype->IsJSReceiver()) {
601     THROW_NEW_ERROR(
602         isolate,
603         NewTypeError(MessageTemplate::kInstanceofNonobjectProto, prototype),
604         Object);
605   }
606 
607   // Return whether or not {prototype} is in the prototype chain of {object}.
608   Maybe<bool> result = JSReceiver::HasInPrototypeChain(
609       isolate, Handle<JSReceiver>::cast(object), prototype);
610   if (result.IsNothing()) return MaybeHandle<Object>();
611   return isolate->factory()->ToBoolean(result.FromJust());
612 }
613 
614 // static
InstanceOf(Isolate * isolate,Handle<Object> object,Handle<Object> callable)615 MaybeHandle<Object> Object::InstanceOf(Isolate* isolate, Handle<Object> object,
616                                        Handle<Object> callable) {
617   // The {callable} must be a receiver.
618   if (!callable->IsJSReceiver()) {
619     THROW_NEW_ERROR(isolate,
620                     NewTypeError(MessageTemplate::kNonObjectInInstanceOfCheck),
621                     Object);
622   }
623 
624   // Lookup the @@hasInstance method on {callable}.
625   Handle<Object> inst_of_handler;
626   ASSIGN_RETURN_ON_EXCEPTION(
627       isolate, inst_of_handler,
628       JSReceiver::GetMethod(Handle<JSReceiver>::cast(callable),
629                             isolate->factory()->has_instance_symbol()),
630       Object);
631   if (!inst_of_handler->IsUndefined(isolate)) {
632     // Call the {inst_of_handler} on the {callable}.
633     Handle<Object> result;
634     ASSIGN_RETURN_ON_EXCEPTION(
635         isolate, result,
636         Execution::Call(isolate, inst_of_handler, callable, 1, &object),
637         Object);
638     return isolate->factory()->ToBoolean(result->BooleanValue());
639   }
640 
641   // The {callable} must have a [[Call]] internal method.
642   if (!callable->IsCallable()) {
643     THROW_NEW_ERROR(
644         isolate, NewTypeError(MessageTemplate::kNonCallableInInstanceOfCheck),
645         Object);
646   }
647 
648   // Fall back to OrdinaryHasInstance with {callable} and {object}.
649   Handle<Object> result;
650   ASSIGN_RETURN_ON_EXCEPTION(
651       isolate, result,
652       JSReceiver::OrdinaryHasInstance(isolate, callable, object), Object);
653   return result;
654 }
655 
IsArray(Handle<Object> object)656 Maybe<bool> Object::IsArray(Handle<Object> object) {
657   if (object->IsJSArray()) return Just(true);
658   if (object->IsJSProxy()) {
659     Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
660     Isolate* isolate = proxy->GetIsolate();
661     if (proxy->IsRevoked()) {
662       isolate->Throw(*isolate->factory()->NewTypeError(
663           MessageTemplate::kProxyRevoked,
664           isolate->factory()->NewStringFromAsciiChecked("IsArray")));
665       return Nothing<bool>();
666     }
667     return Object::IsArray(handle(proxy->target(), isolate));
668   }
669   return Just(false);
670 }
671 
672 
673 // static
GetMethod(Handle<JSReceiver> receiver,Handle<Name> name)674 MaybeHandle<Object> Object::GetMethod(Handle<JSReceiver> receiver,
675                                       Handle<Name> name) {
676   Handle<Object> func;
677   Isolate* isolate = receiver->GetIsolate();
678   ASSIGN_RETURN_ON_EXCEPTION(isolate, func,
679                              JSReceiver::GetProperty(receiver, name), Object);
680   if (func->IsNull(isolate) || func->IsUndefined(isolate)) {
681     return isolate->factory()->undefined_value();
682   }
683   if (!func->IsCallable()) {
684     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kPropertyNotFunction,
685                                           func, name, receiver),
686                     Object);
687   }
688   return func;
689 }
690 
691 
692 // static
CreateListFromArrayLike(Isolate * isolate,Handle<Object> object,ElementTypes element_types)693 MaybeHandle<FixedArray> Object::CreateListFromArrayLike(
694     Isolate* isolate, Handle<Object> object, ElementTypes element_types) {
695   // 1. ReturnIfAbrupt(object).
696   // 2. (default elementTypes -- not applicable.)
697   // 3. If Type(obj) is not Object, throw a TypeError exception.
698   if (!object->IsJSReceiver()) {
699     THROW_NEW_ERROR(isolate,
700                     NewTypeError(MessageTemplate::kCalledOnNonObject,
701                                  isolate->factory()->NewStringFromAsciiChecked(
702                                      "CreateListFromArrayLike")),
703                     FixedArray);
704   }
705   // 4. Let len be ? ToLength(? Get(obj, "length")).
706   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object);
707   Handle<Object> raw_length_number;
708   ASSIGN_RETURN_ON_EXCEPTION(isolate, raw_length_number,
709                              Object::GetLengthFromArrayLike(isolate, receiver),
710                              FixedArray);
711   uint32_t len;
712   if (!raw_length_number->ToUint32(&len) ||
713       len > static_cast<uint32_t>(FixedArray::kMaxLength)) {
714     THROW_NEW_ERROR(isolate,
715                     NewRangeError(MessageTemplate::kInvalidArrayLength),
716                     FixedArray);
717   }
718   // 5. Let list be an empty List.
719   Handle<FixedArray> list = isolate->factory()->NewFixedArray(len);
720   // 6. Let index be 0.
721   // 7. Repeat while index < len:
722   for (uint32_t index = 0; index < len; ++index) {
723     // 7a. Let indexName be ToString(index).
724     // 7b. Let next be ? Get(obj, indexName).
725     Handle<Object> next;
726     ASSIGN_RETURN_ON_EXCEPTION(isolate, next,
727                                JSReceiver::GetElement(isolate, receiver, index),
728                                FixedArray);
729     switch (element_types) {
730       case ElementTypes::kAll:
731         // Nothing to do.
732         break;
733       case ElementTypes::kStringAndSymbol: {
734         // 7c. If Type(next) is not an element of elementTypes, throw a
735         //     TypeError exception.
736         if (!next->IsName()) {
737           THROW_NEW_ERROR(isolate,
738                           NewTypeError(MessageTemplate::kNotPropertyName, next),
739                           FixedArray);
740         }
741         // 7d. Append next as the last element of list.
742         // Internalize on the fly so we can use pointer identity later.
743         next = isolate->factory()->InternalizeName(Handle<Name>::cast(next));
744         break;
745       }
746     }
747     list->set(index, *next);
748     // 7e. Set index to index + 1. (See loop header.)
749   }
750   // 8. Return list.
751   return list;
752 }
753 
754 
755 // static
GetLengthFromArrayLike(Isolate * isolate,Handle<Object> object)756 MaybeHandle<Object> Object::GetLengthFromArrayLike(Isolate* isolate,
757                                                    Handle<Object> object) {
758   Handle<Object> val;
759   Handle<Object> key = isolate->factory()->length_string();
760   ASSIGN_RETURN_ON_EXCEPTION(
761       isolate, val, Runtime::GetObjectProperty(isolate, object, key), Object);
762   return Object::ToLength(isolate, val);
763 }
764 
765 // static
HasProperty(LookupIterator * it)766 Maybe<bool> JSReceiver::HasProperty(LookupIterator* it) {
767   for (; it->IsFound(); it->Next()) {
768     switch (it->state()) {
769       case LookupIterator::NOT_FOUND:
770       case LookupIterator::TRANSITION:
771         UNREACHABLE();
772       case LookupIterator::JSPROXY:
773         return JSProxy::HasProperty(it->isolate(), it->GetHolder<JSProxy>(),
774                                     it->GetName());
775       case LookupIterator::INTERCEPTOR: {
776         Maybe<PropertyAttributes> result =
777             JSObject::GetPropertyAttributesWithInterceptor(it);
778         if (result.IsNothing()) return Nothing<bool>();
779         if (result.FromJust() != ABSENT) return Just(true);
780         break;
781       }
782       case LookupIterator::ACCESS_CHECK: {
783         if (it->HasAccess()) break;
784         Maybe<PropertyAttributes> result =
785             JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
786         if (result.IsNothing()) return Nothing<bool>();
787         return Just(result.FromJust() != ABSENT);
788       }
789       case LookupIterator::INTEGER_INDEXED_EXOTIC:
790         // TypedArray out-of-bounds access.
791         return Just(false);
792       case LookupIterator::ACCESSOR:
793       case LookupIterator::DATA:
794         return Just(true);
795     }
796   }
797   return Just(false);
798 }
799 
800 
801 // static
GetProperty(LookupIterator * it)802 MaybeHandle<Object> Object::GetProperty(LookupIterator* it) {
803   for (; it->IsFound(); it->Next()) {
804     switch (it->state()) {
805       case LookupIterator::NOT_FOUND:
806       case LookupIterator::TRANSITION:
807         UNREACHABLE();
808       case LookupIterator::JSPROXY: {
809         bool was_found;
810         MaybeHandle<Object> result =
811             JSProxy::GetProperty(it->isolate(), it->GetHolder<JSProxy>(),
812                                  it->GetName(), it->GetReceiver(), &was_found);
813         if (!was_found) it->NotFound();
814         return result;
815       }
816       case LookupIterator::INTERCEPTOR: {
817         bool done;
818         Handle<Object> result;
819         ASSIGN_RETURN_ON_EXCEPTION(
820             it->isolate(), result,
821             JSObject::GetPropertyWithInterceptor(it, &done), Object);
822         if (done) return result;
823         break;
824       }
825       case LookupIterator::ACCESS_CHECK:
826         if (it->HasAccess()) break;
827         return JSObject::GetPropertyWithFailedAccessCheck(it);
828       case LookupIterator::ACCESSOR:
829         return GetPropertyWithAccessor(it);
830       case LookupIterator::INTEGER_INDEXED_EXOTIC:
831         return ReadAbsentProperty(it);
832       case LookupIterator::DATA:
833         return it->GetDataValue();
834     }
835   }
836   return ReadAbsentProperty(it);
837 }
838 
839 
840 // static
GetProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Name> name,Handle<Object> receiver,bool * was_found)841 MaybeHandle<Object> JSProxy::GetProperty(Isolate* isolate,
842                                          Handle<JSProxy> proxy,
843                                          Handle<Name> name,
844                                          Handle<Object> receiver,
845                                          bool* was_found) {
846   *was_found = true;
847   if (receiver->IsJSGlobalObject()) {
848     THROW_NEW_ERROR(
849         isolate,
850         NewTypeError(MessageTemplate::kReadGlobalReferenceThroughProxy, name),
851         Object);
852   }
853 
854   DCHECK(!name->IsPrivate());
855   STACK_CHECK(isolate, MaybeHandle<Object>());
856   Handle<Name> trap_name = isolate->factory()->get_string();
857   // 1. Assert: IsPropertyKey(P) is true.
858   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
859   Handle<Object> handler(proxy->handler(), isolate);
860   // 3. If handler is null, throw a TypeError exception.
861   // 4. Assert: Type(handler) is Object.
862   if (proxy->IsRevoked()) {
863     THROW_NEW_ERROR(isolate,
864                     NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
865                     Object);
866   }
867   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
868   Handle<JSReceiver> target(proxy->target(), isolate);
869   // 6. Let trap be ? GetMethod(handler, "get").
870   Handle<Object> trap;
871   ASSIGN_RETURN_ON_EXCEPTION(
872       isolate, trap,
873       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Object);
874   // 7. If trap is undefined, then
875   if (trap->IsUndefined(isolate)) {
876     // 7.a Return target.[[Get]](P, Receiver).
877     LookupIterator it =
878         LookupIterator::PropertyOrElement(isolate, receiver, name, target);
879     MaybeHandle<Object> result = Object::GetProperty(&it);
880     *was_found = it.IsFound();
881     return result;
882   }
883   // 8. Let trapResult be ? Call(trap, handler, «target, P, Receiver»).
884   Handle<Object> trap_result;
885   Handle<Object> args[] = {target, name, receiver};
886   ASSIGN_RETURN_ON_EXCEPTION(
887       isolate, trap_result,
888       Execution::Call(isolate, trap, handler, arraysize(args), args), Object);
889   // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
890   PropertyDescriptor target_desc;
891   Maybe<bool> target_found =
892       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
893   MAYBE_RETURN_NULL(target_found);
894   // 10. If targetDesc is not undefined, then
895   if (target_found.FromJust()) {
896     // 10.a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is
897     //       false and targetDesc.[[Writable]] is false, then
898     // 10.a.i. If SameValue(trapResult, targetDesc.[[Value]]) is false,
899     //        throw a TypeError exception.
900     bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
901                         !target_desc.configurable() &&
902                         !target_desc.writable() &&
903                         !trap_result->SameValue(*target_desc.value());
904     if (inconsistent) {
905       THROW_NEW_ERROR(
906           isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableData,
907                                 name, target_desc.value(), trap_result),
908           Object);
909     }
910     // 10.b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]]
911     //       is false and targetDesc.[[Get]] is undefined, then
912     // 10.b.i. If trapResult is not undefined, throw a TypeError exception.
913     inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
914                    !target_desc.configurable() &&
915                    target_desc.get()->IsUndefined(isolate) &&
916                    !trap_result->IsUndefined(isolate);
917     if (inconsistent) {
918       THROW_NEW_ERROR(
919           isolate,
920           NewTypeError(MessageTemplate::kProxyGetNonConfigurableAccessor, name,
921                        trap_result),
922           Object);
923     }
924   }
925   // 11. Return trap_result
926   return trap_result;
927 }
928 
929 
GetDataProperty(LookupIterator * it)930 Handle<Object> JSReceiver::GetDataProperty(LookupIterator* it) {
931   for (; it->IsFound(); it->Next()) {
932     switch (it->state()) {
933       case LookupIterator::INTERCEPTOR:
934       case LookupIterator::NOT_FOUND:
935       case LookupIterator::TRANSITION:
936         UNREACHABLE();
937       case LookupIterator::ACCESS_CHECK:
938         // Support calling this method without an active context, but refuse
939         // access to access-checked objects in that case.
940         if (it->isolate()->context() != nullptr && it->HasAccess()) continue;
941       // Fall through.
942       case LookupIterator::JSPROXY:
943         it->NotFound();
944         return it->isolate()->factory()->undefined_value();
945       case LookupIterator::ACCESSOR:
946         // TODO(verwaest): For now this doesn't call into AccessorInfo, since
947         // clients don't need it. Update once relevant.
948         it->NotFound();
949         return it->isolate()->factory()->undefined_value();
950       case LookupIterator::INTEGER_INDEXED_EXOTIC:
951         return it->isolate()->factory()->undefined_value();
952       case LookupIterator::DATA:
953         return it->GetDataValue();
954     }
955   }
956   return it->isolate()->factory()->undefined_value();
957 }
958 
959 
ToInt32(int32_t * value)960 bool Object::ToInt32(int32_t* value) {
961   if (IsSmi()) {
962     *value = Smi::cast(this)->value();
963     return true;
964   }
965   if (IsHeapNumber()) {
966     double num = HeapNumber::cast(this)->value();
967     if (FastI2D(FastD2I(num)) == num) {
968       *value = FastD2I(num);
969       return true;
970     }
971   }
972   return false;
973 }
974 
GetOrCreateSharedFunctionInfo(Isolate * isolate,Handle<FunctionTemplateInfo> info)975 Handle<SharedFunctionInfo> FunctionTemplateInfo::GetOrCreateSharedFunctionInfo(
976     Isolate* isolate, Handle<FunctionTemplateInfo> info) {
977   Object* current_info = info->shared_function_info();
978   if (current_info->IsSharedFunctionInfo()) {
979     return handle(SharedFunctionInfo::cast(current_info), isolate);
980   }
981 
982   Handle<Object> class_name(info->class_name(), isolate);
983   Handle<String> name = class_name->IsString()
984                             ? Handle<String>::cast(class_name)
985                             : isolate->factory()->empty_string();
986   Handle<Code> code;
987   if (info->call_code()->IsCallHandlerInfo() &&
988       CallHandlerInfo::cast(info->call_code())->fast_handler()->IsCode()) {
989     code = isolate->builtins()->HandleFastApiCall();
990   } else {
991     code = isolate->builtins()->HandleApiCall();
992   }
993   bool is_constructor = !info->remove_prototype();
994   Handle<SharedFunctionInfo> result =
995       isolate->factory()->NewSharedFunctionInfo(name, code, is_constructor);
996   if (is_constructor) {
997     result->set_construct_stub(*isolate->builtins()->JSConstructStubApi());
998   }
999 
1000   result->set_length(info->length());
1001   if (class_name->IsString()) result->set_instance_class_name(*class_name);
1002   result->set_api_func_data(*info);
1003   result->DontAdaptArguments();
1004   DCHECK(result->IsApiFunction());
1005 
1006   info->set_shared_function_info(*result);
1007   return result;
1008 }
1009 
IsTemplateFor(Map * map)1010 bool FunctionTemplateInfo::IsTemplateFor(Map* map) {
1011   // There is a constraint on the object; check.
1012   if (!map->IsJSObjectMap()) return false;
1013   // Fetch the constructor function of the object.
1014   Object* cons_obj = map->GetConstructor();
1015   if (!cons_obj->IsJSFunction()) return false;
1016   JSFunction* fun = JSFunction::cast(cons_obj);
1017   // Iterate through the chain of inheriting function templates to
1018   // see if the required one occurs.
1019   for (Object* type = fun->shared()->function_data();
1020        type->IsFunctionTemplateInfo();
1021        type = FunctionTemplateInfo::cast(type)->parent_template()) {
1022     if (type == this) return true;
1023   }
1024   // Didn't find the required type in the inheritance chain.
1025   return false;
1026 }
1027 
1028 
1029 // static
New(Handle<JSFunction> constructor,Handle<JSReceiver> new_target,Handle<AllocationSite> site)1030 MaybeHandle<JSObject> JSObject::New(Handle<JSFunction> constructor,
1031                                     Handle<JSReceiver> new_target,
1032                                     Handle<AllocationSite> site) {
1033   // If called through new, new.target can be:
1034   // - a subclass of constructor,
1035   // - a proxy wrapper around constructor, or
1036   // - the constructor itself.
1037   // If called through Reflect.construct, it's guaranteed to be a constructor.
1038   Isolate* const isolate = constructor->GetIsolate();
1039   DCHECK(constructor->IsConstructor());
1040   DCHECK(new_target->IsConstructor());
1041   DCHECK(!constructor->has_initial_map() ||
1042          constructor->initial_map()->instance_type() != JS_FUNCTION_TYPE);
1043 
1044   Handle<Map> initial_map;
1045   ASSIGN_RETURN_ON_EXCEPTION(
1046       isolate, initial_map,
1047       JSFunction::GetDerivedMap(isolate, constructor, new_target), JSObject);
1048   Handle<JSObject> result =
1049       isolate->factory()->NewJSObjectFromMap(initial_map, NOT_TENURED, site);
1050   isolate->counters()->constructed_objects()->Increment();
1051   isolate->counters()->constructed_objects_runtime()->Increment();
1052   return result;
1053 }
1054 
EnsureWritableFastElements(Handle<JSObject> object)1055 void JSObject::EnsureWritableFastElements(Handle<JSObject> object) {
1056   DCHECK(object->HasFastSmiOrObjectElements() ||
1057          object->HasFastStringWrapperElements());
1058   FixedArray* raw_elems = FixedArray::cast(object->elements());
1059   Heap* heap = object->GetHeap();
1060   if (raw_elems->map() != heap->fixed_cow_array_map()) return;
1061   Isolate* isolate = heap->isolate();
1062   Handle<FixedArray> elems(raw_elems, isolate);
1063   Handle<FixedArray> writable_elems = isolate->factory()->CopyFixedArrayWithMap(
1064       elems, isolate->factory()->fixed_array_map());
1065   object->set_elements(*writable_elems);
1066   isolate->counters()->cow_arrays_converted()->Increment();
1067 }
1068 
1069 
1070 // ES6 9.5.1
1071 // static
GetPrototype(Handle<JSProxy> proxy)1072 MaybeHandle<Object> JSProxy::GetPrototype(Handle<JSProxy> proxy) {
1073   Isolate* isolate = proxy->GetIsolate();
1074   Handle<String> trap_name = isolate->factory()->getPrototypeOf_string();
1075 
1076   STACK_CHECK(isolate, MaybeHandle<Object>());
1077 
1078   // 1. Let handler be the value of the [[ProxyHandler]] internal slot.
1079   // 2. If handler is null, throw a TypeError exception.
1080   // 3. Assert: Type(handler) is Object.
1081   // 4. Let target be the value of the [[ProxyTarget]] internal slot.
1082   if (proxy->IsRevoked()) {
1083     THROW_NEW_ERROR(isolate,
1084                     NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
1085                     Object);
1086   }
1087   Handle<JSReceiver> target(proxy->target(), isolate);
1088   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
1089 
1090   // 5. Let trap be ? GetMethod(handler, "getPrototypeOf").
1091   Handle<Object> trap;
1092   ASSIGN_RETURN_ON_EXCEPTION(isolate, trap, GetMethod(handler, trap_name),
1093                              Object);
1094   // 6. If trap is undefined, then return target.[[GetPrototypeOf]]().
1095   if (trap->IsUndefined(isolate)) {
1096     return JSReceiver::GetPrototype(isolate, target);
1097   }
1098   // 7. Let handlerProto be ? Call(trap, handler, «target»).
1099   Handle<Object> argv[] = {target};
1100   Handle<Object> handler_proto;
1101   ASSIGN_RETURN_ON_EXCEPTION(
1102       isolate, handler_proto,
1103       Execution::Call(isolate, trap, handler, arraysize(argv), argv), Object);
1104   // 8. If Type(handlerProto) is neither Object nor Null, throw a TypeError.
1105   if (!(handler_proto->IsJSReceiver() || handler_proto->IsNull(isolate))) {
1106     THROW_NEW_ERROR(isolate,
1107                     NewTypeError(MessageTemplate::kProxyGetPrototypeOfInvalid),
1108                     Object);
1109   }
1110   // 9. Let extensibleTarget be ? IsExtensible(target).
1111   Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
1112   MAYBE_RETURN_NULL(is_extensible);
1113   // 10. If extensibleTarget is true, return handlerProto.
1114   if (is_extensible.FromJust()) return handler_proto;
1115   // 11. Let targetProto be ? target.[[GetPrototypeOf]]().
1116   Handle<Object> target_proto;
1117   ASSIGN_RETURN_ON_EXCEPTION(isolate, target_proto,
1118                              JSReceiver::GetPrototype(isolate, target), Object);
1119   // 12. If SameValue(handlerProto, targetProto) is false, throw a TypeError.
1120   if (!handler_proto->SameValue(*target_proto)) {
1121     THROW_NEW_ERROR(
1122         isolate,
1123         NewTypeError(MessageTemplate::kProxyGetPrototypeOfNonExtensible),
1124         Object);
1125   }
1126   // 13. Return handlerProto.
1127   return handler_proto;
1128 }
1129 
GetPropertyWithAccessor(LookupIterator * it)1130 MaybeHandle<Object> Object::GetPropertyWithAccessor(LookupIterator* it) {
1131   Isolate* isolate = it->isolate();
1132   Handle<Object> structure = it->GetAccessors();
1133   Handle<Object> receiver = it->GetReceiver();
1134 
1135   // We should never get here to initialize a const with the hole value since a
1136   // const declaration would conflict with the getter.
1137   DCHECK(!structure->IsForeign());
1138 
1139   // API style callbacks.
1140   if (structure->IsAccessorInfo()) {
1141     Handle<JSObject> holder = it->GetHolder<JSObject>();
1142     Handle<Name> name = it->GetName();
1143     Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure);
1144     if (!info->IsCompatibleReceiver(*receiver)) {
1145       THROW_NEW_ERROR(isolate,
1146                       NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
1147                                    name, receiver),
1148                       Object);
1149     }
1150 
1151     v8::AccessorNameGetterCallback call_fun =
1152         v8::ToCData<v8::AccessorNameGetterCallback>(info->getter());
1153     if (call_fun == nullptr) return isolate->factory()->undefined_value();
1154 
1155     if (info->is_sloppy() && !receiver->IsJSReceiver()) {
1156       ASSIGN_RETURN_ON_EXCEPTION(isolate, receiver,
1157                                  Object::ConvertReceiver(isolate, receiver),
1158                                  Object);
1159     }
1160 
1161     PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder,
1162                                    Object::DONT_THROW);
1163     Handle<Object> result = args.Call(call_fun, name);
1164     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1165     if (result.is_null()) return ReadAbsentProperty(isolate, receiver, name);
1166     // Rebox handle before return.
1167     return handle(*result, isolate);
1168   }
1169 
1170   // Regular accessor.
1171   Handle<Object> getter(AccessorPair::cast(*structure)->getter(), isolate);
1172   if (getter->IsFunctionTemplateInfo()) {
1173     return Builtins::InvokeApiFunction(
1174         isolate, Handle<FunctionTemplateInfo>::cast(getter), receiver, 0,
1175         nullptr);
1176   } else if (getter->IsCallable()) {
1177     // TODO(rossberg): nicer would be to cast to some JSCallable here...
1178     return Object::GetPropertyWithDefinedGetter(
1179         receiver, Handle<JSReceiver>::cast(getter));
1180   }
1181   // Getter is not a function.
1182   return ReadAbsentProperty(isolate, receiver, it->GetName());
1183 }
1184 
1185 // static
redirect(Isolate * isolate,Address address,AccessorComponent component)1186 Address AccessorInfo::redirect(Isolate* isolate, Address address,
1187                                AccessorComponent component) {
1188   ApiFunction fun(address);
1189   DCHECK_EQ(ACCESSOR_GETTER, component);
1190   ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL;
1191   return ExternalReference(&fun, type, isolate).address();
1192 }
1193 
redirected_getter() const1194 Address AccessorInfo::redirected_getter() const {
1195   Address accessor = v8::ToCData<Address>(getter());
1196   if (accessor == nullptr) return nullptr;
1197   return redirect(GetIsolate(), accessor, ACCESSOR_GETTER);
1198 }
1199 
IsCompatibleReceiverMap(Isolate * isolate,Handle<AccessorInfo> info,Handle<Map> map)1200 bool AccessorInfo::IsCompatibleReceiverMap(Isolate* isolate,
1201                                            Handle<AccessorInfo> info,
1202                                            Handle<Map> map) {
1203   if (!info->HasExpectedReceiverType()) return true;
1204   if (!map->IsJSObjectMap()) return false;
1205   return FunctionTemplateInfo::cast(info->expected_receiver_type())
1206       ->IsTemplateFor(*map);
1207 }
1208 
SetPropertyWithAccessor(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)1209 Maybe<bool> Object::SetPropertyWithAccessor(LookupIterator* it,
1210                                             Handle<Object> value,
1211                                             ShouldThrow should_throw) {
1212   Isolate* isolate = it->isolate();
1213   Handle<Object> structure = it->GetAccessors();
1214   Handle<Object> receiver = it->GetReceiver();
1215 
1216   // We should never get here to initialize a const with the hole value since a
1217   // const declaration would conflict with the setter.
1218   DCHECK(!structure->IsForeign());
1219 
1220   // API style callbacks.
1221   if (structure->IsAccessorInfo()) {
1222     Handle<JSObject> holder = it->GetHolder<JSObject>();
1223     Handle<Name> name = it->GetName();
1224     Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure);
1225     if (!info->IsCompatibleReceiver(*receiver)) {
1226       isolate->Throw(*isolate->factory()->NewTypeError(
1227           MessageTemplate::kIncompatibleMethodReceiver, name, receiver));
1228       return Nothing<bool>();
1229     }
1230 
1231     v8::AccessorNameSetterCallback call_fun =
1232         v8::ToCData<v8::AccessorNameSetterCallback>(info->setter());
1233     // TODO(verwaest): We should not get here anymore once all AccessorInfos are
1234     // marked as special_data_property. They cannot both be writable and not
1235     // have a setter.
1236     if (call_fun == nullptr) return Just(true);
1237 
1238     if (info->is_sloppy() && !receiver->IsJSReceiver()) {
1239       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
1240           isolate, receiver, Object::ConvertReceiver(isolate, receiver),
1241           Nothing<bool>());
1242     }
1243 
1244     PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder,
1245                                    should_throw);
1246     args.Call(call_fun, name, value);
1247     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
1248     return Just(true);
1249   }
1250 
1251   // Regular accessor.
1252   Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate);
1253   if (setter->IsFunctionTemplateInfo()) {
1254     Handle<Object> argv[] = {value};
1255     RETURN_ON_EXCEPTION_VALUE(
1256         isolate, Builtins::InvokeApiFunction(
1257                      isolate, Handle<FunctionTemplateInfo>::cast(setter),
1258                      receiver, arraysize(argv), argv),
1259         Nothing<bool>());
1260     return Just(true);
1261   } else if (setter->IsCallable()) {
1262     // TODO(rossberg): nicer would be to cast to some JSCallable here...
1263     return SetPropertyWithDefinedSetter(
1264         receiver, Handle<JSReceiver>::cast(setter), value, should_throw);
1265   }
1266 
1267   RETURN_FAILURE(isolate, should_throw,
1268                  NewTypeError(MessageTemplate::kNoSetterInCallback,
1269                               it->GetName(), it->GetHolder<JSObject>()));
1270 }
1271 
1272 
GetPropertyWithDefinedGetter(Handle<Object> receiver,Handle<JSReceiver> getter)1273 MaybeHandle<Object> Object::GetPropertyWithDefinedGetter(
1274     Handle<Object> receiver,
1275     Handle<JSReceiver> getter) {
1276   Isolate* isolate = getter->GetIsolate();
1277 
1278   // Platforms with simulators like arm/arm64 expose a funny issue. If the
1279   // simulator has a separate JS stack pointer from the C++ stack pointer, it
1280   // can miss C++ stack overflows in the stack guard at the start of JavaScript
1281   // functions. It would be very expensive to check the C++ stack pointer at
1282   // that location. The best solution seems to be to break the impasse by
1283   // adding checks at possible recursion points. What's more, we don't put
1284   // this stack check behind the USE_SIMULATOR define in order to keep
1285   // behavior the same between hardware and simulators.
1286   StackLimitCheck check(isolate);
1287   if (check.JsHasOverflowed()) {
1288     isolate->StackOverflow();
1289     return MaybeHandle<Object>();
1290   }
1291 
1292   return Execution::Call(isolate, getter, receiver, 0, NULL);
1293 }
1294 
1295 
SetPropertyWithDefinedSetter(Handle<Object> receiver,Handle<JSReceiver> setter,Handle<Object> value,ShouldThrow should_throw)1296 Maybe<bool> Object::SetPropertyWithDefinedSetter(Handle<Object> receiver,
1297                                                  Handle<JSReceiver> setter,
1298                                                  Handle<Object> value,
1299                                                  ShouldThrow should_throw) {
1300   Isolate* isolate = setter->GetIsolate();
1301 
1302   Handle<Object> argv[] = { value };
1303   RETURN_ON_EXCEPTION_VALUE(isolate, Execution::Call(isolate, setter, receiver,
1304                                                      arraysize(argv), argv),
1305                             Nothing<bool>());
1306   return Just(true);
1307 }
1308 
1309 
1310 // static
AllCanRead(LookupIterator * it)1311 bool JSObject::AllCanRead(LookupIterator* it) {
1312   // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of
1313   // which have already been checked.
1314   DCHECK(it->state() == LookupIterator::ACCESS_CHECK ||
1315          it->state() == LookupIterator::INTERCEPTOR);
1316   for (it->Next(); it->IsFound(); it->Next()) {
1317     if (it->state() == LookupIterator::ACCESSOR) {
1318       auto accessors = it->GetAccessors();
1319       if (accessors->IsAccessorInfo()) {
1320         if (AccessorInfo::cast(*accessors)->all_can_read()) return true;
1321       }
1322     } else if (it->state() == LookupIterator::INTERCEPTOR) {
1323       if (it->GetInterceptor()->all_can_read()) return true;
1324     } else if (it->state() == LookupIterator::JSPROXY) {
1325       // Stop lookupiterating. And no, AllCanNotRead.
1326       return false;
1327     }
1328   }
1329   return false;
1330 }
1331 
1332 namespace {
1333 
GetPropertyWithInterceptorInternal(LookupIterator * it,Handle<InterceptorInfo> interceptor,bool * done)1334 MaybeHandle<Object> GetPropertyWithInterceptorInternal(
1335     LookupIterator* it, Handle<InterceptorInfo> interceptor, bool* done) {
1336   *done = false;
1337   Isolate* isolate = it->isolate();
1338   // Make sure that the top context does not change when doing callbacks or
1339   // interceptor calls.
1340   AssertNoContextChange ncc(isolate);
1341 
1342   if (interceptor->getter()->IsUndefined(isolate)) {
1343     return isolate->factory()->undefined_value();
1344   }
1345 
1346   Handle<JSObject> holder = it->GetHolder<JSObject>();
1347   Handle<Object> result;
1348   Handle<Object> receiver = it->GetReceiver();
1349   if (!receiver->IsJSReceiver()) {
1350     ASSIGN_RETURN_ON_EXCEPTION(
1351         isolate, receiver, Object::ConvertReceiver(isolate, receiver), Object);
1352   }
1353   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
1354                                  *holder, Object::DONT_THROW);
1355 
1356   if (it->IsElement()) {
1357     uint32_t index = it->index();
1358     v8::IndexedPropertyGetterCallback getter =
1359         v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
1360     result = args.Call(getter, index);
1361   } else {
1362     Handle<Name> name = it->name();
1363     DCHECK(!name->IsPrivate());
1364 
1365     if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
1366       return isolate->factory()->undefined_value();
1367     }
1368 
1369     v8::GenericNamedPropertyGetterCallback getter =
1370         v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
1371             interceptor->getter());
1372     result = args.Call(getter, name);
1373   }
1374 
1375   RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1376   if (result.is_null()) return isolate->factory()->undefined_value();
1377   *done = true;
1378   // Rebox handle before return
1379   return handle(*result, isolate);
1380 }
1381 
GetPropertyAttributesWithInterceptorInternal(LookupIterator * it,Handle<InterceptorInfo> interceptor)1382 Maybe<PropertyAttributes> GetPropertyAttributesWithInterceptorInternal(
1383     LookupIterator* it, Handle<InterceptorInfo> interceptor) {
1384   Isolate* isolate = it->isolate();
1385   // Make sure that the top context does not change when doing
1386   // callbacks or interceptor calls.
1387   AssertNoContextChange ncc(isolate);
1388   HandleScope scope(isolate);
1389 
1390   Handle<JSObject> holder = it->GetHolder<JSObject>();
1391   if (!it->IsElement() && it->name()->IsSymbol() &&
1392       !interceptor->can_intercept_symbols()) {
1393     return Just(ABSENT);
1394   }
1395   Handle<Object> receiver = it->GetReceiver();
1396   if (!receiver->IsJSReceiver()) {
1397     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
1398                                      Object::ConvertReceiver(isolate, receiver),
1399                                      Nothing<PropertyAttributes>());
1400   }
1401   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
1402                                  *holder, Object::DONT_THROW);
1403   if (!interceptor->query()->IsUndefined(isolate)) {
1404     Handle<Object> result;
1405     if (it->IsElement()) {
1406       uint32_t index = it->index();
1407       v8::IndexedPropertyQueryCallback query =
1408           v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query());
1409       result = args.Call(query, index);
1410     } else {
1411       Handle<Name> name = it->name();
1412       DCHECK(!name->IsPrivate());
1413       v8::GenericNamedPropertyQueryCallback query =
1414           v8::ToCData<v8::GenericNamedPropertyQueryCallback>(
1415               interceptor->query());
1416       result = args.Call(query, name);
1417     }
1418     if (!result.is_null()) {
1419       int32_t value;
1420       CHECK(result->ToInt32(&value));
1421       return Just(static_cast<PropertyAttributes>(value));
1422     }
1423   } else if (!interceptor->getter()->IsUndefined(isolate)) {
1424     // TODO(verwaest): Use GetPropertyWithInterceptor?
1425     Handle<Object> result;
1426     if (it->IsElement()) {
1427       uint32_t index = it->index();
1428       v8::IndexedPropertyGetterCallback getter =
1429           v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
1430       result = args.Call(getter, index);
1431     } else {
1432       Handle<Name> name = it->name();
1433       DCHECK(!name->IsPrivate());
1434       v8::GenericNamedPropertyGetterCallback getter =
1435           v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
1436               interceptor->getter());
1437       result = args.Call(getter, name);
1438     }
1439     if (!result.is_null()) return Just(DONT_ENUM);
1440   }
1441 
1442   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
1443   return Just(ABSENT);
1444 }
1445 
SetPropertyWithInterceptorInternal(LookupIterator * it,Handle<InterceptorInfo> interceptor,Object::ShouldThrow should_throw,Handle<Object> value)1446 Maybe<bool> SetPropertyWithInterceptorInternal(
1447     LookupIterator* it, Handle<InterceptorInfo> interceptor,
1448     Object::ShouldThrow should_throw, Handle<Object> value) {
1449   Isolate* isolate = it->isolate();
1450   // Make sure that the top context does not change when doing callbacks or
1451   // interceptor calls.
1452   AssertNoContextChange ncc(isolate);
1453 
1454   if (interceptor->setter()->IsUndefined(isolate)) return Just(false);
1455 
1456   Handle<JSObject> holder = it->GetHolder<JSObject>();
1457   bool result;
1458   Handle<Object> receiver = it->GetReceiver();
1459   if (!receiver->IsJSReceiver()) {
1460     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
1461                                      Object::ConvertReceiver(isolate, receiver),
1462                                      Nothing<bool>());
1463   }
1464   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
1465                                  *holder, should_throw);
1466 
1467   if (it->IsElement()) {
1468     uint32_t index = it->index();
1469     v8::IndexedPropertySetterCallback setter =
1470         v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter());
1471     // TODO(neis): In the future, we may want to actually return the
1472     // interceptor's result, which then should be a boolean.
1473     result = !args.Call(setter, index, value).is_null();
1474   } else {
1475     Handle<Name> name = it->name();
1476     DCHECK(!name->IsPrivate());
1477 
1478     if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
1479       return Just(false);
1480     }
1481 
1482     v8::GenericNamedPropertySetterCallback setter =
1483         v8::ToCData<v8::GenericNamedPropertySetterCallback>(
1484             interceptor->setter());
1485     result = !args.Call(setter, name, value).is_null();
1486   }
1487 
1488   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
1489   return Just(result);
1490 }
1491 
1492 }  // namespace
1493 
GetPropertyWithFailedAccessCheck(LookupIterator * it)1494 MaybeHandle<Object> JSObject::GetPropertyWithFailedAccessCheck(
1495     LookupIterator* it) {
1496   Isolate* isolate = it->isolate();
1497   Handle<JSObject> checked = it->GetHolder<JSObject>();
1498   Handle<InterceptorInfo> interceptor =
1499       it->GetInterceptorForFailedAccessCheck();
1500   if (interceptor.is_null()) {
1501     while (AllCanRead(it)) {
1502       if (it->state() == LookupIterator::ACCESSOR) {
1503         return GetPropertyWithAccessor(it);
1504       }
1505       DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
1506       bool done;
1507       Handle<Object> result;
1508       ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
1509                                  GetPropertyWithInterceptor(it, &done), Object);
1510       if (done) return result;
1511     }
1512   } else {
1513     MaybeHandle<Object> result;
1514     bool done;
1515     result = GetPropertyWithInterceptorInternal(it, interceptor, &done);
1516     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1517     if (done) return result;
1518   }
1519 
1520   // Cross-Origin [[Get]] of Well-Known Symbols does not throw, and returns
1521   // undefined.
1522   Handle<Name> name = it->GetName();
1523   if (name->IsSymbol() && Symbol::cast(*name)->is_well_known_symbol()) {
1524     return it->factory()->undefined_value();
1525   }
1526 
1527   isolate->ReportFailedAccessCheck(checked);
1528   RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1529   return it->factory()->undefined_value();
1530 }
1531 
1532 
GetPropertyAttributesWithFailedAccessCheck(LookupIterator * it)1533 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithFailedAccessCheck(
1534     LookupIterator* it) {
1535   Isolate* isolate = it->isolate();
1536   Handle<JSObject> checked = it->GetHolder<JSObject>();
1537   Handle<InterceptorInfo> interceptor =
1538       it->GetInterceptorForFailedAccessCheck();
1539   if (interceptor.is_null()) {
1540     while (AllCanRead(it)) {
1541       if (it->state() == LookupIterator::ACCESSOR) {
1542         return Just(it->property_attributes());
1543       }
1544       DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
1545       auto result = GetPropertyAttributesWithInterceptor(it);
1546       if (isolate->has_scheduled_exception()) break;
1547       if (result.IsJust() && result.FromJust() != ABSENT) return result;
1548     }
1549   } else {
1550     Maybe<PropertyAttributes> result =
1551         GetPropertyAttributesWithInterceptorInternal(it, interceptor);
1552     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
1553     if (result.FromMaybe(ABSENT) != ABSENT) return result;
1554   }
1555   isolate->ReportFailedAccessCheck(checked);
1556   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
1557   return Just(ABSENT);
1558 }
1559 
1560 
1561 // static
AllCanWrite(LookupIterator * it)1562 bool JSObject::AllCanWrite(LookupIterator* it) {
1563   for (; it->IsFound() && it->state() != LookupIterator::JSPROXY; it->Next()) {
1564     if (it->state() == LookupIterator::ACCESSOR) {
1565       Handle<Object> accessors = it->GetAccessors();
1566       if (accessors->IsAccessorInfo()) {
1567         if (AccessorInfo::cast(*accessors)->all_can_write()) return true;
1568       }
1569     }
1570   }
1571   return false;
1572 }
1573 
1574 
SetPropertyWithFailedAccessCheck(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)1575 Maybe<bool> JSObject::SetPropertyWithFailedAccessCheck(
1576     LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) {
1577   Isolate* isolate = it->isolate();
1578   Handle<JSObject> checked = it->GetHolder<JSObject>();
1579   Handle<InterceptorInfo> interceptor =
1580       it->GetInterceptorForFailedAccessCheck();
1581   if (interceptor.is_null()) {
1582     if (AllCanWrite(it)) {
1583       return SetPropertyWithAccessor(it, value, should_throw);
1584     }
1585   } else {
1586     Maybe<bool> result = SetPropertyWithInterceptorInternal(
1587         it, interceptor, should_throw, value);
1588     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
1589     if (result.IsJust()) return result;
1590   }
1591 
1592   isolate->ReportFailedAccessCheck(checked);
1593   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
1594   return Just(true);
1595 }
1596 
1597 
SetNormalizedProperty(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyDetails details)1598 void JSObject::SetNormalizedProperty(Handle<JSObject> object,
1599                                      Handle<Name> name,
1600                                      Handle<Object> value,
1601                                      PropertyDetails details) {
1602   DCHECK(!object->HasFastProperties());
1603   if (!name->IsUniqueName()) {
1604     name = object->GetIsolate()->factory()->InternalizeString(
1605         Handle<String>::cast(name));
1606   }
1607 
1608   if (object->IsJSGlobalObject()) {
1609     Handle<GlobalDictionary> property_dictionary(object->global_dictionary());
1610 
1611     int entry = property_dictionary->FindEntry(name);
1612     if (entry == GlobalDictionary::kNotFound) {
1613       Isolate* isolate = object->GetIsolate();
1614       auto cell = isolate->factory()->NewPropertyCell();
1615       cell->set_value(*value);
1616       auto cell_type = value->IsUndefined(isolate)
1617                            ? PropertyCellType::kUndefined
1618                            : PropertyCellType::kConstant;
1619       details = details.set_cell_type(cell_type);
1620       value = cell;
1621       property_dictionary =
1622           GlobalDictionary::Add(property_dictionary, name, value, details);
1623       object->set_properties(*property_dictionary);
1624     } else {
1625       PropertyCell::UpdateCell(property_dictionary, entry, value, details);
1626     }
1627   } else {
1628     Handle<NameDictionary> property_dictionary(object->property_dictionary());
1629 
1630     int entry = property_dictionary->FindEntry(name);
1631     if (entry == NameDictionary::kNotFound) {
1632       property_dictionary =
1633           NameDictionary::Add(property_dictionary, name, value, details);
1634       object->set_properties(*property_dictionary);
1635     } else {
1636       PropertyDetails original_details = property_dictionary->DetailsAt(entry);
1637       int enumeration_index = original_details.dictionary_index();
1638       DCHECK(enumeration_index > 0);
1639       details = details.set_index(enumeration_index);
1640       property_dictionary->SetEntry(entry, name, value, details);
1641     }
1642   }
1643 }
1644 
1645 // static
HasInPrototypeChain(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> proto)1646 Maybe<bool> JSReceiver::HasInPrototypeChain(Isolate* isolate,
1647                                             Handle<JSReceiver> object,
1648                                             Handle<Object> proto) {
1649   PrototypeIterator iter(isolate, object, kStartAtReceiver);
1650   while (true) {
1651     if (!iter.AdvanceFollowingProxies()) return Nothing<bool>();
1652     if (iter.IsAtEnd()) return Just(false);
1653     if (PrototypeIterator::GetCurrent(iter).is_identical_to(proto)) {
1654       return Just(true);
1655     }
1656   }
1657 }
1658 
GetRootMap(Isolate * isolate)1659 Map* Object::GetRootMap(Isolate* isolate) {
1660   DisallowHeapAllocation no_alloc;
1661   if (IsSmi()) {
1662     Context* native_context = isolate->context()->native_context();
1663     return native_context->number_function()->initial_map();
1664   }
1665 
1666   // The object is either a number, a string, a symbol, a boolean, a SIMD value,
1667   // a real JS object, or a Harmony proxy.
1668   HeapObject* heap_object = HeapObject::cast(this);
1669   if (heap_object->IsJSReceiver()) {
1670     return heap_object->map();
1671   }
1672   int constructor_function_index =
1673       heap_object->map()->GetConstructorFunctionIndex();
1674   if (constructor_function_index != Map::kNoConstructorFunctionIndex) {
1675     Context* native_context = isolate->context()->native_context();
1676     JSFunction* constructor_function =
1677         JSFunction::cast(native_context->get(constructor_function_index));
1678     return constructor_function->initial_map();
1679   }
1680   return isolate->heap()->null_value()->map();
1681 }
1682 
1683 namespace {
1684 
1685 // Returns a non-SMI for JSObjects, but returns the hash code for simple
1686 // objects.  This avoids a double lookup in the cases where we know we will
1687 // add the hash to the JSObject if it does not already exist.
GetSimpleHash(Object * object)1688 Object* GetSimpleHash(Object* object) {
1689   // The object is either a Smi, a HeapNumber, a name, an odd-ball,
1690   // a SIMD value type, a real JS object, or a Harmony proxy.
1691   if (object->IsSmi()) {
1692     uint32_t hash =
1693         ComputeIntegerHash(Smi::cast(object)->value(), kZeroHashSeed);
1694     return Smi::FromInt(hash & Smi::kMaxValue);
1695   }
1696   if (object->IsHeapNumber()) {
1697     double num = HeapNumber::cast(object)->value();
1698     if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
1699     if (i::IsMinusZero(num)) num = 0;
1700     if (IsSmiDouble(num)) {
1701       return Smi::FromInt(FastD2I(num))->GetHash();
1702     }
1703     uint32_t hash = ComputeLongHash(double_to_uint64(num));
1704     return Smi::FromInt(hash & Smi::kMaxValue);
1705   }
1706   if (object->IsName()) {
1707     uint32_t hash = Name::cast(object)->Hash();
1708     return Smi::FromInt(hash);
1709   }
1710   if (object->IsOddball()) {
1711     uint32_t hash = Oddball::cast(object)->to_string()->Hash();
1712     return Smi::FromInt(hash);
1713   }
1714   if (object->IsSimd128Value()) {
1715     uint32_t hash = Simd128Value::cast(object)->Hash();
1716     return Smi::FromInt(hash & Smi::kMaxValue);
1717   }
1718   DCHECK(object->IsJSReceiver());
1719   // Simply return the receiver as it is guaranteed to not be a SMI.
1720   return object;
1721 }
1722 
1723 }  // namespace
1724 
GetHash()1725 Object* Object::GetHash() {
1726   Object* hash = GetSimpleHash(this);
1727   if (hash->IsSmi()) return hash;
1728 
1729   DisallowHeapAllocation no_gc;
1730   DCHECK(IsJSReceiver());
1731   JSReceiver* receiver = JSReceiver::cast(this);
1732   Isolate* isolate = receiver->GetIsolate();
1733   return JSReceiver::GetIdentityHash(isolate, handle(receiver, isolate));
1734 }
1735 
GetOrCreateHash(Isolate * isolate,Handle<Object> object)1736 Smi* Object::GetOrCreateHash(Isolate* isolate, Handle<Object> object) {
1737   Object* hash = GetSimpleHash(*object);
1738   if (hash->IsSmi()) return Smi::cast(hash);
1739 
1740   DCHECK(object->IsJSReceiver());
1741   return JSReceiver::GetOrCreateIdentityHash(isolate,
1742                                              Handle<JSReceiver>::cast(object));
1743 }
1744 
1745 
SameValue(Object * other)1746 bool Object::SameValue(Object* other) {
1747   if (other == this) return true;
1748 
1749   // The object is either a number, a name, an odd-ball,
1750   // a real JS object, or a Harmony proxy.
1751   if (IsNumber() && other->IsNumber()) {
1752     double this_value = Number();
1753     double other_value = other->Number();
1754     // SameValue(NaN, NaN) is true.
1755     if (this_value != other_value) {
1756       return std::isnan(this_value) && std::isnan(other_value);
1757     }
1758     // SameValue(0.0, -0.0) is false.
1759     return (std::signbit(this_value) == std::signbit(other_value));
1760   }
1761   if (IsString() && other->IsString()) {
1762     return String::cast(this)->Equals(String::cast(other));
1763   }
1764   if (IsFloat32x4() && other->IsFloat32x4()) {
1765     Float32x4* a = Float32x4::cast(this);
1766     Float32x4* b = Float32x4::cast(other);
1767     for (int i = 0; i < 4; i++) {
1768       float x = a->get_lane(i);
1769       float y = b->get_lane(i);
1770       // Implements the ES5 SameValue operation for floating point types.
1771       // http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue
1772       if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
1773       if (std::signbit(x) != std::signbit(y)) return false;
1774     }
1775     return true;
1776   } else if (IsSimd128Value() && other->IsSimd128Value()) {
1777     Simd128Value* a = Simd128Value::cast(this);
1778     Simd128Value* b = Simd128Value::cast(other);
1779     return a->map() == b->map() && a->BitwiseEquals(b);
1780   }
1781   return false;
1782 }
1783 
1784 
SameValueZero(Object * other)1785 bool Object::SameValueZero(Object* other) {
1786   if (other == this) return true;
1787 
1788   // The object is either a number, a name, an odd-ball,
1789   // a real JS object, or a Harmony proxy.
1790   if (IsNumber() && other->IsNumber()) {
1791     double this_value = Number();
1792     double other_value = other->Number();
1793     // +0 == -0 is true
1794     return this_value == other_value ||
1795            (std::isnan(this_value) && std::isnan(other_value));
1796   }
1797   if (IsString() && other->IsString()) {
1798     return String::cast(this)->Equals(String::cast(other));
1799   }
1800   if (IsFloat32x4() && other->IsFloat32x4()) {
1801     Float32x4* a = Float32x4::cast(this);
1802     Float32x4* b = Float32x4::cast(other);
1803     for (int i = 0; i < 4; i++) {
1804       float x = a->get_lane(i);
1805       float y = b->get_lane(i);
1806       // Implements the ES6 SameValueZero operation for floating point types.
1807       // http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
1808       if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
1809       // SameValueZero doesn't distinguish between 0 and -0.
1810     }
1811     return true;
1812   } else if (IsSimd128Value() && other->IsSimd128Value()) {
1813     Simd128Value* a = Simd128Value::cast(this);
1814     Simd128Value* b = Simd128Value::cast(other);
1815     return a->map() == b->map() && a->BitwiseEquals(b);
1816   }
1817   return false;
1818 }
1819 
1820 
ArraySpeciesConstructor(Isolate * isolate,Handle<Object> original_array)1821 MaybeHandle<Object> Object::ArraySpeciesConstructor(
1822     Isolate* isolate, Handle<Object> original_array) {
1823   Handle<Object> default_species = isolate->array_function();
1824   if (original_array->IsJSArray() &&
1825       Handle<JSArray>::cast(original_array)->HasArrayPrototype(isolate) &&
1826       isolate->IsArraySpeciesLookupChainIntact()) {
1827     return default_species;
1828   }
1829   Handle<Object> constructor = isolate->factory()->undefined_value();
1830   Maybe<bool> is_array = Object::IsArray(original_array);
1831   MAYBE_RETURN_NULL(is_array);
1832   if (is_array.FromJust()) {
1833     ASSIGN_RETURN_ON_EXCEPTION(
1834         isolate, constructor,
1835         Object::GetProperty(original_array,
1836                             isolate->factory()->constructor_string()),
1837         Object);
1838     if (constructor->IsConstructor()) {
1839       Handle<Context> constructor_context;
1840       ASSIGN_RETURN_ON_EXCEPTION(
1841           isolate, constructor_context,
1842           JSReceiver::GetFunctionRealm(Handle<JSReceiver>::cast(constructor)),
1843           Object);
1844       if (*constructor_context != *isolate->native_context() &&
1845           *constructor == constructor_context->array_function()) {
1846         constructor = isolate->factory()->undefined_value();
1847       }
1848     }
1849     if (constructor->IsJSReceiver()) {
1850       ASSIGN_RETURN_ON_EXCEPTION(
1851           isolate, constructor,
1852           JSReceiver::GetProperty(Handle<JSReceiver>::cast(constructor),
1853                                   isolate->factory()->species_symbol()),
1854           Object);
1855       if (constructor->IsNull(isolate)) {
1856         constructor = isolate->factory()->undefined_value();
1857       }
1858     }
1859   }
1860   if (constructor->IsUndefined(isolate)) {
1861     return default_species;
1862   } else {
1863     if (!constructor->IsConstructor()) {
1864       THROW_NEW_ERROR(isolate,
1865           NewTypeError(MessageTemplate::kSpeciesNotConstructor),
1866           Object);
1867     }
1868     return constructor;
1869   }
1870 }
1871 
1872 
ShortPrint(FILE * out)1873 void Object::ShortPrint(FILE* out) {
1874   OFStream os(out);
1875   os << Brief(this);
1876 }
1877 
1878 
ShortPrint(StringStream * accumulator)1879 void Object::ShortPrint(StringStream* accumulator) {
1880   std::ostringstream os;
1881   os << Brief(this);
1882   accumulator->Add(os.str().c_str());
1883 }
1884 
1885 
ShortPrint(std::ostream & os)1886 void Object::ShortPrint(std::ostream& os) { os << Brief(this); }
1887 
1888 
operator <<(std::ostream & os,const Brief & v)1889 std::ostream& operator<<(std::ostream& os, const Brief& v) {
1890   if (v.value->IsSmi()) {
1891     Smi::cast(v.value)->SmiPrint(os);
1892   } else {
1893     // TODO(svenpanne) Const-correct HeapObjectShortPrint!
1894     HeapObject* obj = const_cast<HeapObject*>(HeapObject::cast(v.value));
1895     obj->HeapObjectShortPrint(os);
1896   }
1897   return os;
1898 }
1899 
1900 
SmiPrint(std::ostream & os) const1901 void Smi::SmiPrint(std::ostream& os) const {  // NOLINT
1902   os << value();
1903 }
1904 
1905 
1906 // Should a word be prefixed by 'a' or 'an' in order to read naturally in
1907 // English?  Returns false for non-ASCII or words that don't start with
1908 // a capital letter.  The a/an rule follows pronunciation in English.
1909 // We don't use the BBC's overcorrect "an historic occasion" though if
1910 // you speak a dialect you may well say "an 'istoric occasion".
AnWord(String * str)1911 static bool AnWord(String* str) {
1912   if (str->length() == 0) return false;  // A nothing.
1913   int c0 = str->Get(0);
1914   int c1 = str->length() > 1 ? str->Get(1) : 0;
1915   if (c0 == 'U') {
1916     if (c1 > 'Z') {
1917       return true;  // An Umpire, but a UTF8String, a U.
1918     }
1919   } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
1920     return true;    // An Ape, an ABCBook.
1921   } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
1922            (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
1923             c0 == 'S' || c0 == 'X')) {
1924     return true;    // An MP3File, an M.
1925   }
1926   return false;
1927 }
1928 
1929 
SlowFlatten(Handle<ConsString> cons,PretenureFlag pretenure)1930 Handle<String> String::SlowFlatten(Handle<ConsString> cons,
1931                                    PretenureFlag pretenure) {
1932   DCHECK(AllowHeapAllocation::IsAllowed());
1933   DCHECK(cons->second()->length() != 0);
1934   Isolate* isolate = cons->GetIsolate();
1935   int length = cons->length();
1936   PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure
1937                                                             : TENURED;
1938   Handle<SeqString> result;
1939   if (cons->IsOneByteRepresentation()) {
1940     Handle<SeqOneByteString> flat = isolate->factory()->NewRawOneByteString(
1941         length, tenure).ToHandleChecked();
1942     DisallowHeapAllocation no_gc;
1943     WriteToFlat(*cons, flat->GetChars(), 0, length);
1944     result = flat;
1945   } else {
1946     Handle<SeqTwoByteString> flat = isolate->factory()->NewRawTwoByteString(
1947         length, tenure).ToHandleChecked();
1948     DisallowHeapAllocation no_gc;
1949     WriteToFlat(*cons, flat->GetChars(), 0, length);
1950     result = flat;
1951   }
1952   cons->set_first(*result);
1953   cons->set_second(isolate->heap()->empty_string());
1954   DCHECK(result->IsFlat());
1955   return result;
1956 }
1957 
1958 
1959 
MakeExternal(v8::String::ExternalStringResource * resource)1960 bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
1961   // Externalizing twice leaks the external resource, so it's
1962   // prohibited by the API.
1963   DCHECK(!this->IsExternalString());
1964   DCHECK(!resource->IsCompressible());
1965 #ifdef ENABLE_SLOW_DCHECKS
1966   if (FLAG_enable_slow_asserts) {
1967     // Assert that the resource and the string are equivalent.
1968     DCHECK(static_cast<size_t>(this->length()) == resource->length());
1969     ScopedVector<uc16> smart_chars(this->length());
1970     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
1971     DCHECK(memcmp(smart_chars.start(),
1972                   resource->data(),
1973                   resource->length() * sizeof(smart_chars[0])) == 0);
1974   }
1975 #endif  // DEBUG
1976   int size = this->Size();  // Byte size of the original string.
1977   // Abort if size does not allow in-place conversion.
1978   if (size < ExternalString::kShortSize) return false;
1979   Heap* heap = GetHeap();
1980   bool is_one_byte = this->IsOneByteRepresentation();
1981   bool is_internalized = this->IsInternalizedString();
1982 
1983   // Morph the string to an external string by replacing the map and
1984   // reinitializing the fields.  This won't work if the space the existing
1985   // string occupies is too small for a regular  external string.
1986   // Instead, we resort to a short external string instead, omitting
1987   // the field caching the address of the backing store.  When we encounter
1988   // short external strings in generated code, we need to bailout to runtime.
1989   Map* new_map;
1990   if (size < ExternalString::kSize) {
1991     new_map = is_internalized
1992         ? (is_one_byte
1993            ? heap->short_external_internalized_string_with_one_byte_data_map()
1994            : heap->short_external_internalized_string_map())
1995         : (is_one_byte ? heap->short_external_string_with_one_byte_data_map()
1996                        : heap->short_external_string_map());
1997   } else {
1998     new_map = is_internalized
1999         ? (is_one_byte
2000            ? heap->external_internalized_string_with_one_byte_data_map()
2001            : heap->external_internalized_string_map())
2002         : (is_one_byte ? heap->external_string_with_one_byte_data_map()
2003                        : heap->external_string_map());
2004   }
2005 
2006   // Byte size of the external String object.
2007   int new_size = this->SizeFromMap(new_map);
2008   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size,
2009                              ClearRecordedSlots::kNo);
2010 
2011   // We are storing the new map using release store after creating a filler for
2012   // the left-over space to avoid races with the sweeper thread.
2013   this->synchronized_set_map(new_map);
2014 
2015   ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
2016   self->set_resource(resource);
2017   if (is_internalized) self->Hash();  // Force regeneration of the hash value.
2018 
2019   heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
2020   return true;
2021 }
2022 
2023 
MakeExternal(v8::String::ExternalOneByteStringResource * resource)2024 bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) {
2025   // Externalizing twice leaks the external resource, so it's
2026   // prohibited by the API.
2027   DCHECK(!this->IsExternalString());
2028   DCHECK(!resource->IsCompressible());
2029 #ifdef ENABLE_SLOW_DCHECKS
2030   if (FLAG_enable_slow_asserts) {
2031     // Assert that the resource and the string are equivalent.
2032     DCHECK(static_cast<size_t>(this->length()) == resource->length());
2033     if (this->IsTwoByteRepresentation()) {
2034       ScopedVector<uint16_t> smart_chars(this->length());
2035       String::WriteToFlat(this, smart_chars.start(), 0, this->length());
2036       DCHECK(String::IsOneByte(smart_chars.start(), this->length()));
2037     }
2038     ScopedVector<char> smart_chars(this->length());
2039     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
2040     DCHECK(memcmp(smart_chars.start(),
2041                   resource->data(),
2042                   resource->length() * sizeof(smart_chars[0])) == 0);
2043   }
2044 #endif  // DEBUG
2045   int size = this->Size();  // Byte size of the original string.
2046   // Abort if size does not allow in-place conversion.
2047   if (size < ExternalString::kShortSize) return false;
2048   Heap* heap = GetHeap();
2049   bool is_internalized = this->IsInternalizedString();
2050 
2051   // Morph the string to an external string by replacing the map and
2052   // reinitializing the fields.  This won't work if the space the existing
2053   // string occupies is too small for a regular  external string.
2054   // Instead, we resort to a short external string instead, omitting
2055   // the field caching the address of the backing store.  When we encounter
2056   // short external strings in generated code, we need to bailout to runtime.
2057   Map* new_map;
2058   if (size < ExternalString::kSize) {
2059     new_map = is_internalized
2060                   ? heap->short_external_one_byte_internalized_string_map()
2061                   : heap->short_external_one_byte_string_map();
2062   } else {
2063     new_map = is_internalized
2064                   ? heap->external_one_byte_internalized_string_map()
2065                   : heap->external_one_byte_string_map();
2066   }
2067 
2068   // Byte size of the external String object.
2069   int new_size = this->SizeFromMap(new_map);
2070   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size,
2071                              ClearRecordedSlots::kNo);
2072 
2073   // We are storing the new map using release store after creating a filler for
2074   // the left-over space to avoid races with the sweeper thread.
2075   this->synchronized_set_map(new_map);
2076 
2077   ExternalOneByteString* self = ExternalOneByteString::cast(this);
2078   self->set_resource(resource);
2079   if (is_internalized) self->Hash();  // Force regeneration of the hash value.
2080 
2081   heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
2082   return true;
2083 }
2084 
StringShortPrint(StringStream * accumulator,bool show_details)2085 void String::StringShortPrint(StringStream* accumulator, bool show_details) {
2086   int len = length();
2087   if (len > kMaxShortPrintLength) {
2088     accumulator->Add("<Very long string[%u]>", len);
2089     return;
2090   }
2091 
2092   if (!LooksValid()) {
2093     accumulator->Add("<Invalid String>");
2094     return;
2095   }
2096 
2097   StringCharacterStream stream(this);
2098 
2099   bool truncated = false;
2100   if (len > kMaxShortPrintLength) {
2101     len = kMaxShortPrintLength;
2102     truncated = true;
2103   }
2104   bool one_byte = true;
2105   for (int i = 0; i < len; i++) {
2106     uint16_t c = stream.GetNext();
2107 
2108     if (c < 32 || c >= 127) {
2109       one_byte = false;
2110     }
2111   }
2112   stream.Reset(this);
2113   if (one_byte) {
2114     if (show_details) accumulator->Add("<String[%u]: ", length());
2115     for (int i = 0; i < len; i++) {
2116       accumulator->Put(static_cast<char>(stream.GetNext()));
2117     }
2118     if (show_details) accumulator->Put('>');
2119   } else {
2120     // Backslash indicates that the string contains control
2121     // characters and that backslashes are therefore escaped.
2122     if (show_details) accumulator->Add("<String[%u]\\: ", length());
2123     for (int i = 0; i < len; i++) {
2124       uint16_t c = stream.GetNext();
2125       if (c == '\n') {
2126         accumulator->Add("\\n");
2127       } else if (c == '\r') {
2128         accumulator->Add("\\r");
2129       } else if (c == '\\') {
2130         accumulator->Add("\\\\");
2131       } else if (c < 32 || c > 126) {
2132         accumulator->Add("\\x%02x", c);
2133       } else {
2134         accumulator->Put(static_cast<char>(c));
2135       }
2136     }
2137     if (truncated) {
2138       accumulator->Put('.');
2139       accumulator->Put('.');
2140       accumulator->Put('.');
2141     }
2142     if (show_details) accumulator->Put('>');
2143   }
2144   return;
2145 }
2146 
2147 
PrintUC16(std::ostream & os,int start,int end)2148 void String::PrintUC16(std::ostream& os, int start, int end) {  // NOLINT
2149   if (end < 0) end = length();
2150   StringCharacterStream stream(this, start);
2151   for (int i = start; i < end && stream.HasMore(); i++) {
2152     os << AsUC16(stream.GetNext());
2153   }
2154 }
2155 
2156 
JSObjectShortPrint(StringStream * accumulator)2157 void JSObject::JSObjectShortPrint(StringStream* accumulator) {
2158   switch (map()->instance_type()) {
2159     case JS_ARRAY_TYPE: {
2160       double length = JSArray::cast(this)->length()->IsUndefined(GetIsolate())
2161                           ? 0
2162                           : JSArray::cast(this)->length()->Number();
2163       accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length));
2164       break;
2165     }
2166     case JS_BOUND_FUNCTION_TYPE: {
2167       JSBoundFunction* bound_function = JSBoundFunction::cast(this);
2168       accumulator->Add("<JS BoundFunction");
2169       accumulator->Add(
2170           " (BoundTargetFunction %p)>",
2171           reinterpret_cast<void*>(bound_function->bound_target_function()));
2172       break;
2173     }
2174     case JS_WEAK_MAP_TYPE: {
2175       accumulator->Add("<JS WeakMap>");
2176       break;
2177     }
2178     case JS_WEAK_SET_TYPE: {
2179       accumulator->Add("<JS WeakSet>");
2180       break;
2181     }
2182     case JS_REGEXP_TYPE: {
2183       accumulator->Add("<JS RegExp>");
2184       break;
2185     }
2186     case JS_FUNCTION_TYPE: {
2187       JSFunction* function = JSFunction::cast(this);
2188       Object* fun_name = function->shared()->DebugName();
2189       bool printed = false;
2190       if (fun_name->IsString()) {
2191         String* str = String::cast(fun_name);
2192         if (str->length() > 0) {
2193           accumulator->Add("<JS Function ");
2194           accumulator->Put(str);
2195           printed = true;
2196         }
2197       }
2198       if (!printed) {
2199         accumulator->Add("<JS Function");
2200       }
2201       if (FLAG_trace_file_names) {
2202         Object* source_name =
2203             Script::cast(function->shared()->script())->name();
2204         if (source_name->IsString()) {
2205           String* str = String::cast(source_name);
2206           if (str->length() > 0) {
2207             accumulator->Add(" <");
2208             accumulator->Put(str);
2209             accumulator->Add(">");
2210           }
2211         }
2212       }
2213       accumulator->Add(" (SharedFunctionInfo %p)",
2214                        reinterpret_cast<void*>(function->shared()));
2215       accumulator->Put('>');
2216       break;
2217     }
2218     case JS_GENERATOR_OBJECT_TYPE: {
2219       accumulator->Add("<JS Generator>");
2220       break;
2221     }
2222     case JS_MODULE_TYPE: {
2223       accumulator->Add("<JS Module>");
2224       break;
2225     }
2226     // All other JSObjects are rather similar to each other (JSObject,
2227     // JSGlobalProxy, JSGlobalObject, JSUndetectable, JSValue).
2228     default: {
2229       Map* map_of_this = map();
2230       Heap* heap = GetHeap();
2231       Object* constructor = map_of_this->GetConstructor();
2232       bool printed = false;
2233       if (constructor->IsHeapObject() &&
2234           !heap->Contains(HeapObject::cast(constructor))) {
2235         accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
2236       } else {
2237         bool global_object = IsJSGlobalProxy();
2238         if (constructor->IsJSFunction()) {
2239           if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
2240             accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
2241           } else {
2242             Object* constructor_name =
2243                 JSFunction::cast(constructor)->shared()->name();
2244             if (constructor_name->IsString()) {
2245               String* str = String::cast(constructor_name);
2246               if (str->length() > 0) {
2247                 bool vowel = AnWord(str);
2248                 accumulator->Add("<%sa%s ",
2249                        global_object ? "Global Object: " : "",
2250                        vowel ? "n" : "");
2251                 accumulator->Put(str);
2252                 accumulator->Add(" with %smap %p",
2253                     map_of_this->is_deprecated() ? "deprecated " : "",
2254                     map_of_this);
2255                 printed = true;
2256               }
2257             }
2258           }
2259         }
2260         if (!printed) {
2261           accumulator->Add("<JS %sObject", global_object ? "Global " : "");
2262         }
2263       }
2264       if (IsJSValue()) {
2265         accumulator->Add(" value = ");
2266         JSValue::cast(this)->value()->ShortPrint(accumulator);
2267       }
2268       accumulator->Put('>');
2269       break;
2270     }
2271   }
2272 }
2273 
2274 
PrintElementsTransition(FILE * file,Handle<JSObject> object,ElementsKind from_kind,Handle<FixedArrayBase> from_elements,ElementsKind to_kind,Handle<FixedArrayBase> to_elements)2275 void JSObject::PrintElementsTransition(
2276     FILE* file, Handle<JSObject> object,
2277     ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2278     ElementsKind to_kind, Handle<FixedArrayBase> to_elements) {
2279   if (from_kind != to_kind) {
2280     OFStream os(file);
2281     os << "elements transition [" << ElementsKindToString(from_kind) << " -> "
2282        << ElementsKindToString(to_kind) << "] in ";
2283     JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true);
2284     PrintF(file, " for ");
2285     object->ShortPrint(file);
2286     PrintF(file, " from ");
2287     from_elements->ShortPrint(file);
2288     PrintF(file, " to ");
2289     to_elements->ShortPrint(file);
2290     PrintF(file, "\n");
2291   }
2292 }
2293 
2294 
2295 // static
GetConstructorFunction(Handle<Map> map,Handle<Context> native_context)2296 MaybeHandle<JSFunction> Map::GetConstructorFunction(
2297     Handle<Map> map, Handle<Context> native_context) {
2298   if (map->IsPrimitiveMap()) {
2299     int const constructor_function_index = map->GetConstructorFunctionIndex();
2300     if (constructor_function_index != kNoConstructorFunctionIndex) {
2301       return handle(
2302           JSFunction::cast(native_context->get(constructor_function_index)));
2303     }
2304   }
2305   return MaybeHandle<JSFunction>();
2306 }
2307 
2308 
PrintReconfiguration(FILE * file,int modify_index,PropertyKind kind,PropertyAttributes attributes)2309 void Map::PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
2310                                PropertyAttributes attributes) {
2311   OFStream os(file);
2312   os << "[reconfiguring]";
2313   Name* name = instance_descriptors()->GetKey(modify_index);
2314   if (name->IsString()) {
2315     String::cast(name)->PrintOn(file);
2316   } else {
2317     os << "{symbol " << static_cast<void*>(name) << "}";
2318   }
2319   os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: ";
2320   os << attributes << " [";
2321   JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
2322   os << "]\n";
2323 }
2324 
PrintGeneralization(FILE * file,const char * reason,int modify_index,int split,int descriptors,bool constant_to_field,Representation old_representation,Representation new_representation,MaybeHandle<FieldType> old_field_type,MaybeHandle<Object> old_value,MaybeHandle<FieldType> new_field_type,MaybeHandle<Object> new_value)2325 void Map::PrintGeneralization(
2326     FILE* file, const char* reason, int modify_index, int split,
2327     int descriptors, bool constant_to_field, Representation old_representation,
2328     Representation new_representation, MaybeHandle<FieldType> old_field_type,
2329     MaybeHandle<Object> old_value, MaybeHandle<FieldType> new_field_type,
2330     MaybeHandle<Object> new_value) {
2331   OFStream os(file);
2332   os << "[generalizing]";
2333   Name* name = instance_descriptors()->GetKey(modify_index);
2334   if (name->IsString()) {
2335     String::cast(name)->PrintOn(file);
2336   } else {
2337     os << "{symbol " << static_cast<void*>(name) << "}";
2338   }
2339   os << ":";
2340   if (constant_to_field) {
2341     os << "c";
2342   } else {
2343     os << old_representation.Mnemonic() << "{";
2344     if (old_field_type.is_null()) {
2345       os << Brief(*(old_value.ToHandleChecked()));
2346     } else {
2347       old_field_type.ToHandleChecked()->PrintTo(os);
2348     }
2349     os << "}";
2350   }
2351   os << "->" << new_representation.Mnemonic() << "{";
2352   if (new_field_type.is_null()) {
2353     os << Brief(*(new_value.ToHandleChecked()));
2354   } else {
2355     new_field_type.ToHandleChecked()->PrintTo(os);
2356   }
2357   os << "} (";
2358   if (strlen(reason) > 0) {
2359     os << reason;
2360   } else {
2361     os << "+" << (descriptors - split) << " maps";
2362   }
2363   os << ") [";
2364   JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
2365   os << "]\n";
2366 }
2367 
2368 
PrintInstanceMigration(FILE * file,Map * original_map,Map * new_map)2369 void JSObject::PrintInstanceMigration(FILE* file,
2370                                       Map* original_map,
2371                                       Map* new_map) {
2372   PrintF(file, "[migrating]");
2373   DescriptorArray* o = original_map->instance_descriptors();
2374   DescriptorArray* n = new_map->instance_descriptors();
2375   for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) {
2376     Representation o_r = o->GetDetails(i).representation();
2377     Representation n_r = n->GetDetails(i).representation();
2378     if (!o_r.Equals(n_r)) {
2379       String::cast(o->GetKey(i))->PrintOn(file);
2380       PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic());
2381     } else if (o->GetDetails(i).type() == DATA_CONSTANT &&
2382                n->GetDetails(i).type() == DATA) {
2383       Name* name = o->GetKey(i);
2384       if (name->IsString()) {
2385         String::cast(name)->PrintOn(file);
2386       } else {
2387         PrintF(file, "{symbol %p}", static_cast<void*>(name));
2388       }
2389       PrintF(file, " ");
2390     }
2391   }
2392   PrintF(file, "\n");
2393 }
2394 
2395 
HeapObjectShortPrint(std::ostream & os)2396 void HeapObject::HeapObjectShortPrint(std::ostream& os) {  // NOLINT
2397   Heap* heap = GetHeap();
2398   Isolate* isolate = heap->isolate();
2399   if (!heap->Contains(this)) {
2400     os << "!!!INVALID POINTER!!!";
2401     return;
2402   }
2403   if (!heap->Contains(map())) {
2404     os << "!!!INVALID MAP!!!";
2405     return;
2406   }
2407 
2408   os << this << " ";
2409 
2410   if (IsString()) {
2411     HeapStringAllocator allocator;
2412     StringStream accumulator(&allocator);
2413     String::cast(this)->StringShortPrint(&accumulator);
2414     os << accumulator.ToCString().get();
2415     return;
2416   }
2417   if (IsJSObject()) {
2418     HeapStringAllocator allocator;
2419     StringStream accumulator(&allocator);
2420     JSObject::cast(this)->JSObjectShortPrint(&accumulator);
2421     os << accumulator.ToCString().get();
2422     return;
2423   }
2424   switch (map()->instance_type()) {
2425     case MAP_TYPE:
2426       os << "<Map(" << ElementsKindToString(Map::cast(this)->elements_kind())
2427          << ")>";
2428       break;
2429     case FIXED_ARRAY_TYPE:
2430       os << "<FixedArray[" << FixedArray::cast(this)->length() << "]>";
2431       break;
2432     case FIXED_DOUBLE_ARRAY_TYPE:
2433       os << "<FixedDoubleArray[" << FixedDoubleArray::cast(this)->length()
2434          << "]>";
2435       break;
2436     case BYTE_ARRAY_TYPE:
2437       os << "<ByteArray[" << ByteArray::cast(this)->length() << "]>";
2438       break;
2439     case BYTECODE_ARRAY_TYPE:
2440       os << "<BytecodeArray[" << BytecodeArray::cast(this)->length() << "]>";
2441       break;
2442     case TRANSITION_ARRAY_TYPE:
2443       os << "<TransitionArray[" << TransitionArray::cast(this)->length()
2444          << "]>";
2445       break;
2446     case FREE_SPACE_TYPE:
2447       os << "<FreeSpace[" << FreeSpace::cast(this)->size() << "]>";
2448       break;
2449 #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size)                \
2450   case FIXED_##TYPE##_ARRAY_TYPE:                                             \
2451     os << "<Fixed" #Type "Array[" << Fixed##Type##Array::cast(this)->length() \
2452        << "]>";                                                               \
2453     break;
2454 
2455     TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT)
2456 #undef TYPED_ARRAY_SHORT_PRINT
2457 
2458     case SHARED_FUNCTION_INFO_TYPE: {
2459       SharedFunctionInfo* shared = SharedFunctionInfo::cast(this);
2460       base::SmartArrayPointer<char> debug_name =
2461           shared->DebugName()->ToCString();
2462       if (debug_name[0] != 0) {
2463         os << "<SharedFunctionInfo " << debug_name.get() << ">";
2464       } else {
2465         os << "<SharedFunctionInfo>";
2466       }
2467       break;
2468     }
2469     case JS_MESSAGE_OBJECT_TYPE:
2470       os << "<JSMessageObject>";
2471       break;
2472 #define MAKE_STRUCT_CASE(NAME, Name, name) \
2473   case NAME##_TYPE:                        \
2474     os << "<" #Name ">";                   \
2475     break;
2476   STRUCT_LIST(MAKE_STRUCT_CASE)
2477 #undef MAKE_STRUCT_CASE
2478     case CODE_TYPE: {
2479       Code* code = Code::cast(this);
2480       os << "<Code: " << Code::Kind2String(code->kind()) << ">";
2481       break;
2482     }
2483     case ODDBALL_TYPE: {
2484       if (IsUndefined(isolate)) {
2485         os << "<undefined>";
2486       } else if (IsTheHole(isolate)) {
2487         os << "<the hole>";
2488       } else if (IsNull(isolate)) {
2489         os << "<null>";
2490       } else if (IsTrue(isolate)) {
2491         os << "<true>";
2492       } else if (IsFalse(isolate)) {
2493         os << "<false>";
2494       } else {
2495         os << "<Odd Oddball: ";
2496         os << Oddball::cast(this)->to_string()->ToCString().get();
2497         os << ">";
2498       }
2499       break;
2500     }
2501     case SYMBOL_TYPE: {
2502       Symbol* symbol = Symbol::cast(this);
2503       symbol->SymbolShortPrint(os);
2504       break;
2505     }
2506     case HEAP_NUMBER_TYPE: {
2507       os << "<Number: ";
2508       HeapNumber::cast(this)->HeapNumberPrint(os);
2509       os << ">";
2510       break;
2511     }
2512     case MUTABLE_HEAP_NUMBER_TYPE: {
2513       os << "<MutableNumber: ";
2514       HeapNumber::cast(this)->HeapNumberPrint(os);
2515       os << '>';
2516       break;
2517     }
2518     case SIMD128_VALUE_TYPE: {
2519 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
2520   if (Is##Type()) {                                           \
2521     os << "<" #Type ">";                                      \
2522     break;                                                    \
2523   }
2524       SIMD128_TYPES(SIMD128_TYPE)
2525 #undef SIMD128_TYPE
2526       UNREACHABLE();
2527       break;
2528     }
2529     case JS_PROXY_TYPE:
2530       os << "<JSProxy>";
2531       break;
2532     case FOREIGN_TYPE:
2533       os << "<Foreign>";
2534       break;
2535     case CELL_TYPE: {
2536       os << "Cell for ";
2537       HeapStringAllocator allocator;
2538       StringStream accumulator(&allocator);
2539       Cell::cast(this)->value()->ShortPrint(&accumulator);
2540       os << accumulator.ToCString().get();
2541       break;
2542     }
2543     case PROPERTY_CELL_TYPE: {
2544       os << "PropertyCell for ";
2545       HeapStringAllocator allocator;
2546       StringStream accumulator(&allocator);
2547       PropertyCell* cell = PropertyCell::cast(this);
2548       cell->value()->ShortPrint(&accumulator);
2549       os << accumulator.ToCString().get();
2550       break;
2551     }
2552     case WEAK_CELL_TYPE: {
2553       os << "WeakCell for ";
2554       HeapStringAllocator allocator;
2555       StringStream accumulator(&allocator);
2556       WeakCell::cast(this)->value()->ShortPrint(&accumulator);
2557       os << accumulator.ToCString().get();
2558       break;
2559     }
2560     default:
2561       os << "<Other heap object (" << map()->instance_type() << ")>";
2562       break;
2563   }
2564 }
2565 
2566 
Iterate(ObjectVisitor * v)2567 void HeapObject::Iterate(ObjectVisitor* v) { IterateFast<ObjectVisitor>(v); }
2568 
2569 
IterateBody(ObjectVisitor * v)2570 void HeapObject::IterateBody(ObjectVisitor* v) {
2571   Map* m = map();
2572   IterateBodyFast<ObjectVisitor>(m->instance_type(), SizeFromMap(m), v);
2573 }
2574 
2575 
IterateBody(InstanceType type,int object_size,ObjectVisitor * v)2576 void HeapObject::IterateBody(InstanceType type, int object_size,
2577                              ObjectVisitor* v) {
2578   IterateBodyFast<ObjectVisitor>(type, object_size, v);
2579 }
2580 
2581 
2582 struct CallIsValidSlot {
2583   template <typename BodyDescriptor>
applyv8::internal::CallIsValidSlot2584   static bool apply(HeapObject* obj, int offset, int) {
2585     return BodyDescriptor::IsValidSlot(obj, offset);
2586   }
2587 };
2588 
2589 
IsValidSlot(int offset)2590 bool HeapObject::IsValidSlot(int offset) {
2591   DCHECK_NE(0, offset);
2592   return BodyDescriptorApply<CallIsValidSlot, bool>(map()->instance_type(),
2593                                                     this, offset, 0);
2594 }
2595 
2596 
HeapNumberBooleanValue()2597 bool HeapNumber::HeapNumberBooleanValue() {
2598   return DoubleToBoolean(value());
2599 }
2600 
2601 
HeapNumberPrint(std::ostream & os)2602 void HeapNumber::HeapNumberPrint(std::ostream& os) {  // NOLINT
2603   os << value();
2604 }
2605 
2606 
2607 #define FIELD_ADDR_CONST(p, offset) \
2608   (reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag)
2609 
2610 #define READ_INT32_FIELD(p, offset) \
2611   (*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset)))
2612 
2613 #define READ_INT64_FIELD(p, offset) \
2614   (*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset)))
2615 
2616 #define READ_BYTE_FIELD(p, offset) \
2617   (*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset)))
2618 
2619 
2620 // static
ToString(Handle<Simd128Value> input)2621 Handle<String> Simd128Value::ToString(Handle<Simd128Value> input) {
2622 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
2623   if (input->Is##Type()) return Type::ToString(Handle<Type>::cast(input));
2624   SIMD128_TYPES(SIMD128_TYPE)
2625 #undef SIMD128_TYPE
2626   UNREACHABLE();
2627   return Handle<String>::null();
2628 }
2629 
2630 
2631 // static
ToString(Handle<Float32x4> input)2632 Handle<String> Float32x4::ToString(Handle<Float32x4> input) {
2633   Isolate* const isolate = input->GetIsolate();
2634   char arr[100];
2635   Vector<char> buffer(arr, arraysize(arr));
2636   std::ostringstream os;
2637   os << "SIMD.Float32x4("
2638      << std::string(DoubleToCString(input->get_lane(0), buffer)) << ", "
2639      << std::string(DoubleToCString(input->get_lane(1), buffer)) << ", "
2640      << std::string(DoubleToCString(input->get_lane(2), buffer)) << ", "
2641      << std::string(DoubleToCString(input->get_lane(3), buffer)) << ")";
2642   return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str());
2643 }
2644 
2645 
2646 #define SIMD128_BOOL_TO_STRING(Type, lane_count)                            \
2647   Handle<String> Type::ToString(Handle<Type> input) {                       \
2648     Isolate* const isolate = input->GetIsolate();                           \
2649     std::ostringstream os;                                                  \
2650     os << "SIMD." #Type "(";                                                \
2651     os << (input->get_lane(0) ? "true" : "false");                          \
2652     for (int i = 1; i < lane_count; i++) {                                  \
2653       os << ", " << (input->get_lane(i) ? "true" : "false");                \
2654     }                                                                       \
2655     os << ")";                                                              \
2656     return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
2657   }
2658 SIMD128_BOOL_TO_STRING(Bool32x4, 4)
2659 SIMD128_BOOL_TO_STRING(Bool16x8, 8)
2660 SIMD128_BOOL_TO_STRING(Bool8x16, 16)
2661 #undef SIMD128_BOOL_TO_STRING
2662 
2663 
2664 #define SIMD128_INT_TO_STRING(Type, lane_count)                             \
2665   Handle<String> Type::ToString(Handle<Type> input) {                       \
2666     Isolate* const isolate = input->GetIsolate();                           \
2667     char arr[100];                                                          \
2668     Vector<char> buffer(arr, arraysize(arr));                               \
2669     std::ostringstream os;                                                  \
2670     os << "SIMD." #Type "(";                                                \
2671     os << IntToCString(input->get_lane(0), buffer);                         \
2672     for (int i = 1; i < lane_count; i++) {                                  \
2673       os << ", " << IntToCString(input->get_lane(i), buffer);               \
2674     }                                                                       \
2675     os << ")";                                                              \
2676     return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
2677   }
2678 SIMD128_INT_TO_STRING(Int32x4, 4)
2679 SIMD128_INT_TO_STRING(Uint32x4, 4)
2680 SIMD128_INT_TO_STRING(Int16x8, 8)
2681 SIMD128_INT_TO_STRING(Uint16x8, 8)
2682 SIMD128_INT_TO_STRING(Int8x16, 16)
2683 SIMD128_INT_TO_STRING(Uint8x16, 16)
2684 #undef SIMD128_INT_TO_STRING
2685 
2686 
BitwiseEquals(const Simd128Value * other) const2687 bool Simd128Value::BitwiseEquals(const Simd128Value* other) const {
2688   return READ_INT64_FIELD(this, kValueOffset) ==
2689              READ_INT64_FIELD(other, kValueOffset) &&
2690          READ_INT64_FIELD(this, kValueOffset + kInt64Size) ==
2691              READ_INT64_FIELD(other, kValueOffset + kInt64Size);
2692 }
2693 
2694 
Hash() const2695 uint32_t Simd128Value::Hash() const {
2696   uint32_t seed = v8::internal::kZeroHashSeed;
2697   uint32_t hash;
2698   hash = ComputeIntegerHash(READ_INT32_FIELD(this, kValueOffset), seed);
2699   hash = ComputeIntegerHash(
2700       READ_INT32_FIELD(this, kValueOffset + 1 * kInt32Size), hash * 31);
2701   hash = ComputeIntegerHash(
2702       READ_INT32_FIELD(this, kValueOffset + 2 * kInt32Size), hash * 31);
2703   hash = ComputeIntegerHash(
2704       READ_INT32_FIELD(this, kValueOffset + 3 * kInt32Size), hash * 31);
2705   return hash;
2706 }
2707 
2708 
CopyBits(void * destination) const2709 void Simd128Value::CopyBits(void* destination) const {
2710   memcpy(destination, &READ_BYTE_FIELD(this, kValueOffset), kSimd128Size);
2711 }
2712 
2713 
class_name()2714 String* JSReceiver::class_name() {
2715   if (IsFunction()) {
2716     return GetHeap()->Function_string();
2717   }
2718   Object* maybe_constructor = map()->GetConstructor();
2719   if (maybe_constructor->IsJSFunction()) {
2720     JSFunction* constructor = JSFunction::cast(maybe_constructor);
2721     return String::cast(constructor->shared()->instance_class_name());
2722   }
2723   // If the constructor is not present, return "Object".
2724   return GetHeap()->Object_string();
2725 }
2726 
2727 
2728 // static
GetConstructorName(Handle<JSReceiver> receiver)2729 Handle<String> JSReceiver::GetConstructorName(Handle<JSReceiver> receiver) {
2730   Isolate* isolate = receiver->GetIsolate();
2731 
2732   // If the object was instantiated simply with base == new.target, the
2733   // constructor on the map provides the most accurate name.
2734   // Don't provide the info for prototypes, since their constructors are
2735   // reclaimed and replaced by Object in OptimizeAsPrototype.
2736   if (!receiver->IsJSProxy() && receiver->map()->new_target_is_base() &&
2737       !receiver->map()->is_prototype_map()) {
2738     Object* maybe_constructor = receiver->map()->GetConstructor();
2739     if (maybe_constructor->IsJSFunction()) {
2740       JSFunction* constructor = JSFunction::cast(maybe_constructor);
2741       String* name = String::cast(constructor->shared()->name());
2742       if (name->length() == 0) name = constructor->shared()->inferred_name();
2743       if (name->length() != 0 &&
2744           !name->Equals(isolate->heap()->Object_string())) {
2745         return handle(name, isolate);
2746       }
2747     }
2748   }
2749 
2750   Handle<Object> maybe_tag = JSReceiver::GetDataProperty(
2751       receiver, isolate->factory()->to_string_tag_symbol());
2752   if (maybe_tag->IsString()) return Handle<String>::cast(maybe_tag);
2753 
2754   PrototypeIterator iter(isolate, receiver);
2755   if (iter.IsAtEnd()) return handle(receiver->class_name());
2756   Handle<JSReceiver> start = PrototypeIterator::GetCurrent<JSReceiver>(iter);
2757   LookupIterator it(receiver, isolate->factory()->constructor_string(), start,
2758                     LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
2759   Handle<Object> maybe_constructor = JSReceiver::GetDataProperty(&it);
2760   Handle<String> result = isolate->factory()->Object_string();
2761   if (maybe_constructor->IsJSFunction()) {
2762     JSFunction* constructor = JSFunction::cast(*maybe_constructor);
2763     String* name = String::cast(constructor->shared()->name());
2764     if (name->length() == 0) name = constructor->shared()->inferred_name();
2765     if (name->length() > 0) result = handle(name, isolate);
2766   }
2767 
2768   return result.is_identical_to(isolate->factory()->Object_string())
2769              ? handle(receiver->class_name())
2770              : result;
2771 }
2772 
2773 
GetCreationContext()2774 Context* JSReceiver::GetCreationContext() {
2775   JSReceiver* receiver = this;
2776   while (receiver->IsJSBoundFunction()) {
2777     receiver = JSBoundFunction::cast(receiver)->bound_target_function();
2778   }
2779   Object* constructor = receiver->map()->GetConstructor();
2780   JSFunction* function;
2781   if (constructor->IsJSFunction()) {
2782     function = JSFunction::cast(constructor);
2783   } else {
2784     // Functions have null as a constructor,
2785     // but any JSFunction knows its context immediately.
2786     CHECK(receiver->IsJSFunction());
2787     function = JSFunction::cast(receiver);
2788   }
2789 
2790   return function->context()->native_context();
2791 }
2792 
WrapType(Handle<FieldType> type)2793 static Handle<Object> WrapType(Handle<FieldType> type) {
2794   if (type->IsClass()) return Map::WeakCellForMap(type->AsClass());
2795   return type;
2796 }
2797 
CopyWithField(Handle<Map> map,Handle<Name> name,Handle<FieldType> type,PropertyAttributes attributes,Representation representation,TransitionFlag flag)2798 MaybeHandle<Map> Map::CopyWithField(Handle<Map> map, Handle<Name> name,
2799                                     Handle<FieldType> type,
2800                                     PropertyAttributes attributes,
2801                                     Representation representation,
2802                                     TransitionFlag flag) {
2803   DCHECK(DescriptorArray::kNotFound ==
2804          map->instance_descriptors()->Search(
2805              *name, map->NumberOfOwnDescriptors()));
2806 
2807   // Ensure the descriptor array does not get too big.
2808   if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
2809     return MaybeHandle<Map>();
2810   }
2811 
2812   Isolate* isolate = map->GetIsolate();
2813 
2814   // Compute the new index for new field.
2815   int index = map->NextFreePropertyIndex();
2816 
2817   if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) {
2818     representation = Representation::Tagged();
2819     type = FieldType::Any(isolate);
2820   }
2821 
2822   Handle<Object> wrapped_type(WrapType(type));
2823 
2824   DataDescriptor new_field_desc(name, index, wrapped_type, attributes,
2825                                 representation);
2826   Handle<Map> new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag);
2827   int unused_property_fields = new_map->unused_property_fields() - 1;
2828   if (unused_property_fields < 0) {
2829     unused_property_fields += JSObject::kFieldsAdded;
2830   }
2831   new_map->set_unused_property_fields(unused_property_fields);
2832   return new_map;
2833 }
2834 
2835 
CopyWithConstant(Handle<Map> map,Handle<Name> name,Handle<Object> constant,PropertyAttributes attributes,TransitionFlag flag)2836 MaybeHandle<Map> Map::CopyWithConstant(Handle<Map> map,
2837                                        Handle<Name> name,
2838                                        Handle<Object> constant,
2839                                        PropertyAttributes attributes,
2840                                        TransitionFlag flag) {
2841   // Ensure the descriptor array does not get too big.
2842   if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
2843     return MaybeHandle<Map>();
2844   }
2845 
2846   // Allocate new instance descriptors with (name, constant) added.
2847   DataConstantDescriptor new_constant_desc(name, constant, attributes);
2848   return Map::CopyAddDescriptor(map, &new_constant_desc, flag);
2849 }
2850 
2851 
AddSlowProperty(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)2852 void JSObject::AddSlowProperty(Handle<JSObject> object,
2853                                Handle<Name> name,
2854                                Handle<Object> value,
2855                                PropertyAttributes attributes) {
2856   DCHECK(!object->HasFastProperties());
2857   Isolate* isolate = object->GetIsolate();
2858   if (object->IsJSGlobalObject()) {
2859     Handle<GlobalDictionary> dict(object->global_dictionary());
2860     PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
2861     int entry = dict->FindEntry(name);
2862     // If there's a cell there, just invalidate and set the property.
2863     if (entry != GlobalDictionary::kNotFound) {
2864       PropertyCell::UpdateCell(dict, entry, value, details);
2865       // TODO(ishell): move this to UpdateCell.
2866       // Need to adjust the details.
2867       int index = dict->NextEnumerationIndex();
2868       dict->SetNextEnumerationIndex(index + 1);
2869       PropertyCell* cell = PropertyCell::cast(dict->ValueAt(entry));
2870       details = cell->property_details().set_index(index);
2871       cell->set_property_details(details);
2872 
2873     } else {
2874       auto cell = isolate->factory()->NewPropertyCell();
2875       cell->set_value(*value);
2876       auto cell_type = value->IsUndefined(isolate)
2877                            ? PropertyCellType::kUndefined
2878                            : PropertyCellType::kConstant;
2879       details = details.set_cell_type(cell_type);
2880       value = cell;
2881 
2882       Handle<GlobalDictionary> result =
2883           GlobalDictionary::Add(dict, name, value, details);
2884       if (*dict != *result) object->set_properties(*result);
2885     }
2886   } else {
2887     Handle<NameDictionary> dict(object->property_dictionary());
2888     PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
2889     Handle<NameDictionary> result =
2890         NameDictionary::Add(dict, name, value, details);
2891     if (*dict != *result) object->set_properties(*result);
2892   }
2893 }
2894 
2895 
Mnemonic() const2896 const char* Representation::Mnemonic() const {
2897   switch (kind_) {
2898     case kNone: return "v";
2899     case kTagged: return "t";
2900     case kSmi: return "s";
2901     case kDouble: return "d";
2902     case kInteger32: return "i";
2903     case kHeapObject: return "h";
2904     case kExternal: return "x";
2905     default:
2906       UNREACHABLE();
2907       return NULL;
2908   }
2909 }
2910 
InstancesNeedRewriting(Map * target)2911 bool Map::InstancesNeedRewriting(Map* target) {
2912   int target_number_of_fields = target->NumberOfFields();
2913   int target_inobject = target->GetInObjectProperties();
2914   int target_unused = target->unused_property_fields();
2915   int old_number_of_fields;
2916 
2917   return InstancesNeedRewriting(target, target_number_of_fields,
2918                                 target_inobject, target_unused,
2919                                 &old_number_of_fields);
2920 }
2921 
InstancesNeedRewriting(Map * target,int target_number_of_fields,int target_inobject,int target_unused,int * old_number_of_fields)2922 bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields,
2923                                  int target_inobject, int target_unused,
2924                                  int* old_number_of_fields) {
2925   // If fields were added (or removed), rewrite the instance.
2926   *old_number_of_fields = NumberOfFields();
2927   DCHECK(target_number_of_fields >= *old_number_of_fields);
2928   if (target_number_of_fields != *old_number_of_fields) return true;
2929 
2930   // If smi descriptors were replaced by double descriptors, rewrite.
2931   DescriptorArray* old_desc = instance_descriptors();
2932   DescriptorArray* new_desc = target->instance_descriptors();
2933   int limit = NumberOfOwnDescriptors();
2934   for (int i = 0; i < limit; i++) {
2935     if (new_desc->GetDetails(i).representation().IsDouble() !=
2936         old_desc->GetDetails(i).representation().IsDouble()) {
2937       return true;
2938     }
2939   }
2940 
2941   // If no fields were added, and no inobject properties were removed, setting
2942   // the map is sufficient.
2943   if (target_inobject == GetInObjectProperties()) return false;
2944   // In-object slack tracking may have reduced the object size of the new map.
2945   // In that case, succeed if all existing fields were inobject, and they still
2946   // fit within the new inobject size.
2947   DCHECK(target_inobject < GetInObjectProperties());
2948   if (target_number_of_fields <= target_inobject) {
2949     DCHECK(target_number_of_fields + target_unused == target_inobject);
2950     return false;
2951   }
2952   // Otherwise, properties will need to be moved to the backing store.
2953   return true;
2954 }
2955 
2956 
2957 // static
UpdatePrototypeUserRegistration(Handle<Map> old_map,Handle<Map> new_map,Isolate * isolate)2958 void JSObject::UpdatePrototypeUserRegistration(Handle<Map> old_map,
2959                                                Handle<Map> new_map,
2960                                                Isolate* isolate) {
2961   if (!old_map->is_prototype_map()) return;
2962   DCHECK(new_map->is_prototype_map());
2963   bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate);
2964   new_map->set_prototype_info(old_map->prototype_info());
2965   old_map->set_prototype_info(Smi::FromInt(0));
2966   if (FLAG_trace_prototype_users) {
2967     PrintF("Moving prototype_info %p from map %p to map %p.\n",
2968            reinterpret_cast<void*>(new_map->prototype_info()),
2969            reinterpret_cast<void*>(*old_map),
2970            reinterpret_cast<void*>(*new_map));
2971   }
2972   if (was_registered) {
2973     if (new_map->prototype_info()->IsPrototypeInfo()) {
2974       // The new map isn't registered with its prototype yet; reflect this fact
2975       // in the PrototypeInfo it just inherited from the old map.
2976       PrototypeInfo::cast(new_map->prototype_info())
2977           ->set_registry_slot(PrototypeInfo::UNREGISTERED);
2978     }
2979     JSObject::LazyRegisterPrototypeUser(new_map, isolate);
2980   }
2981 }
2982 
2983 namespace {
2984 // To migrate a fast instance to a fast map:
2985 // - First check whether the instance needs to be rewritten. If not, simply
2986 //   change the map.
2987 // - Otherwise, allocate a fixed array large enough to hold all fields, in
2988 //   addition to unused space.
2989 // - Copy all existing properties in, in the following order: backing store
2990 //   properties, unused fields, inobject properties.
2991 // - If all allocation succeeded, commit the state atomically:
2992 //   * Copy inobject properties from the backing store back into the object.
2993 //   * Trim the difference in instance size of the object. This also cleanly
2994 //     frees inobject properties that moved to the backing store.
2995 //   * If there are properties left in the backing store, trim of the space used
2996 //     to temporarily store the inobject properties.
2997 //   * If there are properties left in the backing store, install the backing
2998 //     store.
MigrateFastToFast(Handle<JSObject> object,Handle<Map> new_map)2999 void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map) {
3000   Isolate* isolate = object->GetIsolate();
3001   Handle<Map> old_map(object->map());
3002   // In case of a regular transition.
3003   if (new_map->GetBackPointer() == *old_map) {
3004     // If the map does not add named properties, simply set the map.
3005     if (old_map->NumberOfOwnDescriptors() ==
3006         new_map->NumberOfOwnDescriptors()) {
3007       object->synchronized_set_map(*new_map);
3008       return;
3009     }
3010 
3011     PropertyDetails details = new_map->GetLastDescriptorDetails();
3012     // Either new_map adds an kDescriptor property, or a kField property for
3013     // which there is still space, and which does not require a mutable double
3014     // box (an out-of-object double).
3015     if (details.location() == kDescriptor ||
3016         (old_map->unused_property_fields() > 0 &&
3017          ((FLAG_unbox_double_fields && object->properties()->length() == 0) ||
3018           !details.representation().IsDouble()))) {
3019       object->synchronized_set_map(*new_map);
3020       return;
3021     }
3022 
3023     // If there is still space in the object, we need to allocate a mutable
3024     // double box.
3025     if (old_map->unused_property_fields() > 0) {
3026       FieldIndex index =
3027           FieldIndex::ForDescriptor(*new_map, new_map->LastAdded());
3028       DCHECK(details.representation().IsDouble());
3029       DCHECK(!new_map->IsUnboxedDoubleField(index));
3030       Handle<Object> value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3031       object->RawFastPropertyAtPut(index, *value);
3032       object->synchronized_set_map(*new_map);
3033       return;
3034     }
3035 
3036     // This migration is a transition from a map that has run out of property
3037     // space. Extend the backing store.
3038     int grow_by = new_map->unused_property_fields() + 1;
3039     Handle<FixedArray> old_storage = handle(object->properties(), isolate);
3040     Handle<FixedArray> new_storage =
3041         isolate->factory()->CopyFixedArrayAndGrow(old_storage, grow_by);
3042 
3043     // Properly initialize newly added property.
3044     Handle<Object> value;
3045     if (details.representation().IsDouble()) {
3046       value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3047     } else {
3048       value = isolate->factory()->uninitialized_value();
3049     }
3050     DCHECK_EQ(DATA, details.type());
3051     int target_index = details.field_index() - new_map->GetInObjectProperties();
3052     DCHECK(target_index >= 0);  // Must be a backing store index.
3053     new_storage->set(target_index, *value);
3054 
3055     // From here on we cannot fail and we shouldn't GC anymore.
3056     DisallowHeapAllocation no_allocation;
3057 
3058     // Set the new property value and do the map transition.
3059     object->set_properties(*new_storage);
3060     object->synchronized_set_map(*new_map);
3061     return;
3062   }
3063 
3064   int old_number_of_fields;
3065   int number_of_fields = new_map->NumberOfFields();
3066   int inobject = new_map->GetInObjectProperties();
3067   int unused = new_map->unused_property_fields();
3068 
3069   // Nothing to do if no functions were converted to fields and no smis were
3070   // converted to doubles.
3071   if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject,
3072                                        unused, &old_number_of_fields)) {
3073     object->synchronized_set_map(*new_map);
3074     return;
3075   }
3076 
3077   int total_size = number_of_fields + unused;
3078   int external = total_size - inobject;
3079 
3080   Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size);
3081 
3082   Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors());
3083   Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors());
3084   int old_nof = old_map->NumberOfOwnDescriptors();
3085   int new_nof = new_map->NumberOfOwnDescriptors();
3086 
3087   // This method only supports generalizing instances to at least the same
3088   // number of properties.
3089   DCHECK(old_nof <= new_nof);
3090 
3091   for (int i = 0; i < old_nof; i++) {
3092     PropertyDetails details = new_descriptors->GetDetails(i);
3093     if (details.type() != DATA) continue;
3094     PropertyDetails old_details = old_descriptors->GetDetails(i);
3095     Representation old_representation = old_details.representation();
3096     Representation representation = details.representation();
3097     Handle<Object> value;
3098     if (old_details.type() == ACCESSOR_CONSTANT) {
3099       // In case of kAccessor -> kData property reconfiguration, the property
3100       // must already be prepared for data or certain type.
3101       DCHECK(!details.representation().IsNone());
3102       if (details.representation().IsDouble()) {
3103         value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3104       } else {
3105         value = isolate->factory()->uninitialized_value();
3106       }
3107     } else if (old_details.type() == DATA_CONSTANT) {
3108       value = handle(old_descriptors->GetValue(i), isolate);
3109       DCHECK(!old_representation.IsDouble() && !representation.IsDouble());
3110     } else {
3111       FieldIndex index = FieldIndex::ForDescriptor(*old_map, i);
3112       if (object->IsUnboxedDoubleField(index)) {
3113         double old = object->RawFastDoublePropertyAt(index);
3114         value = isolate->factory()->NewHeapNumber(
3115             old, representation.IsDouble() ? MUTABLE : IMMUTABLE);
3116 
3117       } else {
3118         value = handle(object->RawFastPropertyAt(index), isolate);
3119         if (!old_representation.IsDouble() && representation.IsDouble()) {
3120           if (old_representation.IsNone()) {
3121             value = handle(Smi::FromInt(0), isolate);
3122           }
3123           value = Object::NewStorageFor(isolate, value, representation);
3124         } else if (old_representation.IsDouble() &&
3125                    !representation.IsDouble()) {
3126           value = Object::WrapForRead(isolate, value, old_representation);
3127         }
3128       }
3129     }
3130     DCHECK(!(representation.IsDouble() && value->IsSmi()));
3131     int target_index = new_descriptors->GetFieldIndex(i) - inobject;
3132     if (target_index < 0) target_index += total_size;
3133     array->set(target_index, *value);
3134   }
3135 
3136   for (int i = old_nof; i < new_nof; i++) {
3137     PropertyDetails details = new_descriptors->GetDetails(i);
3138     if (details.type() != DATA) continue;
3139     Handle<Object> value;
3140     if (details.representation().IsDouble()) {
3141       value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3142     } else {
3143       value = isolate->factory()->uninitialized_value();
3144     }
3145     int target_index = new_descriptors->GetFieldIndex(i) - inobject;
3146     if (target_index < 0) target_index += total_size;
3147     array->set(target_index, *value);
3148   }
3149 
3150   // From here on we cannot fail and we shouldn't GC anymore.
3151   DisallowHeapAllocation no_allocation;
3152 
3153   Heap* heap = isolate->heap();
3154 
3155   // Copy (real) inobject properties. If necessary, stop at number_of_fields to
3156   // avoid overwriting |one_pointer_filler_map|.
3157   int limit = Min(inobject, number_of_fields);
3158   for (int i = 0; i < limit; i++) {
3159     FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
3160     Object* value = array->get(external + i);
3161     // Can't use JSObject::FastPropertyAtPut() because proper map was not set
3162     // yet.
3163     if (new_map->IsUnboxedDoubleField(index)) {
3164       DCHECK(value->IsMutableHeapNumber());
3165       object->RawFastDoublePropertyAtPut(index,
3166                                          HeapNumber::cast(value)->value());
3167       if (i < old_number_of_fields && !old_map->IsUnboxedDoubleField(index)) {
3168         // Transition from tagged to untagged slot.
3169         heap->ClearRecordedSlot(*object,
3170                                 HeapObject::RawField(*object, index.offset()));
3171       }
3172     } else {
3173       object->RawFastPropertyAtPut(index, value);
3174     }
3175   }
3176 
3177 
3178   // If there are properties in the new backing store, trim it to the correct
3179   // size and install the backing store into the object.
3180   if (external > 0) {
3181     heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array, inobject);
3182     object->set_properties(*array);
3183   }
3184 
3185   // Create filler object past the new instance size.
3186   int new_instance_size = new_map->instance_size();
3187   int instance_size_delta = old_map->instance_size() - new_instance_size;
3188   DCHECK(instance_size_delta >= 0);
3189 
3190   if (instance_size_delta > 0) {
3191     Address address = object->address();
3192     heap->CreateFillerObjectAt(address + new_instance_size, instance_size_delta,
3193                                ClearRecordedSlots::kYes);
3194     heap->AdjustLiveBytes(*object, -instance_size_delta,
3195                           Heap::CONCURRENT_TO_SWEEPER);
3196   }
3197 
3198   // We are storing the new map using release store after creating a filler for
3199   // the left-over space to avoid races with the sweeper thread.
3200   object->synchronized_set_map(*new_map);
3201 }
3202 
MigrateFastToSlow(Handle<JSObject> object,Handle<Map> new_map,int expected_additional_properties)3203 void MigrateFastToSlow(Handle<JSObject> object, Handle<Map> new_map,
3204                        int expected_additional_properties) {
3205   // The global object is always normalized.
3206   DCHECK(!object->IsJSGlobalObject());
3207   // JSGlobalProxy must never be normalized
3208   DCHECK(!object->IsJSGlobalProxy());
3209 
3210   Isolate* isolate = object->GetIsolate();
3211   HandleScope scope(isolate);
3212   Handle<Map> map(object->map());
3213 
3214   // Allocate new content.
3215   int real_size = map->NumberOfOwnDescriptors();
3216   int property_count = real_size;
3217   if (expected_additional_properties > 0) {
3218     property_count += expected_additional_properties;
3219   } else {
3220     property_count += 2;  // Make space for two more properties.
3221   }
3222   Handle<NameDictionary> dictionary =
3223       NameDictionary::New(isolate, property_count);
3224 
3225   Handle<DescriptorArray> descs(map->instance_descriptors());
3226   for (int i = 0; i < real_size; i++) {
3227     PropertyDetails details = descs->GetDetails(i);
3228     Handle<Name> key(descs->GetKey(i));
3229     switch (details.type()) {
3230       case DATA_CONSTANT: {
3231         Handle<Object> value(descs->GetConstant(i), isolate);
3232         PropertyDetails d(details.attributes(), DATA, i + 1,
3233                           PropertyCellType::kNoCell);
3234         dictionary = NameDictionary::Add(dictionary, key, value, d);
3235         break;
3236       }
3237       case DATA: {
3238         FieldIndex index = FieldIndex::ForDescriptor(*map, i);
3239         Handle<Object> value;
3240         if (object->IsUnboxedDoubleField(index)) {
3241           double old_value = object->RawFastDoublePropertyAt(index);
3242           value = isolate->factory()->NewHeapNumber(old_value);
3243         } else {
3244           value = handle(object->RawFastPropertyAt(index), isolate);
3245           if (details.representation().IsDouble()) {
3246             DCHECK(value->IsMutableHeapNumber());
3247             Handle<HeapNumber> old = Handle<HeapNumber>::cast(value);
3248             value = isolate->factory()->NewHeapNumber(old->value());
3249           }
3250         }
3251         PropertyDetails d(details.attributes(), DATA, i + 1,
3252                           PropertyCellType::kNoCell);
3253         dictionary = NameDictionary::Add(dictionary, key, value, d);
3254         break;
3255       }
3256       case ACCESSOR: {
3257         FieldIndex index = FieldIndex::ForDescriptor(*map, i);
3258         Handle<Object> value(object->RawFastPropertyAt(index), isolate);
3259         PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
3260                           PropertyCellType::kNoCell);
3261         dictionary = NameDictionary::Add(dictionary, key, value, d);
3262         break;
3263       }
3264       case ACCESSOR_CONSTANT: {
3265         Handle<Object> value(descs->GetCallbacksObject(i), isolate);
3266         PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
3267                           PropertyCellType::kNoCell);
3268         dictionary = NameDictionary::Add(dictionary, key, value, d);
3269         break;
3270       }
3271     }
3272   }
3273 
3274   // Copy the next enumeration index from instance descriptor.
3275   dictionary->SetNextEnumerationIndex(real_size + 1);
3276 
3277   // From here on we cannot fail and we shouldn't GC anymore.
3278   DisallowHeapAllocation no_allocation;
3279 
3280   // Resize the object in the heap if necessary.
3281   int new_instance_size = new_map->instance_size();
3282   int instance_size_delta = map->instance_size() - new_instance_size;
3283   DCHECK(instance_size_delta >= 0);
3284 
3285   if (instance_size_delta > 0) {
3286     Heap* heap = isolate->heap();
3287     heap->CreateFillerObjectAt(object->address() + new_instance_size,
3288                                instance_size_delta, ClearRecordedSlots::kYes);
3289     heap->AdjustLiveBytes(*object, -instance_size_delta,
3290                           Heap::CONCURRENT_TO_SWEEPER);
3291   }
3292 
3293   // We are storing the new map using release store after creating a filler for
3294   // the left-over space to avoid races with the sweeper thread.
3295   object->synchronized_set_map(*new_map);
3296 
3297   object->set_properties(*dictionary);
3298 
3299   // Ensure that in-object space of slow-mode object does not contain random
3300   // garbage.
3301   int inobject_properties = new_map->GetInObjectProperties();
3302   for (int i = 0; i < inobject_properties; i++) {
3303     FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
3304     object->RawFastPropertyAtPut(index, Smi::FromInt(0));
3305   }
3306 
3307   isolate->counters()->props_to_dictionary()->Increment();
3308 
3309 #ifdef DEBUG
3310   if (FLAG_trace_normalization) {
3311     OFStream os(stdout);
3312     os << "Object properties have been normalized:\n";
3313     object->Print(os);
3314   }
3315 #endif
3316 }
3317 
3318 }  // namespace
3319 
MigrateToMap(Handle<JSObject> object,Handle<Map> new_map,int expected_additional_properties)3320 void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
3321                             int expected_additional_properties) {
3322   if (object->map() == *new_map) return;
3323   Handle<Map> old_map(object->map());
3324   if (old_map->is_prototype_map()) {
3325     // If this object is a prototype (the callee will check), invalidate any
3326     // prototype chains involving it.
3327     InvalidatePrototypeChains(object->map());
3328 
3329     // If the map was registered with its prototype before, ensure that it
3330     // registers with its new prototype now. This preserves the invariant that
3331     // when a map on a prototype chain is registered with its prototype, then
3332     // all prototypes further up the chain are also registered with their
3333     // respective prototypes.
3334     UpdatePrototypeUserRegistration(old_map, new_map, new_map->GetIsolate());
3335   }
3336 
3337   if (old_map->is_dictionary_map()) {
3338     // For slow-to-fast migrations JSObject::MigrateSlowToFast()
3339     // must be used instead.
3340     CHECK(new_map->is_dictionary_map());
3341 
3342     // Slow-to-slow migration is trivial.
3343     object->set_map(*new_map);
3344   } else if (!new_map->is_dictionary_map()) {
3345     MigrateFastToFast(object, new_map);
3346     if (old_map->is_prototype_map()) {
3347       DCHECK(!old_map->is_stable());
3348       DCHECK(new_map->is_stable());
3349       // Clear out the old descriptor array to avoid problems to sharing
3350       // the descriptor array without using an explicit.
3351       old_map->InitializeDescriptors(
3352           old_map->GetHeap()->empty_descriptor_array(),
3353           LayoutDescriptor::FastPointerLayout());
3354       // Ensure that no transition was inserted for prototype migrations.
3355       DCHECK_EQ(
3356           0, TransitionArray::NumberOfTransitions(old_map->raw_transitions()));
3357       DCHECK(new_map->GetBackPointer()->IsUndefined(new_map->GetIsolate()));
3358     }
3359   } else {
3360     MigrateFastToSlow(object, new_map, expected_additional_properties);
3361   }
3362 
3363   // Careful: Don't allocate here!
3364   // For some callers of this method, |object| might be in an inconsistent
3365   // state now: the new map might have a new elements_kind, but the object's
3366   // elements pointer hasn't been updated yet. Callers will fix this, but in
3367   // the meantime, (indirectly) calling JSObjectVerify() must be avoided.
3368   // When adding code here, add a DisallowHeapAllocation too.
3369 }
3370 
NumberOfFields()3371 int Map::NumberOfFields() {
3372   DescriptorArray* descriptors = instance_descriptors();
3373   int result = 0;
3374   for (int i = 0; i < NumberOfOwnDescriptors(); i++) {
3375     if (descriptors->GetDetails(i).location() == kField) result++;
3376   }
3377   return result;
3378 }
3379 
CopyGeneralizeAllRepresentations(Handle<Map> map,ElementsKind elements_kind,int modify_index,StoreMode store_mode,PropertyKind kind,PropertyAttributes attributes,const char * reason)3380 Handle<Map> Map::CopyGeneralizeAllRepresentations(
3381     Handle<Map> map, ElementsKind elements_kind, int modify_index,
3382     StoreMode store_mode, PropertyKind kind, PropertyAttributes attributes,
3383     const char* reason) {
3384   Isolate* isolate = map->GetIsolate();
3385   Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
3386   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
3387   Handle<DescriptorArray> descriptors =
3388       DescriptorArray::CopyUpTo(old_descriptors, number_of_own_descriptors);
3389 
3390   for (int i = 0; i < number_of_own_descriptors; i++) {
3391     descriptors->SetRepresentation(i, Representation::Tagged());
3392     if (descriptors->GetDetails(i).type() == DATA) {
3393       descriptors->SetValue(i, FieldType::Any());
3394     }
3395   }
3396 
3397   Handle<LayoutDescriptor> new_layout_descriptor(
3398       LayoutDescriptor::FastPointerLayout(), isolate);
3399   Handle<Map> new_map = CopyReplaceDescriptors(
3400       map, descriptors, new_layout_descriptor, OMIT_TRANSITION,
3401       MaybeHandle<Name>(), reason, SPECIAL_TRANSITION);
3402 
3403   // Unless the instance is being migrated, ensure that modify_index is a field.
3404   if (modify_index >= 0) {
3405     PropertyDetails details = descriptors->GetDetails(modify_index);
3406     if (store_mode == FORCE_FIELD &&
3407         (details.type() != DATA || details.attributes() != attributes)) {
3408       int field_index = details.type() == DATA ? details.field_index()
3409                                                : new_map->NumberOfFields();
3410       DataDescriptor d(handle(descriptors->GetKey(modify_index), isolate),
3411                        field_index, attributes, Representation::Tagged());
3412       descriptors->Replace(modify_index, &d);
3413       if (details.type() != DATA) {
3414         int unused_property_fields = new_map->unused_property_fields() - 1;
3415         if (unused_property_fields < 0) {
3416           unused_property_fields += JSObject::kFieldsAdded;
3417         }
3418         new_map->set_unused_property_fields(unused_property_fields);
3419       }
3420     } else {
3421       DCHECK(details.attributes() == attributes);
3422     }
3423 
3424     if (FLAG_trace_generalization) {
3425       MaybeHandle<FieldType> field_type = FieldType::None(isolate);
3426       if (details.type() == DATA) {
3427         field_type = handle(
3428             map->instance_descriptors()->GetFieldType(modify_index), isolate);
3429       }
3430       map->PrintGeneralization(
3431           stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(),
3432           new_map->NumberOfOwnDescriptors(),
3433           details.type() == DATA_CONSTANT && store_mode == FORCE_FIELD,
3434           details.representation(), Representation::Tagged(), field_type,
3435           MaybeHandle<Object>(), FieldType::Any(isolate),
3436           MaybeHandle<Object>());
3437     }
3438   }
3439   new_map->set_elements_kind(elements_kind);
3440   return new_map;
3441 }
3442 
3443 
DeprecateTransitionTree()3444 void Map::DeprecateTransitionTree() {
3445   if (is_deprecated()) return;
3446   Object* transitions = raw_transitions();
3447   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
3448   for (int i = 0; i < num_transitions; ++i) {
3449     TransitionArray::GetTarget(transitions, i)->DeprecateTransitionTree();
3450   }
3451   deprecate();
3452   dependent_code()->DeoptimizeDependentCodeGroup(
3453       GetIsolate(), DependentCode::kTransitionGroup);
3454   NotifyLeafMapLayoutChange();
3455 }
3456 
3457 
EqualImmutableValues(Object * obj1,Object * obj2)3458 static inline bool EqualImmutableValues(Object* obj1, Object* obj2) {
3459   if (obj1 == obj2) return true;  // Valid for both kData and kAccessor kinds.
3460   // TODO(ishell): compare AccessorPairs.
3461   return false;
3462 }
3463 
3464 
3465 // Installs |new_descriptors| over the current instance_descriptors to ensure
3466 // proper sharing of descriptor arrays.
ReplaceDescriptors(DescriptorArray * new_descriptors,LayoutDescriptor * new_layout_descriptor)3467 void Map::ReplaceDescriptors(DescriptorArray* new_descriptors,
3468                              LayoutDescriptor* new_layout_descriptor) {
3469   Isolate* isolate = GetIsolate();
3470   // Don't overwrite the empty descriptor array or initial map's descriptors.
3471   if (NumberOfOwnDescriptors() == 0 || GetBackPointer()->IsUndefined(isolate)) {
3472     return;
3473   }
3474 
3475   DescriptorArray* to_replace = instance_descriptors();
3476   isolate->heap()->incremental_marking()->IterateBlackObject(to_replace);
3477   Map* current = this;
3478   while (current->instance_descriptors() == to_replace) {
3479     Object* next = current->GetBackPointer();
3480     if (next->IsUndefined(isolate)) break;  // Stop overwriting at initial map.
3481     current->SetEnumLength(kInvalidEnumCacheSentinel);
3482     current->UpdateDescriptors(new_descriptors, new_layout_descriptor);
3483     current = Map::cast(next);
3484   }
3485   set_owns_descriptors(false);
3486 }
3487 
3488 
FindRootMap()3489 Map* Map::FindRootMap() {
3490   Map* result = this;
3491   Isolate* isolate = GetIsolate();
3492   while (true) {
3493     Object* back = result->GetBackPointer();
3494     if (back->IsUndefined(isolate)) {
3495       // Initial map always owns descriptors and doesn't have unused entries
3496       // in the descriptor array.
3497       DCHECK(result->owns_descriptors());
3498       DCHECK_EQ(result->NumberOfOwnDescriptors(),
3499                 result->instance_descriptors()->number_of_descriptors());
3500       return result;
3501     }
3502     result = Map::cast(back);
3503   }
3504 }
3505 
3506 
FindLastMatchMap(int verbatim,int length,DescriptorArray * descriptors)3507 Map* Map::FindLastMatchMap(int verbatim,
3508                            int length,
3509                            DescriptorArray* descriptors) {
3510   DisallowHeapAllocation no_allocation;
3511 
3512   // This can only be called on roots of transition trees.
3513   DCHECK_EQ(verbatim, NumberOfOwnDescriptors());
3514 
3515   Map* current = this;
3516 
3517   for (int i = verbatim; i < length; i++) {
3518     Name* name = descriptors->GetKey(i);
3519     PropertyDetails details = descriptors->GetDetails(i);
3520     Map* next = TransitionArray::SearchTransition(current, details.kind(), name,
3521                                                   details.attributes());
3522     if (next == NULL) break;
3523     DescriptorArray* next_descriptors = next->instance_descriptors();
3524 
3525     PropertyDetails next_details = next_descriptors->GetDetails(i);
3526     DCHECK_EQ(details.kind(), next_details.kind());
3527     DCHECK_EQ(details.attributes(), next_details.attributes());
3528     if (details.location() != next_details.location()) break;
3529     if (!details.representation().Equals(next_details.representation())) break;
3530 
3531     if (next_details.location() == kField) {
3532       FieldType* next_field_type = next_descriptors->GetFieldType(i);
3533       if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) {
3534         break;
3535       }
3536     } else {
3537       if (!EqualImmutableValues(descriptors->GetValue(i),
3538                                 next_descriptors->GetValue(i))) {
3539         break;
3540       }
3541     }
3542     current = next;
3543   }
3544   return current;
3545 }
3546 
3547 
FindFieldOwner(int descriptor)3548 Map* Map::FindFieldOwner(int descriptor) {
3549   DisallowHeapAllocation no_allocation;
3550   DCHECK_EQ(DATA, instance_descriptors()->GetDetails(descriptor).type());
3551   Map* result = this;
3552   Isolate* isolate = GetIsolate();
3553   while (true) {
3554     Object* back = result->GetBackPointer();
3555     if (back->IsUndefined(isolate)) break;
3556     Map* parent = Map::cast(back);
3557     if (parent->NumberOfOwnDescriptors() <= descriptor) break;
3558     result = parent;
3559   }
3560   return result;
3561 }
3562 
3563 
UpdateFieldType(int descriptor,Handle<Name> name,Representation new_representation,Handle<Object> new_wrapped_type)3564 void Map::UpdateFieldType(int descriptor, Handle<Name> name,
3565                           Representation new_representation,
3566                           Handle<Object> new_wrapped_type) {
3567   DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakCell());
3568   // We store raw pointers in the queue, so no allocations are allowed.
3569   DisallowHeapAllocation no_allocation;
3570   PropertyDetails details = instance_descriptors()->GetDetails(descriptor);
3571   if (details.type() != DATA) return;
3572 
3573   Zone zone(GetIsolate()->allocator());
3574   ZoneQueue<Map*> backlog(&zone);
3575   backlog.push(this);
3576 
3577   while (!backlog.empty()) {
3578     Map* current = backlog.front();
3579     backlog.pop();
3580 
3581     Object* transitions = current->raw_transitions();
3582     int num_transitions = TransitionArray::NumberOfTransitions(transitions);
3583     for (int i = 0; i < num_transitions; ++i) {
3584       Map* target = TransitionArray::GetTarget(transitions, i);
3585       backlog.push(target);
3586     }
3587     DescriptorArray* descriptors = current->instance_descriptors();
3588     PropertyDetails details = descriptors->GetDetails(descriptor);
3589 
3590     // It is allowed to change representation here only from None to something.
3591     DCHECK(details.representation().Equals(new_representation) ||
3592            details.representation().IsNone());
3593 
3594     // Skip if already updated the shared descriptor.
3595     if (descriptors->GetValue(descriptor) != *new_wrapped_type) {
3596       DataDescriptor d(name, descriptors->GetFieldIndex(descriptor),
3597                        new_wrapped_type, details.attributes(),
3598                        new_representation);
3599       descriptors->Replace(descriptor, &d);
3600     }
3601   }
3602 }
3603 
FieldTypeIsCleared(Representation rep,FieldType * type)3604 bool FieldTypeIsCleared(Representation rep, FieldType* type) {
3605   return type->IsNone() && rep.IsHeapObject();
3606 }
3607 
3608 
3609 // static
GeneralizeFieldType(Representation rep1,Handle<FieldType> type1,Representation rep2,Handle<FieldType> type2,Isolate * isolate)3610 Handle<FieldType> Map::GeneralizeFieldType(Representation rep1,
3611                                            Handle<FieldType> type1,
3612                                            Representation rep2,
3613                                            Handle<FieldType> type2,
3614                                            Isolate* isolate) {
3615   // Cleared field types need special treatment. They represent lost knowledge,
3616   // so we must be conservative, so their generalization with any other type
3617   // is "Any".
3618   if (FieldTypeIsCleared(rep1, *type1) || FieldTypeIsCleared(rep2, *type2)) {
3619     return FieldType::Any(isolate);
3620   }
3621   if (type1->NowIs(type2)) return type2;
3622   if (type2->NowIs(type1)) return type1;
3623   return FieldType::Any(isolate);
3624 }
3625 
3626 
3627 // static
GeneralizeFieldType(Handle<Map> map,int modify_index,Representation new_representation,Handle<FieldType> new_field_type)3628 void Map::GeneralizeFieldType(Handle<Map> map, int modify_index,
3629                               Representation new_representation,
3630                               Handle<FieldType> new_field_type) {
3631   Isolate* isolate = map->GetIsolate();
3632 
3633   // Check if we actually need to generalize the field type at all.
3634   Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
3635   Representation old_representation =
3636       old_descriptors->GetDetails(modify_index).representation();
3637   Handle<FieldType> old_field_type(old_descriptors->GetFieldType(modify_index),
3638                                    isolate);
3639 
3640   if (old_representation.Equals(new_representation) &&
3641       !FieldTypeIsCleared(new_representation, *new_field_type) &&
3642       // Checking old_field_type for being cleared is not necessary because
3643       // the NowIs check below would fail anyway in that case.
3644       new_field_type->NowIs(old_field_type)) {
3645     DCHECK(Map::GeneralizeFieldType(old_representation, old_field_type,
3646                                     new_representation, new_field_type, isolate)
3647                ->NowIs(old_field_type));
3648     return;
3649   }
3650 
3651   // Determine the field owner.
3652   Handle<Map> field_owner(map->FindFieldOwner(modify_index), isolate);
3653   Handle<DescriptorArray> descriptors(
3654       field_owner->instance_descriptors(), isolate);
3655   DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index));
3656 
3657   new_field_type =
3658       Map::GeneralizeFieldType(old_representation, old_field_type,
3659                                new_representation, new_field_type, isolate);
3660 
3661   PropertyDetails details = descriptors->GetDetails(modify_index);
3662   Handle<Name> name(descriptors->GetKey(modify_index));
3663 
3664   Handle<Object> wrapped_type(WrapType(new_field_type));
3665   field_owner->UpdateFieldType(modify_index, name, new_representation,
3666                                wrapped_type);
3667   field_owner->dependent_code()->DeoptimizeDependentCodeGroup(
3668       isolate, DependentCode::kFieldTypeGroup);
3669 
3670   if (FLAG_trace_generalization) {
3671     map->PrintGeneralization(
3672         stdout, "field type generalization", modify_index,
3673         map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false,
3674         details.representation(), details.representation(), old_field_type,
3675         MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>());
3676   }
3677 }
3678 
GetFieldType(Isolate * isolate,Handle<DescriptorArray> descriptors,int descriptor,PropertyLocation location,Representation representation)3679 static inline Handle<FieldType> GetFieldType(
3680     Isolate* isolate, Handle<DescriptorArray> descriptors, int descriptor,
3681     PropertyLocation location, Representation representation) {
3682 #ifdef DEBUG
3683   PropertyDetails details = descriptors->GetDetails(descriptor);
3684   DCHECK_EQ(kData, details.kind());
3685   DCHECK_EQ(details.location(), location);
3686 #endif
3687   if (location == kField) {
3688     return handle(descriptors->GetFieldType(descriptor), isolate);
3689   } else {
3690     return descriptors->GetValue(descriptor)
3691         ->OptimalType(isolate, representation);
3692   }
3693 }
3694 
3695 // Reconfigures elements kind to |new_elements_kind| and/or property at
3696 // |modify_index| with |new_kind|, |new_attributes|, |store_mode| and/or
3697 // |new_representation|/|new_field_type|.
3698 // If |modify_index| is negative then no properties are reconfigured but the
3699 // map is migrated to the up-to-date non-deprecated state.
3700 //
3701 // This method rewrites or completes the transition tree to reflect the new
3702 // change. To avoid high degrees over polymorphism, and to stabilize quickly,
3703 // on every rewrite the new type is deduced by merging the current type with
3704 // any potential new (partial) version of the type in the transition tree.
3705 // To do this, on each rewrite:
3706 // - Search the root of the transition tree using FindRootMap.
3707 // - Find/create a |root_map| with requested |new_elements_kind|.
3708 // - Find |target_map|, the newest matching version of this map using the
3709 //   virtually "enhanced" |old_map|'s descriptor array (i.e. whose entry at
3710 //   |modify_index| is considered to be of |new_kind| and having
3711 //   |new_attributes|) to walk the transition tree.
3712 // - Merge/generalize the "enhanced" descriptor array of the |old_map| and
3713 //   descriptor array of the |target_map|.
3714 // - Generalize the |modify_index| descriptor using |new_representation| and
3715 //   |new_field_type|.
3716 // - Walk the tree again starting from the root towards |target_map|. Stop at
3717 //   |split_map|, the first map who's descriptor array does not match the merged
3718 //   descriptor array.
3719 // - If |target_map| == |split_map|, |target_map| is in the expected state.
3720 //   Return it.
3721 // - Otherwise, invalidate the outdated transition target from |target_map|, and
3722 //   replace its transition tree with a new branch for the updated descriptors.
Reconfigure(Handle<Map> old_map,ElementsKind new_elements_kind,int modify_index,PropertyKind new_kind,PropertyAttributes new_attributes,Representation new_representation,Handle<FieldType> new_field_type,StoreMode store_mode)3723 Handle<Map> Map::Reconfigure(Handle<Map> old_map,
3724                              ElementsKind new_elements_kind, int modify_index,
3725                              PropertyKind new_kind,
3726                              PropertyAttributes new_attributes,
3727                              Representation new_representation,
3728                              Handle<FieldType> new_field_type,
3729                              StoreMode store_mode) {
3730   DCHECK_NE(kAccessor, new_kind);  // TODO(ishell): not supported yet.
3731   DCHECK(store_mode != FORCE_FIELD || modify_index >= 0);
3732   Isolate* isolate = old_map->GetIsolate();
3733 
3734   Handle<DescriptorArray> old_descriptors(
3735       old_map->instance_descriptors(), isolate);
3736   int old_nof = old_map->NumberOfOwnDescriptors();
3737 
3738   // If it's just a representation generalization case (i.e. property kind and
3739   // attributes stays unchanged) it's fine to transition from None to anything
3740   // but double without any modification to the object, because the default
3741   // uninitialized value for representation None can be overwritten by both
3742   // smi and tagged values. Doubles, however, would require a box allocation.
3743   if (modify_index >= 0 && !new_representation.IsNone() &&
3744       !new_representation.IsDouble() &&
3745       old_map->elements_kind() == new_elements_kind) {
3746     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
3747     Representation old_representation = old_details.representation();
3748 
3749     if (old_representation.IsNone()) {
3750       DCHECK_EQ(new_kind, old_details.kind());
3751       DCHECK_EQ(new_attributes, old_details.attributes());
3752       DCHECK_EQ(DATA, old_details.type());
3753       if (FLAG_trace_generalization) {
3754         old_map->PrintGeneralization(
3755             stdout, "uninitialized field", modify_index,
3756             old_map->NumberOfOwnDescriptors(),
3757             old_map->NumberOfOwnDescriptors(), false, old_representation,
3758             new_representation,
3759             handle(old_descriptors->GetFieldType(modify_index), isolate),
3760             MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>());
3761       }
3762       Handle<Map> field_owner(old_map->FindFieldOwner(modify_index), isolate);
3763 
3764       GeneralizeFieldType(field_owner, modify_index, new_representation,
3765                           new_field_type);
3766       DCHECK(old_descriptors->GetDetails(modify_index)
3767                  .representation()
3768                  .Equals(new_representation));
3769       DCHECK(
3770           old_descriptors->GetFieldType(modify_index)->NowIs(new_field_type));
3771       return old_map;
3772     }
3773   }
3774 
3775   // Check the state of the root map.
3776   Handle<Map> root_map(old_map->FindRootMap(), isolate);
3777   if (!old_map->EquivalentToForTransition(*root_map)) {
3778     return CopyGeneralizeAllRepresentations(
3779         old_map, new_elements_kind, modify_index, store_mode, new_kind,
3780         new_attributes, "GenAll_NotEquivalent");
3781   }
3782 
3783   ElementsKind from_kind = root_map->elements_kind();
3784   ElementsKind to_kind = new_elements_kind;
3785   // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS.
3786   if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS &&
3787       to_kind != SLOW_STRING_WRAPPER_ELEMENTS &&
3788       to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS &&
3789       !(IsTransitionableFastElementsKind(from_kind) &&
3790         IsMoreGeneralElementsKindTransition(from_kind, to_kind))) {
3791     return CopyGeneralizeAllRepresentations(
3792         old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3793         "GenAll_InvalidElementsTransition");
3794   }
3795   int root_nof = root_map->NumberOfOwnDescriptors();
3796   if (modify_index >= 0 && modify_index < root_nof) {
3797     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
3798     if (old_details.kind() != new_kind ||
3799         old_details.attributes() != new_attributes) {
3800       return CopyGeneralizeAllRepresentations(
3801           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3802           "GenAll_RootModification1");
3803     }
3804     if ((old_details.type() != DATA && store_mode == FORCE_FIELD) ||
3805         (old_details.type() == DATA &&
3806          (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) ||
3807           !new_representation.fits_into(old_details.representation())))) {
3808       return CopyGeneralizeAllRepresentations(
3809           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3810           "GenAll_RootModification2");
3811     }
3812   }
3813 
3814   // From here on, use the map with correct elements kind as root map.
3815   if (from_kind != to_kind) {
3816     root_map = Map::AsElementsKind(root_map, to_kind);
3817   }
3818 
3819   Handle<Map> target_map = root_map;
3820   for (int i = root_nof; i < old_nof; ++i) {
3821     PropertyDetails old_details = old_descriptors->GetDetails(i);
3822     PropertyKind next_kind;
3823     PropertyLocation next_location;
3824     PropertyAttributes next_attributes;
3825     Representation next_representation;
3826     bool property_kind_reconfiguration = false;
3827 
3828     if (modify_index == i) {
3829       DCHECK_EQ(FORCE_FIELD, store_mode);
3830       property_kind_reconfiguration = old_details.kind() != new_kind;
3831 
3832       next_kind = new_kind;
3833       next_location = kField;
3834       next_attributes = new_attributes;
3835       // If property kind is not reconfigured merge the result with
3836       // representation/field type from the old descriptor.
3837       next_representation = new_representation;
3838       if (!property_kind_reconfiguration) {
3839         next_representation =
3840             next_representation.generalize(old_details.representation());
3841       }
3842 
3843     } else {
3844       next_kind = old_details.kind();
3845       next_location = old_details.location();
3846       next_attributes = old_details.attributes();
3847       next_representation = old_details.representation();
3848     }
3849     Map* transition = TransitionArray::SearchTransition(
3850         *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
3851     if (transition == NULL) break;
3852     Handle<Map> tmp_map(transition, isolate);
3853 
3854     Handle<DescriptorArray> tmp_descriptors = handle(
3855         tmp_map->instance_descriptors(), isolate);
3856 
3857     // Check if target map is incompatible.
3858     PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
3859     DCHECK_EQ(next_kind, tmp_details.kind());
3860     DCHECK_EQ(next_attributes, tmp_details.attributes());
3861     if (next_kind == kAccessor &&
3862         !EqualImmutableValues(old_descriptors->GetValue(i),
3863                               tmp_descriptors->GetValue(i))) {
3864       return CopyGeneralizeAllRepresentations(
3865           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3866           "GenAll_Incompatible");
3867     }
3868     if (next_location == kField && tmp_details.location() == kDescriptor) break;
3869 
3870     Representation tmp_representation = tmp_details.representation();
3871     if (!next_representation.fits_into(tmp_representation)) break;
3872 
3873     PropertyLocation old_location = old_details.location();
3874     PropertyLocation tmp_location = tmp_details.location();
3875     if (tmp_location == kField) {
3876       if (next_kind == kData) {
3877         Handle<FieldType> next_field_type;
3878         if (modify_index == i) {
3879           next_field_type = new_field_type;
3880           if (!property_kind_reconfiguration) {
3881             Handle<FieldType> old_field_type =
3882                 GetFieldType(isolate, old_descriptors, i,
3883                              old_details.location(), tmp_representation);
3884             Representation old_representation = old_details.representation();
3885             next_field_type = GeneralizeFieldType(
3886                 old_representation, old_field_type, new_representation,
3887                 next_field_type, isolate);
3888           }
3889         } else {
3890           Handle<FieldType> old_field_type =
3891               GetFieldType(isolate, old_descriptors, i, old_details.location(),
3892                            tmp_representation);
3893           next_field_type = old_field_type;
3894         }
3895         GeneralizeFieldType(tmp_map, i, tmp_representation, next_field_type);
3896       }
3897     } else if (old_location == kField ||
3898                !EqualImmutableValues(old_descriptors->GetValue(i),
3899                                      tmp_descriptors->GetValue(i))) {
3900       break;
3901     }
3902     DCHECK(!tmp_map->is_deprecated());
3903     target_map = tmp_map;
3904   }
3905 
3906   // Directly change the map if the target map is more general.
3907   Handle<DescriptorArray> target_descriptors(
3908       target_map->instance_descriptors(), isolate);
3909   int target_nof = target_map->NumberOfOwnDescriptors();
3910   if (target_nof == old_nof &&
3911       (store_mode != FORCE_FIELD ||
3912        (modify_index >= 0 &&
3913         target_descriptors->GetDetails(modify_index).location() == kField))) {
3914 #ifdef DEBUG
3915     if (modify_index >= 0) {
3916       PropertyDetails details = target_descriptors->GetDetails(modify_index);
3917       DCHECK_EQ(new_kind, details.kind());
3918       DCHECK_EQ(new_attributes, details.attributes());
3919       DCHECK(new_representation.fits_into(details.representation()));
3920       DCHECK(details.location() != kField ||
3921              new_field_type->NowIs(
3922                  target_descriptors->GetFieldType(modify_index)));
3923     }
3924 #endif
3925     if (*target_map != *old_map) {
3926       old_map->NotifyLeafMapLayoutChange();
3927     }
3928     return target_map;
3929   }
3930 
3931   // Find the last compatible target map in the transition tree.
3932   for (int i = target_nof; i < old_nof; ++i) {
3933     PropertyDetails old_details = old_descriptors->GetDetails(i);
3934     PropertyKind next_kind;
3935     PropertyAttributes next_attributes;
3936     if (modify_index == i) {
3937       next_kind = new_kind;
3938       next_attributes = new_attributes;
3939     } else {
3940       next_kind = old_details.kind();
3941       next_attributes = old_details.attributes();
3942     }
3943     Map* transition = TransitionArray::SearchTransition(
3944         *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
3945     if (transition == NULL) break;
3946     Handle<Map> tmp_map(transition, isolate);
3947     Handle<DescriptorArray> tmp_descriptors(
3948         tmp_map->instance_descriptors(), isolate);
3949 
3950     // Check if target map is compatible.
3951 #ifdef DEBUG
3952     PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
3953     DCHECK_EQ(next_kind, tmp_details.kind());
3954     DCHECK_EQ(next_attributes, tmp_details.attributes());
3955 #endif
3956     if (next_kind == kAccessor &&
3957         !EqualImmutableValues(old_descriptors->GetValue(i),
3958                               tmp_descriptors->GetValue(i))) {
3959       return CopyGeneralizeAllRepresentations(
3960           old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3961           "GenAll_Incompatible");
3962     }
3963     DCHECK(!tmp_map->is_deprecated());
3964     target_map = tmp_map;
3965   }
3966   target_nof = target_map->NumberOfOwnDescriptors();
3967   target_descriptors = handle(target_map->instance_descriptors(), isolate);
3968 
3969   // Allocate a new descriptor array large enough to hold the required
3970   // descriptors, with minimally the exact same size as the old descriptor
3971   // array.
3972   int new_slack = Max(
3973       old_nof, old_descriptors->number_of_descriptors()) - old_nof;
3974   Handle<DescriptorArray> new_descriptors = DescriptorArray::Allocate(
3975       isolate, old_nof, new_slack);
3976   DCHECK(new_descriptors->length() > target_descriptors->length() ||
3977          new_descriptors->NumberOfSlackDescriptors() > 0 ||
3978          new_descriptors->number_of_descriptors() ==
3979          old_descriptors->number_of_descriptors());
3980   DCHECK(new_descriptors->number_of_descriptors() == old_nof);
3981 
3982   // 0 -> |root_nof|
3983   int current_offset = 0;
3984   for (int i = 0; i < root_nof; ++i) {
3985     PropertyDetails old_details = old_descriptors->GetDetails(i);
3986     if (old_details.location() == kField) {
3987       current_offset += old_details.field_width_in_words();
3988     }
3989     Descriptor d(handle(old_descriptors->GetKey(i), isolate),
3990                  handle(old_descriptors->GetValue(i), isolate),
3991                  old_details);
3992     new_descriptors->Set(i, &d);
3993   }
3994 
3995   // |root_nof| -> |target_nof|
3996   for (int i = root_nof; i < target_nof; ++i) {
3997     Handle<Name> target_key(target_descriptors->GetKey(i), isolate);
3998     PropertyDetails old_details = old_descriptors->GetDetails(i);
3999     PropertyDetails target_details = target_descriptors->GetDetails(i);
4000 
4001     PropertyKind next_kind;
4002     PropertyAttributes next_attributes;
4003     PropertyLocation next_location;
4004     Representation next_representation;
4005     bool property_kind_reconfiguration = false;
4006 
4007     if (modify_index == i) {
4008       DCHECK_EQ(FORCE_FIELD, store_mode);
4009       property_kind_reconfiguration = old_details.kind() != new_kind;
4010 
4011       next_kind = new_kind;
4012       next_attributes = new_attributes;
4013       next_location = kField;
4014 
4015       // Merge new representation/field type with ones from the target
4016       // descriptor. If property kind is not reconfigured merge the result with
4017       // representation/field type from the old descriptor.
4018       next_representation =
4019           new_representation.generalize(target_details.representation());
4020       if (!property_kind_reconfiguration) {
4021         next_representation =
4022             next_representation.generalize(old_details.representation());
4023       }
4024     } else {
4025       // Merge old_descriptor and target_descriptor entries.
4026       DCHECK_EQ(target_details.kind(), old_details.kind());
4027       next_kind = target_details.kind();
4028       next_attributes = target_details.attributes();
4029       next_location =
4030           old_details.location() == kField ||
4031                   target_details.location() == kField ||
4032                   !EqualImmutableValues(target_descriptors->GetValue(i),
4033                                         old_descriptors->GetValue(i))
4034               ? kField
4035               : kDescriptor;
4036 
4037       next_representation = old_details.representation().generalize(
4038           target_details.representation());
4039     }
4040     DCHECK_EQ(next_kind, target_details.kind());
4041     DCHECK_EQ(next_attributes, target_details.attributes());
4042 
4043     if (next_location == kField) {
4044       if (next_kind == kData) {
4045         Handle<FieldType> target_field_type =
4046             GetFieldType(isolate, target_descriptors, i,
4047                          target_details.location(), next_representation);
4048 
4049         Handle<FieldType> next_field_type;
4050         if (modify_index == i) {
4051           next_field_type = GeneralizeFieldType(
4052               target_details.representation(), target_field_type,
4053               new_representation, new_field_type, isolate);
4054           if (!property_kind_reconfiguration) {
4055             Handle<FieldType> old_field_type =
4056                 GetFieldType(isolate, old_descriptors, i,
4057                              old_details.location(), next_representation);
4058             next_field_type = GeneralizeFieldType(
4059                 old_details.representation(), old_field_type,
4060                 next_representation, next_field_type, isolate);
4061           }
4062         } else {
4063           Handle<FieldType> old_field_type =
4064               GetFieldType(isolate, old_descriptors, i, old_details.location(),
4065                            next_representation);
4066           next_field_type = GeneralizeFieldType(
4067               old_details.representation(), old_field_type, next_representation,
4068               target_field_type, isolate);
4069         }
4070         Handle<Object> wrapped_type(WrapType(next_field_type));
4071         DataDescriptor d(target_key, current_offset, wrapped_type,
4072                          next_attributes, next_representation);
4073         current_offset += d.GetDetails().field_width_in_words();
4074         new_descriptors->Set(i, &d);
4075       } else {
4076         UNIMPLEMENTED();  // TODO(ishell): implement.
4077       }
4078     } else {
4079       PropertyDetails details(next_attributes, next_kind, next_location,
4080                               next_representation);
4081       Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate),
4082                    details);
4083       new_descriptors->Set(i, &d);
4084     }
4085   }
4086 
4087   // |target_nof| -> |old_nof|
4088   for (int i = target_nof; i < old_nof; ++i) {
4089     PropertyDetails old_details = old_descriptors->GetDetails(i);
4090     Handle<Name> old_key(old_descriptors->GetKey(i), isolate);
4091 
4092     // Merge old_descriptor entry and modified details together.
4093     PropertyKind next_kind;
4094     PropertyAttributes next_attributes;
4095     PropertyLocation next_location;
4096     Representation next_representation;
4097     bool property_kind_reconfiguration = false;
4098 
4099     if (modify_index == i) {
4100       DCHECK_EQ(FORCE_FIELD, store_mode);
4101       // In case of property kind reconfiguration it is not necessary to
4102       // take into account representation/field type of the old descriptor.
4103       property_kind_reconfiguration = old_details.kind() != new_kind;
4104 
4105       next_kind = new_kind;
4106       next_attributes = new_attributes;
4107       next_location = kField;
4108       next_representation = new_representation;
4109       if (!property_kind_reconfiguration) {
4110         next_representation =
4111             next_representation.generalize(old_details.representation());
4112       }
4113     } else {
4114       next_kind = old_details.kind();
4115       next_attributes = old_details.attributes();
4116       next_location = old_details.location();
4117       next_representation = old_details.representation();
4118     }
4119 
4120     if (next_location == kField) {
4121       if (next_kind == kData) {
4122         Handle<FieldType> next_field_type;
4123         if (modify_index == i) {
4124           next_field_type = new_field_type;
4125           if (!property_kind_reconfiguration) {
4126             Handle<FieldType> old_field_type =
4127                 GetFieldType(isolate, old_descriptors, i,
4128                              old_details.location(), next_representation);
4129             next_field_type = GeneralizeFieldType(
4130                 old_details.representation(), old_field_type,
4131                 next_representation, next_field_type, isolate);
4132           }
4133         } else {
4134           Handle<FieldType> old_field_type =
4135               GetFieldType(isolate, old_descriptors, i, old_details.location(),
4136                            next_representation);
4137           next_field_type = old_field_type;
4138         }
4139 
4140         Handle<Object> wrapped_type(WrapType(next_field_type));
4141 
4142         DataDescriptor d(old_key, current_offset, wrapped_type, next_attributes,
4143                          next_representation);
4144         current_offset += d.GetDetails().field_width_in_words();
4145         new_descriptors->Set(i, &d);
4146       } else {
4147         UNIMPLEMENTED();  // TODO(ishell): implement.
4148       }
4149     } else {
4150       PropertyDetails details(next_attributes, next_kind, next_location,
4151                               next_representation);
4152       Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate),
4153                    details);
4154       new_descriptors->Set(i, &d);
4155     }
4156   }
4157 
4158   new_descriptors->Sort();
4159 
4160   DCHECK(store_mode != FORCE_FIELD ||
4161          new_descriptors->GetDetails(modify_index).location() == kField);
4162 
4163   Handle<Map> split_map(root_map->FindLastMatchMap(
4164           root_nof, old_nof, *new_descriptors), isolate);
4165   int split_nof = split_map->NumberOfOwnDescriptors();
4166   DCHECK_NE(old_nof, split_nof);
4167 
4168   PropertyKind split_kind;
4169   PropertyAttributes split_attributes;
4170   if (modify_index == split_nof) {
4171     split_kind = new_kind;
4172     split_attributes = new_attributes;
4173   } else {
4174     PropertyDetails split_prop_details = old_descriptors->GetDetails(split_nof);
4175     split_kind = split_prop_details.kind();
4176     split_attributes = split_prop_details.attributes();
4177   }
4178 
4179   // Invalidate a transition target at |key|.
4180   Map* maybe_transition = TransitionArray::SearchTransition(
4181       *split_map, split_kind, old_descriptors->GetKey(split_nof),
4182       split_attributes);
4183   if (maybe_transition != NULL) {
4184     maybe_transition->DeprecateTransitionTree();
4185   }
4186 
4187   // If |maybe_transition| is not NULL then the transition array already
4188   // contains entry for given descriptor. This means that the transition
4189   // could be inserted regardless of whether transitions array is full or not.
4190   if (maybe_transition == NULL &&
4191       !TransitionArray::CanHaveMoreTransitions(split_map)) {
4192     return CopyGeneralizeAllRepresentations(
4193         old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
4194         "GenAll_CantHaveMoreTransitions");
4195   }
4196 
4197   old_map->NotifyLeafMapLayoutChange();
4198 
4199   if (FLAG_trace_generalization && modify_index >= 0) {
4200     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
4201     PropertyDetails new_details = new_descriptors->GetDetails(modify_index);
4202     MaybeHandle<FieldType> old_field_type;
4203     MaybeHandle<FieldType> new_field_type;
4204     MaybeHandle<Object> old_value;
4205     MaybeHandle<Object> new_value;
4206     if (old_details.type() == DATA) {
4207       old_field_type =
4208           handle(old_descriptors->GetFieldType(modify_index), isolate);
4209     } else {
4210       old_value = handle(old_descriptors->GetValue(modify_index), isolate);
4211     }
4212     if (new_details.type() == DATA) {
4213       new_field_type =
4214           handle(new_descriptors->GetFieldType(modify_index), isolate);
4215     } else {
4216       new_value = handle(new_descriptors->GetValue(modify_index), isolate);
4217     }
4218 
4219     old_map->PrintGeneralization(
4220         stdout, "", modify_index, split_nof, old_nof,
4221         old_details.location() == kDescriptor && store_mode == FORCE_FIELD,
4222         old_details.representation(), new_details.representation(),
4223         old_field_type, old_value, new_field_type, new_value);
4224   }
4225 
4226   Handle<LayoutDescriptor> new_layout_descriptor =
4227       LayoutDescriptor::New(split_map, new_descriptors, old_nof);
4228 
4229   Handle<Map> new_map =
4230       AddMissingTransitions(split_map, new_descriptors, new_layout_descriptor);
4231 
4232   // Deprecated part of the transition tree is no longer reachable, so replace
4233   // current instance descriptors in the "survived" part of the tree with
4234   // the new descriptors to maintain descriptors sharing invariant.
4235   split_map->ReplaceDescriptors(*new_descriptors, *new_layout_descriptor);
4236   return new_map;
4237 }
4238 
4239 
4240 // Generalize the representation of all DATA descriptors.
GeneralizeAllFieldRepresentations(Handle<Map> map)4241 Handle<Map> Map::GeneralizeAllFieldRepresentations(
4242     Handle<Map> map) {
4243   Handle<DescriptorArray> descriptors(map->instance_descriptors());
4244   for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) {
4245     PropertyDetails details = descriptors->GetDetails(i);
4246     if (details.type() == DATA) {
4247       map = ReconfigureProperty(map, i, kData, details.attributes(),
4248                                 Representation::Tagged(),
4249                                 FieldType::Any(map->GetIsolate()), FORCE_FIELD);
4250     }
4251   }
4252   return map;
4253 }
4254 
4255 
4256 // static
TryUpdate(Handle<Map> old_map)4257 MaybeHandle<Map> Map::TryUpdate(Handle<Map> old_map) {
4258   DisallowHeapAllocation no_allocation;
4259   DisallowDeoptimization no_deoptimization(old_map->GetIsolate());
4260 
4261   if (!old_map->is_deprecated()) return old_map;
4262 
4263   // Check the state of the root map.
4264   Map* root_map = old_map->FindRootMap();
4265   if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle<Map>();
4266 
4267   ElementsKind from_kind = root_map->elements_kind();
4268   ElementsKind to_kind = old_map->elements_kind();
4269   if (from_kind != to_kind) {
4270     // Try to follow existing elements kind transitions.
4271     root_map = root_map->LookupElementsTransitionMap(to_kind);
4272     if (root_map == NULL) return MaybeHandle<Map>();
4273     // From here on, use the map with correct elements kind as root map.
4274   }
4275   Map* new_map = root_map->TryReplayPropertyTransitions(*old_map);
4276   if (new_map == nullptr) return MaybeHandle<Map>();
4277   return handle(new_map);
4278 }
4279 
TryReplayPropertyTransitions(Map * old_map)4280 Map* Map::TryReplayPropertyTransitions(Map* old_map) {
4281   DisallowHeapAllocation no_allocation;
4282   DisallowDeoptimization no_deoptimization(GetIsolate());
4283 
4284   int root_nof = NumberOfOwnDescriptors();
4285 
4286   int old_nof = old_map->NumberOfOwnDescriptors();
4287   DescriptorArray* old_descriptors = old_map->instance_descriptors();
4288 
4289   Map* new_map = this;
4290   for (int i = root_nof; i < old_nof; ++i) {
4291     PropertyDetails old_details = old_descriptors->GetDetails(i);
4292     Map* transition = TransitionArray::SearchTransition(
4293         new_map, old_details.kind(), old_descriptors->GetKey(i),
4294         old_details.attributes());
4295     if (transition == NULL) return nullptr;
4296     new_map = transition;
4297     DescriptorArray* new_descriptors = new_map->instance_descriptors();
4298 
4299     PropertyDetails new_details = new_descriptors->GetDetails(i);
4300     DCHECK_EQ(old_details.kind(), new_details.kind());
4301     DCHECK_EQ(old_details.attributes(), new_details.attributes());
4302     if (!old_details.representation().fits_into(new_details.representation())) {
4303       return nullptr;
4304     }
4305     switch (new_details.type()) {
4306       case DATA: {
4307         FieldType* new_type = new_descriptors->GetFieldType(i);
4308         // Cleared field types need special treatment. They represent lost
4309         // knowledge, so we must first generalize the new_type to "Any".
4310         if (FieldTypeIsCleared(new_details.representation(), new_type)) {
4311           return nullptr;
4312         }
4313         PropertyType old_property_type = old_details.type();
4314         if (old_property_type == DATA) {
4315           FieldType* old_type = old_descriptors->GetFieldType(i);
4316           if (FieldTypeIsCleared(old_details.representation(), old_type) ||
4317               !old_type->NowIs(new_type)) {
4318             return nullptr;
4319           }
4320         } else {
4321           DCHECK(old_property_type == DATA_CONSTANT);
4322           Object* old_value = old_descriptors->GetValue(i);
4323           if (!new_type->NowContains(old_value)) {
4324             return nullptr;
4325           }
4326         }
4327         break;
4328       }
4329       case ACCESSOR: {
4330 #ifdef DEBUG
4331         FieldType* new_type = new_descriptors->GetFieldType(i);
4332         DCHECK(new_type->IsAny());
4333 #endif
4334         break;
4335       }
4336 
4337       case DATA_CONSTANT:
4338       case ACCESSOR_CONSTANT: {
4339         Object* old_value = old_descriptors->GetValue(i);
4340         Object* new_value = new_descriptors->GetValue(i);
4341         if (old_details.location() == kField || old_value != new_value) {
4342           return nullptr;
4343         }
4344         break;
4345       }
4346     }
4347   }
4348   if (new_map->NumberOfOwnDescriptors() != old_nof) return nullptr;
4349   return new_map;
4350 }
4351 
4352 
4353 // static
Update(Handle<Map> map)4354 Handle<Map> Map::Update(Handle<Map> map) {
4355   if (!map->is_deprecated()) return map;
4356   return ReconfigureProperty(map, -1, kData, NONE, Representation::None(),
4357                              FieldType::None(map->GetIsolate()),
4358                              ALLOW_IN_DESCRIPTOR);
4359 }
4360 
SetPropertyWithInterceptor(LookupIterator * it,ShouldThrow should_throw,Handle<Object> value)4361 Maybe<bool> JSObject::SetPropertyWithInterceptor(LookupIterator* it,
4362                                                  ShouldThrow should_throw,
4363                                                  Handle<Object> value) {
4364   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
4365   return SetPropertyWithInterceptorInternal(it, it->GetInterceptor(),
4366                                             should_throw, value);
4367 }
4368 
SetProperty(Handle<Object> object,Handle<Name> name,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode)4369 MaybeHandle<Object> Object::SetProperty(Handle<Object> object,
4370                                         Handle<Name> name, Handle<Object> value,
4371                                         LanguageMode language_mode,
4372                                         StoreFromKeyed store_mode) {
4373   LookupIterator it(object, name);
4374   MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode));
4375   return value;
4376 }
4377 
4378 
SetPropertyInternal(LookupIterator * it,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode,bool * found)4379 Maybe<bool> Object::SetPropertyInternal(LookupIterator* it,
4380                                         Handle<Object> value,
4381                                         LanguageMode language_mode,
4382                                         StoreFromKeyed store_mode,
4383                                         bool* found) {
4384   it->UpdateProtector();
4385   DCHECK(it->IsFound());
4386   ShouldThrow should_throw =
4387       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
4388 
4389   // Make sure that the top context does not change when doing callbacks or
4390   // interceptor calls.
4391   AssertNoContextChange ncc(it->isolate());
4392 
4393   do {
4394     switch (it->state()) {
4395       case LookupIterator::NOT_FOUND:
4396         UNREACHABLE();
4397 
4398       case LookupIterator::ACCESS_CHECK:
4399         if (it->HasAccess()) break;
4400         // Check whether it makes sense to reuse the lookup iterator. Here it
4401         // might still call into setters up the prototype chain.
4402         return JSObject::SetPropertyWithFailedAccessCheck(it, value,
4403                                                           should_throw);
4404 
4405       case LookupIterator::JSPROXY:
4406         return JSProxy::SetProperty(it->GetHolder<JSProxy>(), it->GetName(),
4407                                     value, it->GetReceiver(), language_mode);
4408 
4409       case LookupIterator::INTERCEPTOR: {
4410         Handle<Map> store_target_map;
4411         if (it->GetReceiver()->IsJSObject()) {
4412           store_target_map = handle(it->GetStoreTarget()->map(), it->isolate());
4413         }
4414         if (it->HolderIsReceiverOrHiddenPrototype()) {
4415           Maybe<bool> result =
4416               JSObject::SetPropertyWithInterceptor(it, should_throw, value);
4417           if (result.IsNothing() || result.FromJust()) return result;
4418           // Interceptor modified the store target but failed to set the
4419           // property.
4420           Utils::ApiCheck(store_target_map.is_null() ||
4421                               *store_target_map == it->GetStoreTarget()->map(),
4422                           it->IsElement() ? "v8::IndexedPropertySetterCallback"
4423                                           : "v8::NamedPropertySetterCallback",
4424                           "Interceptor silently changed store target.");
4425         } else {
4426           Maybe<PropertyAttributes> maybe_attributes =
4427               JSObject::GetPropertyAttributesWithInterceptor(it);
4428           if (!maybe_attributes.IsJust()) return Nothing<bool>();
4429           if ((maybe_attributes.FromJust() & READ_ONLY) != 0) {
4430             return WriteToReadOnlyProperty(it, value, should_throw);
4431           }
4432           // Interceptor modified the store target but failed to set the
4433           // property.
4434           Utils::ApiCheck(store_target_map.is_null() ||
4435                               *store_target_map == it->GetStoreTarget()->map(),
4436                           it->IsElement() ? "v8::IndexedPropertySetterCallback"
4437                                           : "v8::NamedPropertySetterCallback",
4438                           "Interceptor silently changed store target.");
4439           if (maybe_attributes.FromJust() == ABSENT) break;
4440           *found = false;
4441           return Nothing<bool>();
4442         }
4443         break;
4444       }
4445 
4446       case LookupIterator::ACCESSOR: {
4447         if (it->IsReadOnly()) {
4448           return WriteToReadOnlyProperty(it, value, should_throw);
4449         }
4450         Handle<Object> accessors = it->GetAccessors();
4451         if (accessors->IsAccessorInfo() &&
4452             !it->HolderIsReceiverOrHiddenPrototype() &&
4453             AccessorInfo::cast(*accessors)->is_special_data_property()) {
4454           *found = false;
4455           return Nothing<bool>();
4456         }
4457         return SetPropertyWithAccessor(it, value, should_throw);
4458       }
4459       case LookupIterator::INTEGER_INDEXED_EXOTIC:
4460         // TODO(verwaest): We should throw an exception if holder is receiver.
4461         return Just(true);
4462 
4463       case LookupIterator::DATA:
4464         if (it->IsReadOnly()) {
4465           return WriteToReadOnlyProperty(it, value, should_throw);
4466         }
4467         if (it->HolderIsReceiverOrHiddenPrototype()) {
4468           return SetDataProperty(it, value);
4469         }
4470       // Fall through.
4471       case LookupIterator::TRANSITION:
4472         *found = false;
4473         return Nothing<bool>();
4474     }
4475     it->Next();
4476   } while (it->IsFound());
4477 
4478   *found = false;
4479   return Nothing<bool>();
4480 }
4481 
4482 
SetProperty(LookupIterator * it,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode)4483 Maybe<bool> Object::SetProperty(LookupIterator* it, Handle<Object> value,
4484                                 LanguageMode language_mode,
4485                                 StoreFromKeyed store_mode) {
4486   if (it->IsFound()) {
4487     bool found = true;
4488     Maybe<bool> result =
4489         SetPropertyInternal(it, value, language_mode, store_mode, &found);
4490     if (found) return result;
4491   }
4492 
4493   // If the receiver is the JSGlobalObject, the store was contextual. In case
4494   // the property did not exist yet on the global object itself, we have to
4495   // throw a reference error in strict mode.  In sloppy mode, we continue.
4496   if (is_strict(language_mode) && it->GetReceiver()->IsJSGlobalObject()) {
4497     it->isolate()->Throw(*it->isolate()->factory()->NewReferenceError(
4498         MessageTemplate::kNotDefined, it->name()));
4499     return Nothing<bool>();
4500   }
4501 
4502   ShouldThrow should_throw =
4503       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
4504   return AddDataProperty(it, value, NONE, should_throw, store_mode);
4505 }
4506 
4507 
SetSuperProperty(LookupIterator * it,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode)4508 Maybe<bool> Object::SetSuperProperty(LookupIterator* it, Handle<Object> value,
4509                                      LanguageMode language_mode,
4510                                      StoreFromKeyed store_mode) {
4511   Isolate* isolate = it->isolate();
4512 
4513   if (it->IsFound()) {
4514     bool found = true;
4515     Maybe<bool> result =
4516         SetPropertyInternal(it, value, language_mode, store_mode, &found);
4517     if (found) return result;
4518   }
4519 
4520   it->UpdateProtector();
4521 
4522   // The property either doesn't exist on the holder or exists there as a data
4523   // property.
4524 
4525   ShouldThrow should_throw =
4526       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
4527 
4528   if (!it->GetReceiver()->IsJSReceiver()) {
4529     return WriteToReadOnlyProperty(it, value, should_throw);
4530   }
4531   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
4532 
4533   LookupIterator::Configuration c = LookupIterator::OWN;
4534   LookupIterator own_lookup =
4535       it->IsElement() ? LookupIterator(isolate, receiver, it->index(), c)
4536                       : LookupIterator(receiver, it->name(), c);
4537 
4538   for (; own_lookup.IsFound(); own_lookup.Next()) {
4539     switch (own_lookup.state()) {
4540       case LookupIterator::ACCESS_CHECK:
4541         if (!own_lookup.HasAccess()) {
4542           return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value,
4543                                                             should_throw);
4544         }
4545         break;
4546 
4547       case LookupIterator::ACCESSOR:
4548         if (own_lookup.GetAccessors()->IsAccessorInfo()) {
4549           if (own_lookup.IsReadOnly()) {
4550             return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
4551           }
4552           return JSObject::SetPropertyWithAccessor(&own_lookup, value,
4553                                                    should_throw);
4554         }
4555       // Fall through.
4556       case LookupIterator::INTEGER_INDEXED_EXOTIC:
4557         return RedefineIncompatibleProperty(isolate, it->GetName(), value,
4558                                             should_throw);
4559 
4560       case LookupIterator::DATA: {
4561         if (own_lookup.IsReadOnly()) {
4562           return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
4563         }
4564         return SetDataProperty(&own_lookup, value);
4565       }
4566 
4567       case LookupIterator::INTERCEPTOR:
4568       case LookupIterator::JSPROXY: {
4569         PropertyDescriptor desc;
4570         Maybe<bool> owned =
4571             JSReceiver::GetOwnPropertyDescriptor(&own_lookup, &desc);
4572         MAYBE_RETURN(owned, Nothing<bool>());
4573         if (!owned.FromJust()) {
4574           return JSReceiver::CreateDataProperty(&own_lookup, value,
4575                                                 should_throw);
4576         }
4577         if (PropertyDescriptor::IsAccessorDescriptor(&desc) ||
4578             !desc.writable()) {
4579           return RedefineIncompatibleProperty(isolate, it->GetName(), value,
4580                                               should_throw);
4581         }
4582 
4583         PropertyDescriptor value_desc;
4584         value_desc.set_value(value);
4585         return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
4586                                              &value_desc, should_throw);
4587       }
4588 
4589       case LookupIterator::NOT_FOUND:
4590       case LookupIterator::TRANSITION:
4591         UNREACHABLE();
4592     }
4593   }
4594 
4595   return AddDataProperty(&own_lookup, value, NONE, should_throw, store_mode);
4596 }
4597 
ReadAbsentProperty(LookupIterator * it)4598 MaybeHandle<Object> Object::ReadAbsentProperty(LookupIterator* it) {
4599   return it->isolate()->factory()->undefined_value();
4600 }
4601 
ReadAbsentProperty(Isolate * isolate,Handle<Object> receiver,Handle<Object> name)4602 MaybeHandle<Object> Object::ReadAbsentProperty(Isolate* isolate,
4603                                                Handle<Object> receiver,
4604                                                Handle<Object> name) {
4605   return isolate->factory()->undefined_value();
4606 }
4607 
4608 
CannotCreateProperty(Isolate * isolate,Handle<Object> receiver,Handle<Object> name,Handle<Object> value,ShouldThrow should_throw)4609 Maybe<bool> Object::CannotCreateProperty(Isolate* isolate,
4610                                          Handle<Object> receiver,
4611                                          Handle<Object> name,
4612                                          Handle<Object> value,
4613                                          ShouldThrow should_throw) {
4614   RETURN_FAILURE(
4615       isolate, should_throw,
4616       NewTypeError(MessageTemplate::kStrictCannotCreateProperty, name,
4617                    Object::TypeOf(isolate, receiver), receiver));
4618 }
4619 
4620 
WriteToReadOnlyProperty(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)4621 Maybe<bool> Object::WriteToReadOnlyProperty(LookupIterator* it,
4622                                             Handle<Object> value,
4623                                             ShouldThrow should_throw) {
4624   return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(),
4625                                  it->GetName(), value, should_throw);
4626 }
4627 
4628 
WriteToReadOnlyProperty(Isolate * isolate,Handle<Object> receiver,Handle<Object> name,Handle<Object> value,ShouldThrow should_throw)4629 Maybe<bool> Object::WriteToReadOnlyProperty(Isolate* isolate,
4630                                             Handle<Object> receiver,
4631                                             Handle<Object> name,
4632                                             Handle<Object> value,
4633                                             ShouldThrow should_throw) {
4634   RETURN_FAILURE(isolate, should_throw,
4635                  NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name,
4636                               Object::TypeOf(isolate, receiver), receiver));
4637 }
4638 
4639 
RedefineIncompatibleProperty(Isolate * isolate,Handle<Object> name,Handle<Object> value,ShouldThrow should_throw)4640 Maybe<bool> Object::RedefineIncompatibleProperty(Isolate* isolate,
4641                                                  Handle<Object> name,
4642                                                  Handle<Object> value,
4643                                                  ShouldThrow should_throw) {
4644   RETURN_FAILURE(isolate, should_throw,
4645                  NewTypeError(MessageTemplate::kRedefineDisallowed, name));
4646 }
4647 
4648 
SetDataProperty(LookupIterator * it,Handle<Object> value)4649 Maybe<bool> Object::SetDataProperty(LookupIterator* it, Handle<Object> value) {
4650   // Proxies are handled elsewhere. Other non-JSObjects cannot have own
4651   // properties.
4652   Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
4653 
4654   // Store on the holder which may be hidden behind the receiver.
4655   DCHECK(it->HolderIsReceiverOrHiddenPrototype());
4656 
4657   Handle<Object> to_assign = value;
4658   // Convert the incoming value to a number for storing into typed arrays.
4659   if (it->IsElement() && receiver->HasFixedTypedArrayElements()) {
4660     if (!value->IsNumber() && !value->IsUndefined(it->isolate())) {
4661       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
4662           it->isolate(), to_assign, Object::ToNumber(value), Nothing<bool>());
4663       // We have to recheck the length. However, it can only change if the
4664       // underlying buffer was neutered, so just check that.
4665       if (Handle<JSArrayBufferView>::cast(receiver)->WasNeutered()) {
4666         return Just(true);
4667         // TODO(neis): According to the spec, this should throw a TypeError.
4668       }
4669     }
4670   }
4671 
4672   // Possibly migrate to the most up-to-date map that will be able to store
4673   // |value| under it->name().
4674   it->PrepareForDataProperty(to_assign);
4675 
4676   // Write the property value.
4677   it->WriteDataValue(to_assign);
4678 
4679 #if VERIFY_HEAP
4680   if (FLAG_verify_heap) {
4681     receiver->JSObjectVerify();
4682   }
4683 #endif
4684   return Just(true);
4685 }
4686 
4687 
AddDataProperty(LookupIterator * it,Handle<Object> value,PropertyAttributes attributes,ShouldThrow should_throw,StoreFromKeyed store_mode)4688 Maybe<bool> Object::AddDataProperty(LookupIterator* it, Handle<Object> value,
4689                                     PropertyAttributes attributes,
4690                                     ShouldThrow should_throw,
4691                                     StoreFromKeyed store_mode) {
4692   if (!it->GetReceiver()->IsJSObject()) {
4693     if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate()) {
4694       RETURN_FAILURE(it->isolate(), should_throw,
4695                      NewTypeError(MessageTemplate::kProxyPrivate));
4696     }
4697     return CannotCreateProperty(it->isolate(), it->GetReceiver(), it->GetName(),
4698                                 value, should_throw);
4699   }
4700 
4701   DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state());
4702 
4703   Handle<JSObject> receiver = it->GetStoreTarget();
4704 
4705   // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject)
4706   // instead. If the prototype is Null, the proxy is detached.
4707   if (receiver->IsJSGlobalProxy()) return Just(true);
4708 
4709   Isolate* isolate = it->isolate();
4710 
4711   if (it->ExtendingNonExtensible(receiver)) {
4712     RETURN_FAILURE(
4713         isolate, should_throw,
4714         NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName()));
4715   }
4716 
4717   if (it->IsElement()) {
4718     if (receiver->IsJSArray()) {
4719       Handle<JSArray> array = Handle<JSArray>::cast(receiver);
4720       if (JSArray::WouldChangeReadOnlyLength(array, it->index())) {
4721         RETURN_FAILURE(array->GetIsolate(), should_throw,
4722                        NewTypeError(MessageTemplate::kStrictReadOnlyProperty,
4723                                     isolate->factory()->length_string(),
4724                                     Object::TypeOf(isolate, array), array));
4725       }
4726 
4727       if (FLAG_trace_external_array_abuse &&
4728           array->HasFixedTypedArrayElements()) {
4729         CheckArrayAbuse(array, "typed elements write", it->index(), true);
4730       }
4731 
4732       if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) {
4733         CheckArrayAbuse(array, "elements write", it->index(), false);
4734       }
4735     }
4736 
4737     Maybe<bool> result = JSObject::AddDataElement(receiver, it->index(), value,
4738                                                   attributes, should_throw);
4739     JSObject::ValidateElements(receiver);
4740     return result;
4741   } else {
4742     it->UpdateProtector();
4743     // Migrate to the most up-to-date map that will be able to store |value|
4744     // under it->name() with |attributes|.
4745     it->PrepareTransitionToDataProperty(receiver, value, attributes,
4746                                         store_mode);
4747     DCHECK_EQ(LookupIterator::TRANSITION, it->state());
4748     it->ApplyTransitionToDataProperty(receiver);
4749 
4750     // TODO(verwaest): Encapsulate dictionary handling better.
4751     if (receiver->map()->is_dictionary_map()) {
4752       // TODO(dcarney): just populate TransitionPropertyCell here?
4753       JSObject::AddSlowProperty(receiver, it->name(), value, attributes);
4754     } else {
4755       // Write the property value.
4756       it->WriteDataValue(value);
4757     }
4758 
4759 #if VERIFY_HEAP
4760     if (FLAG_verify_heap) {
4761       receiver->JSObjectVerify();
4762     }
4763 #endif
4764   }
4765 
4766   return Just(true);
4767 }
4768 
4769 
EnsureDescriptorSlack(Handle<Map> map,int slack)4770 void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) {
4771   // Only supports adding slack to owned descriptors.
4772   DCHECK(map->owns_descriptors());
4773 
4774   Handle<DescriptorArray> descriptors(map->instance_descriptors());
4775   int old_size = map->NumberOfOwnDescriptors();
4776   if (slack <= descriptors->NumberOfSlackDescriptors()) return;
4777 
4778   Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
4779       descriptors, old_size, slack);
4780 
4781   DisallowHeapAllocation no_allocation;
4782   // The descriptors are still the same, so keep the layout descriptor.
4783   LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor();
4784 
4785   if (old_size == 0) {
4786     map->UpdateDescriptors(*new_descriptors, layout_descriptor);
4787     return;
4788   }
4789 
4790   // If the source descriptors had an enum cache we copy it. This ensures
4791   // that the maps to which we push the new descriptor array back can rely
4792   // on a cache always being available once it is set. If the map has more
4793   // enumerated descriptors than available in the original cache, the cache
4794   // will be lazily replaced by the extended cache when needed.
4795   if (descriptors->HasEnumCache()) {
4796     new_descriptors->CopyEnumCacheFrom(*descriptors);
4797   }
4798 
4799   Isolate* isolate = map->GetIsolate();
4800   // Replace descriptors by new_descriptors in all maps that share it.
4801   isolate->heap()->incremental_marking()->IterateBlackObject(*descriptors);
4802 
4803   Map* current = *map;
4804   while (current->instance_descriptors() == *descriptors) {
4805     Object* next = current->GetBackPointer();
4806     if (next->IsUndefined(isolate)) break;  // Stop overwriting at initial map.
4807     current->UpdateDescriptors(*new_descriptors, layout_descriptor);
4808     current = Map::cast(next);
4809   }
4810   map->UpdateDescriptors(*new_descriptors, layout_descriptor);
4811 }
4812 
4813 
4814 template<class T>
AppendUniqueCallbacks(NeanderArray * callbacks,Handle<typename T::Array> array,int valid_descriptors)4815 static int AppendUniqueCallbacks(NeanderArray* callbacks,
4816                                  Handle<typename T::Array> array,
4817                                  int valid_descriptors) {
4818   int nof_callbacks = callbacks->length();
4819 
4820   Isolate* isolate = array->GetIsolate();
4821   // Ensure the keys are unique names before writing them into the
4822   // instance descriptor. Since it may cause a GC, it has to be done before we
4823   // temporarily put the heap in an invalid state while appending descriptors.
4824   for (int i = 0; i < nof_callbacks; ++i) {
4825     Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
4826     if (entry->name()->IsUniqueName()) continue;
4827     Handle<String> key =
4828         isolate->factory()->InternalizeString(
4829             Handle<String>(String::cast(entry->name())));
4830     entry->set_name(*key);
4831   }
4832 
4833   // Fill in new callback descriptors.  Process the callbacks from
4834   // back to front so that the last callback with a given name takes
4835   // precedence over previously added callbacks with that name.
4836   for (int i = nof_callbacks - 1; i >= 0; i--) {
4837     Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
4838     Handle<Name> key(Name::cast(entry->name()));
4839     // Check if a descriptor with this name already exists before writing.
4840     if (!T::Contains(key, entry, valid_descriptors, array)) {
4841       T::Insert(key, entry, valid_descriptors, array);
4842       valid_descriptors++;
4843     }
4844   }
4845 
4846   return valid_descriptors;
4847 }
4848 
4849 struct DescriptorArrayAppender {
4850   typedef DescriptorArray Array;
Containsv8::internal::DescriptorArrayAppender4851   static bool Contains(Handle<Name> key,
4852                        Handle<AccessorInfo> entry,
4853                        int valid_descriptors,
4854                        Handle<DescriptorArray> array) {
4855     DisallowHeapAllocation no_gc;
4856     return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound;
4857   }
Insertv8::internal::DescriptorArrayAppender4858   static void Insert(Handle<Name> key,
4859                      Handle<AccessorInfo> entry,
4860                      int valid_descriptors,
4861                      Handle<DescriptorArray> array) {
4862     DisallowHeapAllocation no_gc;
4863     AccessorConstantDescriptor desc(key, entry, entry->property_attributes());
4864     array->Append(&desc);
4865   }
4866 };
4867 
4868 
4869 struct FixedArrayAppender {
4870   typedef FixedArray Array;
Containsv8::internal::FixedArrayAppender4871   static bool Contains(Handle<Name> key,
4872                        Handle<AccessorInfo> entry,
4873                        int valid_descriptors,
4874                        Handle<FixedArray> array) {
4875     for (int i = 0; i < valid_descriptors; i++) {
4876       if (*key == AccessorInfo::cast(array->get(i))->name()) return true;
4877     }
4878     return false;
4879   }
Insertv8::internal::FixedArrayAppender4880   static void Insert(Handle<Name> key,
4881                      Handle<AccessorInfo> entry,
4882                      int valid_descriptors,
4883                      Handle<FixedArray> array) {
4884     DisallowHeapAllocation no_gc;
4885     array->set(valid_descriptors, *entry);
4886   }
4887 };
4888 
4889 
AppendCallbackDescriptors(Handle<Map> map,Handle<Object> descriptors)4890 void Map::AppendCallbackDescriptors(Handle<Map> map,
4891                                     Handle<Object> descriptors) {
4892   int nof = map->NumberOfOwnDescriptors();
4893   Handle<DescriptorArray> array(map->instance_descriptors());
4894   NeanderArray callbacks(descriptors);
4895   DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length());
4896   nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof);
4897   map->SetNumberOfOwnDescriptors(nof);
4898 }
4899 
4900 
AppendUnique(Handle<Object> descriptors,Handle<FixedArray> array,int valid_descriptors)4901 int AccessorInfo::AppendUnique(Handle<Object> descriptors,
4902                                Handle<FixedArray> array,
4903                                int valid_descriptors) {
4904   NeanderArray callbacks(descriptors);
4905   DCHECK(array->length() >= callbacks.length() + valid_descriptors);
4906   return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks,
4907                                                    array,
4908                                                    valid_descriptors);
4909 }
4910 
4911 
ContainsMap(MapHandleList * maps,Map * map)4912 static bool ContainsMap(MapHandleList* maps, Map* map) {
4913   DCHECK_NOT_NULL(map);
4914   for (int i = 0; i < maps->length(); ++i) {
4915     if (!maps->at(i).is_null() && *maps->at(i) == map) return true;
4916   }
4917   return false;
4918 }
4919 
FindElementsKindTransitionedMap(MapHandleList * candidates)4920 Map* Map::FindElementsKindTransitionedMap(MapHandleList* candidates) {
4921   DisallowHeapAllocation no_allocation;
4922   DisallowDeoptimization no_deoptimization(GetIsolate());
4923 
4924   ElementsKind kind = elements_kind();
4925   bool packed = IsFastPackedElementsKind(kind);
4926 
4927   Map* transition = nullptr;
4928   if (IsTransitionableFastElementsKind(kind)) {
4929     // Check the state of the root map.
4930     Map* root_map = FindRootMap();
4931     if (!EquivalentToForTransition(root_map)) return nullptr;
4932     root_map = root_map->LookupElementsTransitionMap(kind);
4933     DCHECK_NOT_NULL(root_map);
4934     // Starting from the next existing elements kind transition try to
4935     // replay the property transitions that does not involve instance rewriting
4936     // (ElementsTransitionAndStoreStub does not support that).
4937     for (root_map = root_map->ElementsTransitionMap();
4938          root_map != nullptr && root_map->has_fast_elements();
4939          root_map = root_map->ElementsTransitionMap()) {
4940       Map* current = root_map->TryReplayPropertyTransitions(this);
4941       if (current == nullptr) continue;
4942       if (InstancesNeedRewriting(current)) continue;
4943 
4944       if (ContainsMap(candidates, current) &&
4945           (packed || !IsFastPackedElementsKind(current->elements_kind()))) {
4946         transition = current;
4947         packed = packed && IsFastPackedElementsKind(current->elements_kind());
4948       }
4949     }
4950   }
4951   return transition;
4952 }
4953 
4954 
FindClosestElementsTransition(Map * map,ElementsKind to_kind)4955 static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) {
4956   // Ensure we are requested to search elements kind transition "near the root".
4957   DCHECK_EQ(map->FindRootMap()->NumberOfOwnDescriptors(),
4958             map->NumberOfOwnDescriptors());
4959   Map* current_map = map;
4960 
4961   ElementsKind kind = map->elements_kind();
4962   while (kind != to_kind) {
4963     Map* next_map = current_map->ElementsTransitionMap();
4964     if (next_map == nullptr) return current_map;
4965     kind = next_map->elements_kind();
4966     current_map = next_map;
4967   }
4968 
4969   DCHECK_EQ(to_kind, current_map->elements_kind());
4970   return current_map;
4971 }
4972 
4973 
LookupElementsTransitionMap(ElementsKind to_kind)4974 Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) {
4975   Map* to_map = FindClosestElementsTransition(this, to_kind);
4976   if (to_map->elements_kind() == to_kind) return to_map;
4977   return nullptr;
4978 }
4979 
4980 
IsMapInArrayPrototypeChain()4981 bool Map::IsMapInArrayPrototypeChain() {
4982   Isolate* isolate = GetIsolate();
4983   if (isolate->initial_array_prototype()->map() == this) {
4984     return true;
4985   }
4986 
4987   if (isolate->initial_object_prototype()->map() == this) {
4988     return true;
4989   }
4990 
4991   return false;
4992 }
4993 
4994 
WeakCellForMap(Handle<Map> map)4995 Handle<WeakCell> Map::WeakCellForMap(Handle<Map> map) {
4996   Isolate* isolate = map->GetIsolate();
4997   if (map->weak_cell_cache()->IsWeakCell()) {
4998     return Handle<WeakCell>(WeakCell::cast(map->weak_cell_cache()));
4999   }
5000   Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(map);
5001   map->set_weak_cell_cache(*weak_cell);
5002   return weak_cell;
5003 }
5004 
5005 
AddMissingElementsTransitions(Handle<Map> map,ElementsKind to_kind)5006 static Handle<Map> AddMissingElementsTransitions(Handle<Map> map,
5007                                                  ElementsKind to_kind) {
5008   DCHECK(IsTransitionElementsKind(map->elements_kind()));
5009 
5010   Handle<Map> current_map = map;
5011 
5012   ElementsKind kind = map->elements_kind();
5013   TransitionFlag flag;
5014   if (map->is_prototype_map()) {
5015     flag = OMIT_TRANSITION;
5016   } else {
5017     flag = INSERT_TRANSITION;
5018     if (IsFastElementsKind(kind)) {
5019       while (kind != to_kind && !IsTerminalElementsKind(kind)) {
5020         kind = GetNextTransitionElementsKind(kind);
5021         current_map = Map::CopyAsElementsKind(current_map, kind, flag);
5022       }
5023     }
5024   }
5025 
5026   // In case we are exiting the fast elements kind system, just add the map in
5027   // the end.
5028   if (kind != to_kind) {
5029     current_map = Map::CopyAsElementsKind(current_map, to_kind, flag);
5030   }
5031 
5032   DCHECK(current_map->elements_kind() == to_kind);
5033   return current_map;
5034 }
5035 
5036 
TransitionElementsTo(Handle<Map> map,ElementsKind to_kind)5037 Handle<Map> Map::TransitionElementsTo(Handle<Map> map,
5038                                       ElementsKind to_kind) {
5039   ElementsKind from_kind = map->elements_kind();
5040   if (from_kind == to_kind) return map;
5041 
5042   Isolate* isolate = map->GetIsolate();
5043   Context* native_context = isolate->context()->native_context();
5044   if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) {
5045     if (*map == native_context->fast_aliased_arguments_map()) {
5046       DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
5047       return handle(native_context->slow_aliased_arguments_map());
5048     }
5049   } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) {
5050     if (*map == native_context->slow_aliased_arguments_map()) {
5051       DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
5052       return handle(native_context->fast_aliased_arguments_map());
5053     }
5054   } else if (IsFastElementsKind(from_kind) && IsFastElementsKind(to_kind)) {
5055     // Reuse map transitions for JSArrays.
5056     DisallowHeapAllocation no_gc;
5057     if (native_context->get(Context::ArrayMapIndex(from_kind)) == *map) {
5058       Object* maybe_transitioned_map =
5059           native_context->get(Context::ArrayMapIndex(to_kind));
5060       if (maybe_transitioned_map->IsMap()) {
5061         return handle(Map::cast(maybe_transitioned_map), isolate);
5062       }
5063     }
5064   }
5065 
5066   DCHECK(!map->IsUndefined(isolate));
5067   // Check if we can go back in the elements kind transition chain.
5068   if (IsHoleyElementsKind(from_kind) &&
5069       to_kind == GetPackedElementsKind(from_kind) &&
5070       map->GetBackPointer()->IsMap() &&
5071       Map::cast(map->GetBackPointer())->elements_kind() == to_kind) {
5072     return handle(Map::cast(map->GetBackPointer()));
5073   }
5074 
5075   bool allow_store_transition = IsTransitionElementsKind(from_kind);
5076   // Only store fast element maps in ascending generality.
5077   if (IsFastElementsKind(to_kind)) {
5078     allow_store_transition =
5079         allow_store_transition && IsTransitionableFastElementsKind(from_kind) &&
5080         IsMoreGeneralElementsKindTransition(from_kind, to_kind);
5081   }
5082 
5083   if (!allow_store_transition) {
5084     return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION);
5085   }
5086 
5087   return Map::ReconfigureElementsKind(map, to_kind);
5088 }
5089 
5090 
5091 // static
AsElementsKind(Handle<Map> map,ElementsKind kind)5092 Handle<Map> Map::AsElementsKind(Handle<Map> map, ElementsKind kind) {
5093   Handle<Map> closest_map(FindClosestElementsTransition(*map, kind));
5094 
5095   if (closest_map->elements_kind() == kind) {
5096     return closest_map;
5097   }
5098 
5099   return AddMissingElementsTransitions(closest_map, kind);
5100 }
5101 
5102 
GetElementsTransitionMap(Handle<JSObject> object,ElementsKind to_kind)5103 Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object,
5104                                                ElementsKind to_kind) {
5105   Handle<Map> map(object->map());
5106   return Map::TransitionElementsTo(map, to_kind);
5107 }
5108 
5109 
Revoke(Handle<JSProxy> proxy)5110 void JSProxy::Revoke(Handle<JSProxy> proxy) {
5111   Isolate* isolate = proxy->GetIsolate();
5112   if (!proxy->IsRevoked()) proxy->set_handler(isolate->heap()->null_value());
5113   DCHECK(proxy->IsRevoked());
5114 }
5115 
5116 
HasProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Name> name)5117 Maybe<bool> JSProxy::HasProperty(Isolate* isolate, Handle<JSProxy> proxy,
5118                                  Handle<Name> name) {
5119   DCHECK(!name->IsPrivate());
5120   STACK_CHECK(isolate, Nothing<bool>());
5121   // 1. (Assert)
5122   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
5123   Handle<Object> handler(proxy->handler(), isolate);
5124   // 3. If handler is null, throw a TypeError exception.
5125   // 4. Assert: Type(handler) is Object.
5126   if (proxy->IsRevoked()) {
5127     isolate->Throw(*isolate->factory()->NewTypeError(
5128         MessageTemplate::kProxyRevoked, isolate->factory()->has_string()));
5129     return Nothing<bool>();
5130   }
5131   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
5132   Handle<JSReceiver> target(proxy->target(), isolate);
5133   // 6. Let trap be ? GetMethod(handler, "has").
5134   Handle<Object> trap;
5135   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5136       isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
5137                                        isolate->factory()->has_string()),
5138       Nothing<bool>());
5139   // 7. If trap is undefined, then
5140   if (trap->IsUndefined(isolate)) {
5141     // 7a. Return target.[[HasProperty]](P).
5142     return JSReceiver::HasProperty(target, name);
5143   }
5144   // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, P»)).
5145   Handle<Object> trap_result_obj;
5146   Handle<Object> args[] = {target, name};
5147   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5148       isolate, trap_result_obj,
5149       Execution::Call(isolate, trap, handler, arraysize(args), args),
5150       Nothing<bool>());
5151   bool boolean_trap_result = trap_result_obj->BooleanValue();
5152   // 9. If booleanTrapResult is false, then:
5153   if (!boolean_trap_result) {
5154     // 9a. Let targetDesc be ? target.[[GetOwnProperty]](P).
5155     PropertyDescriptor target_desc;
5156     Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor(
5157         isolate, target, name, &target_desc);
5158     MAYBE_RETURN(target_found, Nothing<bool>());
5159     // 9b. If targetDesc is not undefined, then:
5160     if (target_found.FromJust()) {
5161       // 9b i. If targetDesc.[[Configurable]] is false, throw a TypeError
5162       //       exception.
5163       if (!target_desc.configurable()) {
5164         isolate->Throw(*isolate->factory()->NewTypeError(
5165             MessageTemplate::kProxyHasNonConfigurable, name));
5166         return Nothing<bool>();
5167       }
5168       // 9b ii. Let extensibleTarget be ? IsExtensible(target).
5169       Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
5170       MAYBE_RETURN(extensible_target, Nothing<bool>());
5171       // 9b iii. If extensibleTarget is false, throw a TypeError exception.
5172       if (!extensible_target.FromJust()) {
5173         isolate->Throw(*isolate->factory()->NewTypeError(
5174             MessageTemplate::kProxyHasNonExtensible, name));
5175         return Nothing<bool>();
5176       }
5177     }
5178   }
5179   // 10. Return booleanTrapResult.
5180   return Just(boolean_trap_result);
5181 }
5182 
5183 
SetProperty(Handle<JSProxy> proxy,Handle<Name> name,Handle<Object> value,Handle<Object> receiver,LanguageMode language_mode)5184 Maybe<bool> JSProxy::SetProperty(Handle<JSProxy> proxy, Handle<Name> name,
5185                                  Handle<Object> value, Handle<Object> receiver,
5186                                  LanguageMode language_mode) {
5187   DCHECK(!name->IsPrivate());
5188   Isolate* isolate = proxy->GetIsolate();
5189   STACK_CHECK(isolate, Nothing<bool>());
5190   Factory* factory = isolate->factory();
5191   Handle<String> trap_name = factory->set_string();
5192   ShouldThrow should_throw =
5193       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
5194 
5195   if (proxy->IsRevoked()) {
5196     isolate->Throw(
5197         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
5198     return Nothing<bool>();
5199   }
5200   Handle<JSReceiver> target(proxy->target(), isolate);
5201   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
5202 
5203   Handle<Object> trap;
5204   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5205       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
5206   if (trap->IsUndefined(isolate)) {
5207     LookupIterator it =
5208         LookupIterator::PropertyOrElement(isolate, receiver, name, target);
5209     return Object::SetSuperProperty(&it, value, language_mode,
5210                                     Object::MAY_BE_STORE_FROM_KEYED);
5211   }
5212 
5213   Handle<Object> trap_result;
5214   Handle<Object> args[] = {target, name, value, receiver};
5215   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5216       isolate, trap_result,
5217       Execution::Call(isolate, trap, handler, arraysize(args), args),
5218       Nothing<bool>());
5219   if (!trap_result->BooleanValue()) {
5220     RETURN_FAILURE(isolate, should_throw,
5221                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
5222                                 trap_name, name));
5223   }
5224 
5225   // Enforce the invariant.
5226   PropertyDescriptor target_desc;
5227   Maybe<bool> owned =
5228       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
5229   MAYBE_RETURN(owned, Nothing<bool>());
5230   if (owned.FromJust()) {
5231     bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
5232                         !target_desc.configurable() &&
5233                         !target_desc.writable() &&
5234                         !value->SameValue(*target_desc.value());
5235     if (inconsistent) {
5236       isolate->Throw(*isolate->factory()->NewTypeError(
5237           MessageTemplate::kProxySetFrozenData, name));
5238       return Nothing<bool>();
5239     }
5240     inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
5241                    !target_desc.configurable() &&
5242                    target_desc.set()->IsUndefined(isolate);
5243     if (inconsistent) {
5244       isolate->Throw(*isolate->factory()->NewTypeError(
5245           MessageTemplate::kProxySetFrozenAccessor, name));
5246       return Nothing<bool>();
5247     }
5248   }
5249   return Just(true);
5250 }
5251 
5252 
DeletePropertyOrElement(Handle<JSProxy> proxy,Handle<Name> name,LanguageMode language_mode)5253 Maybe<bool> JSProxy::DeletePropertyOrElement(Handle<JSProxy> proxy,
5254                                              Handle<Name> name,
5255                                              LanguageMode language_mode) {
5256   DCHECK(!name->IsPrivate());
5257   ShouldThrow should_throw =
5258       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
5259   Isolate* isolate = proxy->GetIsolate();
5260   STACK_CHECK(isolate, Nothing<bool>());
5261   Factory* factory = isolate->factory();
5262   Handle<String> trap_name = factory->deleteProperty_string();
5263 
5264   if (proxy->IsRevoked()) {
5265     isolate->Throw(
5266         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
5267     return Nothing<bool>();
5268   }
5269   Handle<JSReceiver> target(proxy->target(), isolate);
5270   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
5271 
5272   Handle<Object> trap;
5273   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5274       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
5275   if (trap->IsUndefined(isolate)) {
5276     return JSReceiver::DeletePropertyOrElement(target, name, language_mode);
5277   }
5278 
5279   Handle<Object> trap_result;
5280   Handle<Object> args[] = {target, name};
5281   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5282       isolate, trap_result,
5283       Execution::Call(isolate, trap, handler, arraysize(args), args),
5284       Nothing<bool>());
5285   if (!trap_result->BooleanValue()) {
5286     RETURN_FAILURE(isolate, should_throw,
5287                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
5288                                 trap_name, name));
5289   }
5290 
5291   // Enforce the invariant.
5292   PropertyDescriptor target_desc;
5293   Maybe<bool> owned =
5294       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
5295   MAYBE_RETURN(owned, Nothing<bool>());
5296   if (owned.FromJust() && !target_desc.configurable()) {
5297     isolate->Throw(*factory->NewTypeError(
5298         MessageTemplate::kProxyDeletePropertyNonConfigurable, name));
5299     return Nothing<bool>();
5300   }
5301   return Just(true);
5302 }
5303 
5304 
5305 // static
New(Isolate * isolate,Handle<Object> target,Handle<Object> handler)5306 MaybeHandle<JSProxy> JSProxy::New(Isolate* isolate, Handle<Object> target,
5307                                   Handle<Object> handler) {
5308   if (!target->IsJSReceiver()) {
5309     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
5310                     JSProxy);
5311   }
5312   if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) {
5313     THROW_NEW_ERROR(isolate,
5314                     NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
5315                     JSProxy);
5316   }
5317   if (!handler->IsJSReceiver()) {
5318     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
5319                     JSProxy);
5320   }
5321   if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) {
5322     THROW_NEW_ERROR(isolate,
5323                     NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
5324                     JSProxy);
5325   }
5326   return isolate->factory()->NewJSProxy(Handle<JSReceiver>::cast(target),
5327                                         Handle<JSReceiver>::cast(handler));
5328 }
5329 
5330 
5331 // static
GetFunctionRealm(Handle<JSProxy> proxy)5332 MaybeHandle<Context> JSProxy::GetFunctionRealm(Handle<JSProxy> proxy) {
5333   DCHECK(proxy->map()->is_constructor());
5334   if (proxy->IsRevoked()) {
5335     THROW_NEW_ERROR(proxy->GetIsolate(),
5336                     NewTypeError(MessageTemplate::kProxyRevoked), Context);
5337   }
5338   Handle<JSReceiver> target(JSReceiver::cast(proxy->target()));
5339   return JSReceiver::GetFunctionRealm(target);
5340 }
5341 
5342 
5343 // static
GetFunctionRealm(Handle<JSBoundFunction> function)5344 MaybeHandle<Context> JSBoundFunction::GetFunctionRealm(
5345     Handle<JSBoundFunction> function) {
5346   DCHECK(function->map()->is_constructor());
5347   return JSReceiver::GetFunctionRealm(
5348       handle(function->bound_target_function()));
5349 }
5350 
5351 // static
GetName(Isolate * isolate,Handle<JSBoundFunction> function)5352 MaybeHandle<String> JSBoundFunction::GetName(Isolate* isolate,
5353                                              Handle<JSBoundFunction> function) {
5354   Handle<String> prefix = isolate->factory()->bound__string();
5355   if (!function->bound_target_function()->IsJSFunction()) return prefix;
5356   Handle<JSFunction> target(JSFunction::cast(function->bound_target_function()),
5357                             isolate);
5358   Handle<Object> target_name = JSFunction::GetName(isolate, target);
5359   if (!target_name->IsString()) return prefix;
5360   Factory* factory = isolate->factory();
5361   return factory->NewConsString(prefix, Handle<String>::cast(target_name));
5362 }
5363 
5364 // static
GetName(Isolate * isolate,Handle<JSFunction> function)5365 Handle<Object> JSFunction::GetName(Isolate* isolate,
5366                                    Handle<JSFunction> function) {
5367   if (function->shared()->name_should_print_as_anonymous()) {
5368     return isolate->factory()->anonymous_string();
5369   }
5370   return handle(function->shared()->name(), isolate);
5371 }
5372 
5373 // static
GetLength(Isolate * isolate,Handle<JSFunction> function)5374 MaybeHandle<Smi> JSFunction::GetLength(Isolate* isolate,
5375                                        Handle<JSFunction> function) {
5376   int length = 0;
5377   if (function->shared()->is_compiled()) {
5378     length = function->shared()->length();
5379   } else {
5380     // If the function isn't compiled yet, the length is not computed
5381     // correctly yet. Compile it now and return the right length.
5382     if (Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) {
5383       length = function->shared()->length();
5384     }
5385     if (isolate->has_pending_exception()) return MaybeHandle<Smi>();
5386   }
5387   return handle(Smi::FromInt(length), isolate);
5388 }
5389 
5390 // static
GetFunctionRealm(Handle<JSFunction> function)5391 Handle<Context> JSFunction::GetFunctionRealm(Handle<JSFunction> function) {
5392   DCHECK(function->map()->is_constructor());
5393   return handle(function->context()->native_context());
5394 }
5395 
5396 
5397 // static
GetFunctionRealm(Handle<JSObject> object)5398 MaybeHandle<Context> JSObject::GetFunctionRealm(Handle<JSObject> object) {
5399   DCHECK(object->map()->is_constructor());
5400   DCHECK(!object->IsJSFunction());
5401   return handle(object->GetCreationContext());
5402 }
5403 
5404 
5405 // static
GetFunctionRealm(Handle<JSReceiver> receiver)5406 MaybeHandle<Context> JSReceiver::GetFunctionRealm(Handle<JSReceiver> receiver) {
5407   if (receiver->IsJSProxy()) {
5408     return JSProxy::GetFunctionRealm(Handle<JSProxy>::cast(receiver));
5409   }
5410 
5411   if (receiver->IsJSFunction()) {
5412     return JSFunction::GetFunctionRealm(Handle<JSFunction>::cast(receiver));
5413   }
5414 
5415   if (receiver->IsJSBoundFunction()) {
5416     return JSBoundFunction::GetFunctionRealm(
5417         Handle<JSBoundFunction>::cast(receiver));
5418   }
5419 
5420   return JSObject::GetFunctionRealm(Handle<JSObject>::cast(receiver));
5421 }
5422 
5423 
GetPropertyAttributes(LookupIterator * it)5424 Maybe<PropertyAttributes> JSProxy::GetPropertyAttributes(LookupIterator* it) {
5425   PropertyDescriptor desc;
5426   Maybe<bool> found = JSProxy::GetOwnPropertyDescriptor(
5427       it->isolate(), it->GetHolder<JSProxy>(), it->GetName(), &desc);
5428   MAYBE_RETURN(found, Nothing<PropertyAttributes>());
5429   if (!found.FromJust()) return Just(ABSENT);
5430   return Just(desc.ToAttributes());
5431 }
5432 
5433 
AllocateStorageForMap(Handle<JSObject> object,Handle<Map> map)5434 void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) {
5435   DCHECK(object->map()->GetInObjectProperties() ==
5436          map->GetInObjectProperties());
5437   ElementsKind obj_kind = object->map()->elements_kind();
5438   ElementsKind map_kind = map->elements_kind();
5439   if (map_kind != obj_kind) {
5440     ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind);
5441     if (IsDictionaryElementsKind(obj_kind)) {
5442       to_kind = obj_kind;
5443     }
5444     if (IsDictionaryElementsKind(to_kind)) {
5445       NormalizeElements(object);
5446     } else {
5447       TransitionElementsKind(object, to_kind);
5448     }
5449     map = Map::ReconfigureElementsKind(map, to_kind);
5450   }
5451   JSObject::MigrateToMap(object, map);
5452 }
5453 
5454 
MigrateInstance(Handle<JSObject> object)5455 void JSObject::MigrateInstance(Handle<JSObject> object) {
5456   Handle<Map> original_map(object->map());
5457   Handle<Map> map = Map::Update(original_map);
5458   map->set_migration_target(true);
5459   MigrateToMap(object, map);
5460   if (FLAG_trace_migration) {
5461     object->PrintInstanceMigration(stdout, *original_map, *map);
5462   }
5463 #if VERIFY_HEAP
5464   if (FLAG_verify_heap) {
5465     object->JSObjectVerify();
5466   }
5467 #endif
5468 }
5469 
5470 
5471 // static
TryMigrateInstance(Handle<JSObject> object)5472 bool JSObject::TryMigrateInstance(Handle<JSObject> object) {
5473   Isolate* isolate = object->GetIsolate();
5474   DisallowDeoptimization no_deoptimization(isolate);
5475   Handle<Map> original_map(object->map(), isolate);
5476   Handle<Map> new_map;
5477   if (!Map::TryUpdate(original_map).ToHandle(&new_map)) {
5478     return false;
5479   }
5480   JSObject::MigrateToMap(object, new_map);
5481   if (FLAG_trace_migration) {
5482     object->PrintInstanceMigration(stdout, *original_map, object->map());
5483   }
5484 #if VERIFY_HEAP
5485   if (FLAG_verify_heap) {
5486     object->JSObjectVerify();
5487   }
5488 #endif
5489   return true;
5490 }
5491 
5492 
AddProperty(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)5493 void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name,
5494                            Handle<Object> value,
5495                            PropertyAttributes attributes) {
5496   LookupIterator it(object, name, object, LookupIterator::OWN_SKIP_INTERCEPTOR);
5497   CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
5498 #ifdef DEBUG
5499   uint32_t index;
5500   DCHECK(!object->IsJSProxy());
5501   DCHECK(!name->AsArrayIndex(&index));
5502   Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it);
5503   DCHECK(maybe.IsJust());
5504   DCHECK(!it.IsFound());
5505   DCHECK(object->map()->is_extensible() || name->IsPrivate());
5506 #endif
5507   CHECK(AddDataProperty(&it, value, attributes, THROW_ON_ERROR,
5508                         CERTAINLY_NOT_STORE_FROM_KEYED)
5509             .IsJust());
5510 }
5511 
5512 
5513 // Reconfigures a property to a data property with attributes, even if it is not
5514 // reconfigurable.
5515 // Requires a LookupIterator that does not look at the prototype chain beyond
5516 // hidden prototypes.
DefineOwnPropertyIgnoreAttributes(LookupIterator * it,Handle<Object> value,PropertyAttributes attributes,AccessorInfoHandling handling)5517 MaybeHandle<Object> JSObject::DefineOwnPropertyIgnoreAttributes(
5518     LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
5519     AccessorInfoHandling handling) {
5520   MAYBE_RETURN_NULL(DefineOwnPropertyIgnoreAttributes(
5521       it, value, attributes, THROW_ON_ERROR, handling));
5522   return value;
5523 }
5524 
5525 
DefineOwnPropertyIgnoreAttributes(LookupIterator * it,Handle<Object> value,PropertyAttributes attributes,ShouldThrow should_throw,AccessorInfoHandling handling)5526 Maybe<bool> JSObject::DefineOwnPropertyIgnoreAttributes(
5527     LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
5528     ShouldThrow should_throw, AccessorInfoHandling handling) {
5529   it->UpdateProtector();
5530   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
5531 
5532   for (; it->IsFound(); it->Next()) {
5533     switch (it->state()) {
5534       case LookupIterator::JSPROXY:
5535       case LookupIterator::NOT_FOUND:
5536       case LookupIterator::TRANSITION:
5537         UNREACHABLE();
5538 
5539       case LookupIterator::ACCESS_CHECK:
5540         if (!it->HasAccess()) {
5541           it->isolate()->ReportFailedAccessCheck(it->GetHolder<JSObject>());
5542           RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
5543           return Just(true);
5544         }
5545         break;
5546 
5547       // If there's an interceptor, try to store the property with the
5548       // interceptor.
5549       // In case of success, the attributes will have been reset to the default
5550       // attributes of the interceptor, rather than the incoming attributes.
5551       //
5552       // TODO(verwaest): JSProxy afterwards verify the attributes that the
5553       // JSProxy claims it has, and verifies that they are compatible. If not,
5554       // they throw. Here we should do the same.
5555       case LookupIterator::INTERCEPTOR:
5556         if (handling == DONT_FORCE_FIELD) {
5557           Maybe<bool> result =
5558               JSObject::SetPropertyWithInterceptor(it, should_throw, value);
5559           if (result.IsNothing() || result.FromJust()) return result;
5560         }
5561         break;
5562 
5563       case LookupIterator::ACCESSOR: {
5564         Handle<Object> accessors = it->GetAccessors();
5565 
5566         // Special handling for AccessorInfo, which behaves like a data
5567         // property.
5568         if (accessors->IsAccessorInfo() && handling == DONT_FORCE_FIELD) {
5569           PropertyAttributes current_attributes = it->property_attributes();
5570           // Ensure the context isn't changed after calling into accessors.
5571           AssertNoContextChange ncc(it->isolate());
5572 
5573           // Update the attributes before calling the setter. The setter may
5574           // later change the shape of the property.
5575           if (current_attributes != attributes) {
5576             it->TransitionToAccessorPair(accessors, attributes);
5577           }
5578 
5579           Maybe<bool> result =
5580               JSObject::SetPropertyWithAccessor(it, value, should_throw);
5581 
5582           if (current_attributes == attributes || result.IsNothing()) {
5583             return result;
5584           }
5585 
5586         } else {
5587           it->ReconfigureDataProperty(value, attributes);
5588         }
5589 
5590         return Just(true);
5591       }
5592       case LookupIterator::INTEGER_INDEXED_EXOTIC:
5593         return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value,
5594                                             should_throw);
5595 
5596       case LookupIterator::DATA: {
5597         // Regular property update if the attributes match.
5598         if (it->property_attributes() == attributes) {
5599           return SetDataProperty(it, value);
5600         }
5601 
5602         // Special case: properties of typed arrays cannot be reconfigured to
5603         // non-writable nor to non-enumerable.
5604         if (it->IsElement() && object->HasFixedTypedArrayElements()) {
5605           return RedefineIncompatibleProperty(it->isolate(), it->GetName(),
5606                                               value, should_throw);
5607         }
5608 
5609         // Reconfigure the data property if the attributes mismatch.
5610         it->ReconfigureDataProperty(value, attributes);
5611 
5612         return Just(true);
5613       }
5614     }
5615   }
5616 
5617   return AddDataProperty(it, value, attributes, should_throw,
5618                          CERTAINLY_NOT_STORE_FROM_KEYED);
5619 }
5620 
SetOwnPropertyIgnoreAttributes(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)5621 MaybeHandle<Object> JSObject::SetOwnPropertyIgnoreAttributes(
5622     Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
5623     PropertyAttributes attributes) {
5624   DCHECK(!value->IsTheHole(object->GetIsolate()));
5625   LookupIterator it(object, name, object, LookupIterator::OWN);
5626   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
5627 }
5628 
SetOwnElementIgnoreAttributes(Handle<JSObject> object,uint32_t index,Handle<Object> value,PropertyAttributes attributes)5629 MaybeHandle<Object> JSObject::SetOwnElementIgnoreAttributes(
5630     Handle<JSObject> object, uint32_t index, Handle<Object> value,
5631     PropertyAttributes attributes) {
5632   Isolate* isolate = object->GetIsolate();
5633   LookupIterator it(isolate, object, index, object, LookupIterator::OWN);
5634   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
5635 }
5636 
DefinePropertyOrElementIgnoreAttributes(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)5637 MaybeHandle<Object> JSObject::DefinePropertyOrElementIgnoreAttributes(
5638     Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
5639     PropertyAttributes attributes) {
5640   Isolate* isolate = object->GetIsolate();
5641   LookupIterator it = LookupIterator::PropertyOrElement(
5642       isolate, object, name, object, LookupIterator::OWN);
5643   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
5644 }
5645 
GetPropertyAttributesWithInterceptor(LookupIterator * it)5646 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithInterceptor(
5647     LookupIterator* it) {
5648   return GetPropertyAttributesWithInterceptorInternal(it, it->GetInterceptor());
5649 }
5650 
GetPropertyAttributes(LookupIterator * it)5651 Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
5652     LookupIterator* it) {
5653   for (; it->IsFound(); it->Next()) {
5654     switch (it->state()) {
5655       case LookupIterator::NOT_FOUND:
5656       case LookupIterator::TRANSITION:
5657         UNREACHABLE();
5658       case LookupIterator::JSPROXY:
5659         return JSProxy::GetPropertyAttributes(it);
5660       case LookupIterator::INTERCEPTOR: {
5661         Maybe<PropertyAttributes> result =
5662             JSObject::GetPropertyAttributesWithInterceptor(it);
5663         if (!result.IsJust()) return result;
5664         if (result.FromJust() != ABSENT) return result;
5665         break;
5666       }
5667       case LookupIterator::ACCESS_CHECK:
5668         if (it->HasAccess()) break;
5669         return JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
5670       case LookupIterator::INTEGER_INDEXED_EXOTIC:
5671         return Just(ABSENT);
5672       case LookupIterator::ACCESSOR:
5673       case LookupIterator::DATA:
5674         return Just(it->property_attributes());
5675     }
5676   }
5677   return Just(ABSENT);
5678 }
5679 
5680 
New(Isolate * isolate)5681 Handle<NormalizedMapCache> NormalizedMapCache::New(Isolate* isolate) {
5682   Handle<FixedArray> array(
5683       isolate->factory()->NewFixedArray(kEntries, TENURED));
5684   return Handle<NormalizedMapCache>::cast(array);
5685 }
5686 
5687 
Get(Handle<Map> fast_map,PropertyNormalizationMode mode)5688 MaybeHandle<Map> NormalizedMapCache::Get(Handle<Map> fast_map,
5689                                          PropertyNormalizationMode mode) {
5690   DisallowHeapAllocation no_gc;
5691   Object* value = FixedArray::get(GetIndex(fast_map));
5692   if (!value->IsMap() ||
5693       !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) {
5694     return MaybeHandle<Map>();
5695   }
5696   return handle(Map::cast(value));
5697 }
5698 
5699 
Set(Handle<Map> fast_map,Handle<Map> normalized_map)5700 void NormalizedMapCache::Set(Handle<Map> fast_map,
5701                              Handle<Map> normalized_map) {
5702   DisallowHeapAllocation no_gc;
5703   DCHECK(normalized_map->is_dictionary_map());
5704   FixedArray::set(GetIndex(fast_map), *normalized_map);
5705 }
5706 
5707 
Clear()5708 void NormalizedMapCache::Clear() {
5709   int entries = length();
5710   for (int i = 0; i != entries; i++) {
5711     set_undefined(i);
5712   }
5713 }
5714 
5715 
UpdateMapCodeCache(Handle<HeapObject> object,Handle<Name> name,Handle<Code> code)5716 void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object,
5717                                     Handle<Name> name,
5718                                     Handle<Code> code) {
5719   Handle<Map> map(object->map());
5720   Map::UpdateCodeCache(map, name, code);
5721 }
5722 
5723 
NormalizeProperties(Handle<JSObject> object,PropertyNormalizationMode mode,int expected_additional_properties,const char * reason)5724 void JSObject::NormalizeProperties(Handle<JSObject> object,
5725                                    PropertyNormalizationMode mode,
5726                                    int expected_additional_properties,
5727                                    const char* reason) {
5728   if (!object->HasFastProperties()) return;
5729 
5730   Handle<Map> map(object->map());
5731   Handle<Map> new_map = Map::Normalize(map, mode, reason);
5732 
5733   MigrateToMap(object, new_map, expected_additional_properties);
5734 }
5735 
5736 
MigrateSlowToFast(Handle<JSObject> object,int unused_property_fields,const char * reason)5737 void JSObject::MigrateSlowToFast(Handle<JSObject> object,
5738                                  int unused_property_fields,
5739                                  const char* reason) {
5740   if (object->HasFastProperties()) return;
5741   DCHECK(!object->IsJSGlobalObject());
5742   Isolate* isolate = object->GetIsolate();
5743   Factory* factory = isolate->factory();
5744   Handle<NameDictionary> dictionary(object->property_dictionary());
5745 
5746   // Make sure we preserve dictionary representation if there are too many
5747   // descriptors.
5748   int number_of_elements = dictionary->NumberOfElements();
5749   if (number_of_elements > kMaxNumberOfDescriptors) return;
5750 
5751   Handle<FixedArray> iteration_order;
5752   if (number_of_elements != dictionary->NextEnumerationIndex()) {
5753     iteration_order =
5754         NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
5755   } else {
5756     iteration_order = NameDictionary::BuildIterationIndicesArray(dictionary);
5757   }
5758 
5759   int instance_descriptor_length = iteration_order->length();
5760   int number_of_fields = 0;
5761 
5762   // Compute the length of the instance descriptor.
5763   for (int i = 0; i < instance_descriptor_length; i++) {
5764     int index = Smi::cast(iteration_order->get(i))->value();
5765     DCHECK(dictionary->IsKey(isolate, dictionary->KeyAt(index)));
5766 
5767     Object* value = dictionary->ValueAt(index);
5768     PropertyType type = dictionary->DetailsAt(index).type();
5769     if (type == DATA && !value->IsJSFunction()) {
5770       number_of_fields += 1;
5771     }
5772   }
5773 
5774   Handle<Map> old_map(object->map(), isolate);
5775 
5776   int inobject_props = old_map->GetInObjectProperties();
5777 
5778   // Allocate new map.
5779   Handle<Map> new_map = Map::CopyDropDescriptors(old_map);
5780   new_map->set_dictionary_map(false);
5781 
5782   UpdatePrototypeUserRegistration(old_map, new_map, isolate);
5783 
5784 #if TRACE_MAPS
5785   if (FLAG_trace_maps) {
5786     PrintF("[TraceMaps: SlowToFast from= %p to= %p reason= %s ]\n",
5787            reinterpret_cast<void*>(*old_map), reinterpret_cast<void*>(*new_map),
5788            reason);
5789   }
5790 #endif
5791 
5792   if (instance_descriptor_length == 0) {
5793     DisallowHeapAllocation no_gc;
5794     DCHECK_LE(unused_property_fields, inobject_props);
5795     // Transform the object.
5796     new_map->set_unused_property_fields(inobject_props);
5797     object->synchronized_set_map(*new_map);
5798     object->set_properties(isolate->heap()->empty_fixed_array());
5799     // Check that it really works.
5800     DCHECK(object->HasFastProperties());
5801     return;
5802   }
5803 
5804   // Allocate the instance descriptor.
5805   Handle<DescriptorArray> descriptors = DescriptorArray::Allocate(
5806       isolate, instance_descriptor_length, 0, TENURED);
5807 
5808   int number_of_allocated_fields =
5809       number_of_fields + unused_property_fields - inobject_props;
5810   if (number_of_allocated_fields < 0) {
5811     // There is enough inobject space for all fields (including unused).
5812     number_of_allocated_fields = 0;
5813     unused_property_fields = inobject_props - number_of_fields;
5814   }
5815 
5816   // Allocate the fixed array for the fields.
5817   Handle<FixedArray> fields = factory->NewFixedArray(
5818       number_of_allocated_fields);
5819 
5820   // Fill in the instance descriptor and the fields.
5821   int current_offset = 0;
5822   for (int i = 0; i < instance_descriptor_length; i++) {
5823     int index = Smi::cast(iteration_order->get(i))->value();
5824     Object* k = dictionary->KeyAt(index);
5825     DCHECK(dictionary->IsKey(k));
5826     // Dictionary keys are internalized upon insertion.
5827     // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild.
5828     CHECK(k->IsUniqueName());
5829     Handle<Name> key(Name::cast(k), isolate);
5830 
5831     Object* value = dictionary->ValueAt(index);
5832 
5833     PropertyDetails details = dictionary->DetailsAt(index);
5834     int enumeration_index = details.dictionary_index();
5835     PropertyType type = details.type();
5836 
5837     if (value->IsJSFunction()) {
5838       DataConstantDescriptor d(key, handle(value, isolate),
5839                                details.attributes());
5840       descriptors->Set(enumeration_index - 1, &d);
5841     } else if (type == DATA) {
5842       if (current_offset < inobject_props) {
5843         object->InObjectPropertyAtPut(current_offset, value,
5844                                       UPDATE_WRITE_BARRIER);
5845       } else {
5846         int offset = current_offset - inobject_props;
5847         fields->set(offset, value);
5848       }
5849       DataDescriptor d(key, current_offset, details.attributes(),
5850                        // TODO(verwaest): value->OptimalRepresentation();
5851                        Representation::Tagged());
5852       current_offset += d.GetDetails().field_width_in_words();
5853       descriptors->Set(enumeration_index - 1, &d);
5854     } else if (type == ACCESSOR_CONSTANT) {
5855       AccessorConstantDescriptor d(key, handle(value, isolate),
5856                                    details.attributes());
5857       descriptors->Set(enumeration_index - 1, &d);
5858     } else {
5859       UNREACHABLE();
5860     }
5861   }
5862   DCHECK(current_offset == number_of_fields);
5863 
5864   descriptors->Sort();
5865 
5866   Handle<LayoutDescriptor> layout_descriptor = LayoutDescriptor::New(
5867       new_map, descriptors, descriptors->number_of_descriptors());
5868 
5869   DisallowHeapAllocation no_gc;
5870   new_map->InitializeDescriptors(*descriptors, *layout_descriptor);
5871   new_map->set_unused_property_fields(unused_property_fields);
5872 
5873   // Transform the object.
5874   object->synchronized_set_map(*new_map);
5875 
5876   object->set_properties(*fields);
5877   DCHECK(object->IsJSObject());
5878 
5879   // Check that it really works.
5880   DCHECK(object->HasFastProperties());
5881 }
5882 
5883 
ResetElements(Handle<JSObject> object)5884 void JSObject::ResetElements(Handle<JSObject> object) {
5885   Isolate* isolate = object->GetIsolate();
5886   CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map());
5887   if (object->map()->has_dictionary_elements()) {
5888     Handle<SeededNumberDictionary> new_elements =
5889         SeededNumberDictionary::New(isolate, 0);
5890     object->set_elements(*new_elements);
5891   } else {
5892     object->set_elements(object->map()->GetInitialElements());
5893   }
5894 }
5895 
5896 
RequireSlowElements(SeededNumberDictionary * dictionary)5897 void JSObject::RequireSlowElements(SeededNumberDictionary* dictionary) {
5898   if (dictionary->requires_slow_elements()) return;
5899   dictionary->set_requires_slow_elements();
5900   // TODO(verwaest): Remove this hack.
5901   if (map()->is_prototype_map()) {
5902     TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
5903   }
5904 }
5905 
5906 
NormalizeElements(Handle<JSObject> object)5907 Handle<SeededNumberDictionary> JSObject::NormalizeElements(
5908     Handle<JSObject> object) {
5909   DCHECK(!object->HasFixedTypedArrayElements());
5910   Isolate* isolate = object->GetIsolate();
5911   bool is_arguments = object->HasSloppyArgumentsElements();
5912   {
5913     DisallowHeapAllocation no_gc;
5914     FixedArrayBase* elements = object->elements();
5915 
5916     if (is_arguments) {
5917       FixedArray* parameter_map = FixedArray::cast(elements);
5918       elements = FixedArrayBase::cast(parameter_map->get(1));
5919     }
5920 
5921     if (elements->IsDictionary()) {
5922       return handle(SeededNumberDictionary::cast(elements), isolate);
5923     }
5924   }
5925 
5926   DCHECK(object->HasFastSmiOrObjectElements() ||
5927          object->HasFastDoubleElements() ||
5928          object->HasFastArgumentsElements() ||
5929          object->HasFastStringWrapperElements());
5930 
5931   Handle<SeededNumberDictionary> dictionary =
5932       object->GetElementsAccessor()->Normalize(object);
5933 
5934   // Switch to using the dictionary as the backing storage for elements.
5935   ElementsKind target_kind = is_arguments
5936                                  ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS
5937                                  : object->HasFastStringWrapperElements()
5938                                        ? SLOW_STRING_WRAPPER_ELEMENTS
5939                                        : DICTIONARY_ELEMENTS;
5940   Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, target_kind);
5941   // Set the new map first to satify the elements type assert in set_elements().
5942   JSObject::MigrateToMap(object, new_map);
5943 
5944   if (is_arguments) {
5945     FixedArray::cast(object->elements())->set(1, *dictionary);
5946   } else {
5947     object->set_elements(*dictionary);
5948   }
5949 
5950   isolate->counters()->elements_to_dictionary()->Increment();
5951 
5952 #ifdef DEBUG
5953   if (FLAG_trace_normalization) {
5954     OFStream os(stdout);
5955     os << "Object elements have been normalized:\n";
5956     object->Print(os);
5957   }
5958 #endif
5959 
5960   DCHECK(object->HasDictionaryElements() ||
5961          object->HasSlowArgumentsElements() ||
5962          object->HasSlowStringWrapperElements());
5963   return dictionary;
5964 }
5965 
5966 
GenerateIdentityHash(Isolate * isolate)5967 static Smi* GenerateIdentityHash(Isolate* isolate) {
5968   int hash_value;
5969   int attempts = 0;
5970   do {
5971     // Generate a random 32-bit hash value but limit range to fit
5972     // within a smi.
5973     hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue;
5974     attempts++;
5975   } while (hash_value == 0 && attempts < 30);
5976   hash_value = hash_value != 0 ? hash_value : 1;  // never return 0
5977 
5978   return Smi::FromInt(hash_value);
5979 }
5980 
5981 template <typename ProxyType>
GetOrCreateIdentityHashHelper(Isolate * isolate,Handle<ProxyType> proxy)5982 static Smi* GetOrCreateIdentityHashHelper(Isolate* isolate,
5983                                           Handle<ProxyType> proxy) {
5984   Object* maybe_hash = proxy->hash();
5985   if (maybe_hash->IsSmi()) return Smi::cast(maybe_hash);
5986 
5987   Smi* hash = GenerateIdentityHash(isolate);
5988   proxy->set_hash(hash);
5989   return hash;
5990 }
5991 
5992 // static
GetIdentityHash(Isolate * isolate,Handle<JSObject> object)5993 Object* JSObject::GetIdentityHash(Isolate* isolate, Handle<JSObject> object) {
5994   if (object->IsJSGlobalProxy()) {
5995     return JSGlobalProxy::cast(*object)->hash();
5996   }
5997   Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol();
5998   return *JSReceiver::GetDataProperty(object, hash_code_symbol);
5999 }
6000 
6001 // static
GetOrCreateIdentityHash(Isolate * isolate,Handle<JSObject> object)6002 Smi* JSObject::GetOrCreateIdentityHash(Isolate* isolate,
6003                                        Handle<JSObject> object) {
6004   if (object->IsJSGlobalProxy()) {
6005     return GetOrCreateIdentityHashHelper(isolate,
6006                                          Handle<JSGlobalProxy>::cast(object));
6007   }
6008 
6009   Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol();
6010   LookupIterator it(object, hash_code_symbol, object, LookupIterator::OWN);
6011   if (it.IsFound()) {
6012     DCHECK_EQ(LookupIterator::DATA, it.state());
6013     Object* maybe_hash = *it.GetDataValue();
6014     if (maybe_hash->IsSmi()) return Smi::cast(maybe_hash);
6015   }
6016 
6017   Smi* hash = GenerateIdentityHash(isolate);
6018   CHECK(AddDataProperty(&it, handle(hash, isolate), NONE, THROW_ON_ERROR,
6019                         CERTAINLY_NOT_STORE_FROM_KEYED)
6020             .IsJust());
6021   return hash;
6022 }
6023 
6024 // static
GetIdentityHash(Handle<JSProxy> proxy)6025 Object* JSProxy::GetIdentityHash(Handle<JSProxy> proxy) {
6026   return proxy->hash();
6027 }
6028 
GetOrCreateIdentityHash(Isolate * isolate,Handle<JSProxy> proxy)6029 Smi* JSProxy::GetOrCreateIdentityHash(Isolate* isolate, Handle<JSProxy> proxy) {
6030   return GetOrCreateIdentityHashHelper(isolate, proxy);
6031 }
6032 
6033 
DeletePropertyWithInterceptor(LookupIterator * it,ShouldThrow should_throw)6034 Maybe<bool> JSObject::DeletePropertyWithInterceptor(LookupIterator* it,
6035                                                     ShouldThrow should_throw) {
6036   Isolate* isolate = it->isolate();
6037   // Make sure that the top context does not change when doing callbacks or
6038   // interceptor calls.
6039   AssertNoContextChange ncc(isolate);
6040 
6041   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
6042   Handle<InterceptorInfo> interceptor(it->GetInterceptor());
6043   if (interceptor->deleter()->IsUndefined(isolate)) return Nothing<bool>();
6044 
6045   Handle<JSObject> holder = it->GetHolder<JSObject>();
6046   Handle<Object> receiver = it->GetReceiver();
6047   if (!receiver->IsJSReceiver()) {
6048     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
6049                                      Object::ConvertReceiver(isolate, receiver),
6050                                      Nothing<bool>());
6051   }
6052 
6053   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
6054                                  *holder, should_throw);
6055   Handle<Object> result;
6056   if (it->IsElement()) {
6057     uint32_t index = it->index();
6058     v8::IndexedPropertyDeleterCallback deleter =
6059         v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter());
6060     result = args.Call(deleter, index);
6061   } else if (it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) {
6062     return Nothing<bool>();
6063   } else {
6064     Handle<Name> name = it->name();
6065     DCHECK(!name->IsPrivate());
6066     v8::GenericNamedPropertyDeleterCallback deleter =
6067         v8::ToCData<v8::GenericNamedPropertyDeleterCallback>(
6068             interceptor->deleter());
6069     result = args.Call(deleter, name);
6070   }
6071 
6072   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
6073   if (result.is_null()) return Nothing<bool>();
6074 
6075   DCHECK(result->IsBoolean());
6076   // Rebox CustomArguments::kReturnValueOffset before returning.
6077   return Just(result->IsTrue(isolate));
6078 }
6079 
6080 
DeleteNormalizedProperty(Handle<JSReceiver> object,Handle<Name> name,int entry)6081 void JSReceiver::DeleteNormalizedProperty(Handle<JSReceiver> object,
6082                                           Handle<Name> name, int entry) {
6083   DCHECK(!object->HasFastProperties());
6084   Isolate* isolate = object->GetIsolate();
6085 
6086   if (object->IsJSGlobalObject()) {
6087     // If we have a global object, invalidate the cell and swap in a new one.
6088     Handle<GlobalDictionary> dictionary(
6089         JSObject::cast(*object)->global_dictionary());
6090     DCHECK_NE(GlobalDictionary::kNotFound, entry);
6091 
6092     auto cell = PropertyCell::InvalidateEntry(dictionary, entry);
6093     cell->set_value(isolate->heap()->the_hole_value());
6094     // TODO(ishell): InvalidateForDelete
6095     cell->set_property_details(
6096         cell->property_details().set_cell_type(PropertyCellType::kInvalidated));
6097   } else {
6098     Handle<NameDictionary> dictionary(object->property_dictionary());
6099     DCHECK_NE(NameDictionary::kNotFound, entry);
6100 
6101     NameDictionary::DeleteProperty(dictionary, entry);
6102     Handle<NameDictionary> new_properties =
6103         NameDictionary::Shrink(dictionary, name);
6104     object->set_properties(*new_properties);
6105   }
6106 }
6107 
6108 
DeleteProperty(LookupIterator * it,LanguageMode language_mode)6109 Maybe<bool> JSReceiver::DeleteProperty(LookupIterator* it,
6110                                        LanguageMode language_mode) {
6111   it->UpdateProtector();
6112 
6113   Isolate* isolate = it->isolate();
6114 
6115   if (it->state() == LookupIterator::JSPROXY) {
6116     return JSProxy::DeletePropertyOrElement(it->GetHolder<JSProxy>(),
6117                                             it->GetName(), language_mode);
6118   }
6119 
6120   if (it->GetReceiver()->IsJSProxy()) {
6121     if (it->state() != LookupIterator::NOT_FOUND) {
6122       DCHECK_EQ(LookupIterator::DATA, it->state());
6123       DCHECK(it->name()->IsPrivate());
6124       it->Delete();
6125     }
6126     return Just(true);
6127   }
6128   Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
6129 
6130   for (; it->IsFound(); it->Next()) {
6131     switch (it->state()) {
6132       case LookupIterator::JSPROXY:
6133       case LookupIterator::NOT_FOUND:
6134       case LookupIterator::TRANSITION:
6135         UNREACHABLE();
6136       case LookupIterator::ACCESS_CHECK:
6137         if (it->HasAccess()) break;
6138         isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
6139         RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
6140         return Just(false);
6141       case LookupIterator::INTERCEPTOR: {
6142         ShouldThrow should_throw =
6143             is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
6144         Maybe<bool> result =
6145             JSObject::DeletePropertyWithInterceptor(it, should_throw);
6146         // An exception was thrown in the interceptor. Propagate.
6147         if (isolate->has_pending_exception()) return Nothing<bool>();
6148         // Delete with interceptor succeeded. Return result.
6149         // TODO(neis): In strict mode, we should probably throw if the
6150         // interceptor returns false.
6151         if (result.IsJust()) return result;
6152         break;
6153       }
6154       case LookupIterator::INTEGER_INDEXED_EXOTIC:
6155         return Just(true);
6156       case LookupIterator::DATA:
6157       case LookupIterator::ACCESSOR: {
6158         if (!it->IsConfigurable()) {
6159           // Fail if the property is not configurable.
6160           if (is_strict(language_mode)) {
6161             isolate->Throw(*isolate->factory()->NewTypeError(
6162                 MessageTemplate::kStrictDeleteProperty, it->GetName(),
6163                 receiver));
6164             return Nothing<bool>();
6165           }
6166           return Just(false);
6167         }
6168 
6169         it->Delete();
6170 
6171         return Just(true);
6172       }
6173     }
6174   }
6175 
6176   return Just(true);
6177 }
6178 
6179 
DeleteElement(Handle<JSReceiver> object,uint32_t index,LanguageMode language_mode)6180 Maybe<bool> JSReceiver::DeleteElement(Handle<JSReceiver> object, uint32_t index,
6181                                       LanguageMode language_mode) {
6182   LookupIterator it(object->GetIsolate(), object, index, object,
6183                     LookupIterator::OWN);
6184   return DeleteProperty(&it, language_mode);
6185 }
6186 
6187 
DeleteProperty(Handle<JSReceiver> object,Handle<Name> name,LanguageMode language_mode)6188 Maybe<bool> JSReceiver::DeleteProperty(Handle<JSReceiver> object,
6189                                        Handle<Name> name,
6190                                        LanguageMode language_mode) {
6191   LookupIterator it(object, name, object, LookupIterator::OWN);
6192   return DeleteProperty(&it, language_mode);
6193 }
6194 
6195 
DeletePropertyOrElement(Handle<JSReceiver> object,Handle<Name> name,LanguageMode language_mode)6196 Maybe<bool> JSReceiver::DeletePropertyOrElement(Handle<JSReceiver> object,
6197                                                 Handle<Name> name,
6198                                                 LanguageMode language_mode) {
6199   LookupIterator it = LookupIterator::PropertyOrElement(
6200       name->GetIsolate(), object, name, object, LookupIterator::OWN);
6201   return DeleteProperty(&it, language_mode);
6202 }
6203 
6204 
6205 // ES6 7.1.14
6206 // static
ToPropertyKey(Isolate * isolate,Handle<Object> value)6207 MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
6208                                           Handle<Object> value) {
6209   // 1. Let key be ToPrimitive(argument, hint String).
6210   MaybeHandle<Object> maybe_key =
6211       Object::ToPrimitive(value, ToPrimitiveHint::kString);
6212   // 2. ReturnIfAbrupt(key).
6213   Handle<Object> key;
6214   if (!maybe_key.ToHandle(&key)) return key;
6215   // 3. If Type(key) is Symbol, then return key.
6216   if (key->IsSymbol()) return key;
6217   // 4. Return ToString(key).
6218   // Extending spec'ed behavior, we'd be happy to return an element index.
6219   if (key->IsSmi()) return key;
6220   if (key->IsHeapNumber()) {
6221     uint32_t uint_value;
6222     if (value->ToArrayLength(&uint_value) &&
6223         uint_value <= static_cast<uint32_t>(Smi::kMaxValue)) {
6224       return handle(Smi::FromInt(static_cast<int>(uint_value)), isolate);
6225     }
6226   }
6227   return Object::ToString(isolate, key);
6228 }
6229 
6230 
6231 // ES6 19.1.2.4
6232 // static
DefineProperty(Isolate * isolate,Handle<Object> object,Handle<Object> key,Handle<Object> attributes)6233 Object* JSReceiver::DefineProperty(Isolate* isolate, Handle<Object> object,
6234                                    Handle<Object> key,
6235                                    Handle<Object> attributes) {
6236   // 1. If Type(O) is not Object, throw a TypeError exception.
6237   if (!object->IsJSReceiver()) {
6238     Handle<String> fun_name =
6239         isolate->factory()->InternalizeUtf8String("Object.defineProperty");
6240     THROW_NEW_ERROR_RETURN_FAILURE(
6241         isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name));
6242   }
6243   // 2. Let key be ToPropertyKey(P).
6244   // 3. ReturnIfAbrupt(key).
6245   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, ToPropertyKey(isolate, key));
6246   // 4. Let desc be ToPropertyDescriptor(Attributes).
6247   // 5. ReturnIfAbrupt(desc).
6248   PropertyDescriptor desc;
6249   if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
6250     return isolate->heap()->exception();
6251   }
6252   // 6. Let success be DefinePropertyOrThrow(O,key, desc).
6253   Maybe<bool> success = DefineOwnProperty(
6254       isolate, Handle<JSReceiver>::cast(object), key, &desc, THROW_ON_ERROR);
6255   // 7. ReturnIfAbrupt(success).
6256   MAYBE_RETURN(success, isolate->heap()->exception());
6257   CHECK(success.FromJust());
6258   // 8. Return O.
6259   return *object;
6260 }
6261 
6262 
6263 // ES6 19.1.2.3.1
6264 // static
DefineProperties(Isolate * isolate,Handle<Object> object,Handle<Object> properties)6265 MaybeHandle<Object> JSReceiver::DefineProperties(Isolate* isolate,
6266                                                  Handle<Object> object,
6267                                                  Handle<Object> properties) {
6268   // 1. If Type(O) is not Object, throw a TypeError exception.
6269   if (!object->IsJSReceiver()) {
6270     Handle<String> fun_name =
6271         isolate->factory()->InternalizeUtf8String("Object.defineProperties");
6272     THROW_NEW_ERROR(isolate,
6273                     NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name),
6274                     Object);
6275   }
6276   // 2. Let props be ToObject(Properties).
6277   // 3. ReturnIfAbrupt(props).
6278   Handle<JSReceiver> props;
6279   if (!Object::ToObject(isolate, properties).ToHandle(&props)) {
6280     THROW_NEW_ERROR(isolate,
6281                     NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
6282                     Object);
6283   }
6284   // 4. Let keys be props.[[OwnPropertyKeys]]().
6285   // 5. ReturnIfAbrupt(keys).
6286   Handle<FixedArray> keys;
6287   ASSIGN_RETURN_ON_EXCEPTION(
6288       isolate, keys, KeyAccumulator::GetKeys(props, KeyCollectionMode::kOwnOnly,
6289                                              ALL_PROPERTIES),
6290       Object);
6291   // 6. Let descriptors be an empty List.
6292   int capacity = keys->length();
6293   std::vector<PropertyDescriptor> descriptors(capacity);
6294   size_t descriptors_index = 0;
6295   // 7. Repeat for each element nextKey of keys in List order,
6296   for (int i = 0; i < keys->length(); ++i) {
6297     Handle<Object> next_key(keys->get(i), isolate);
6298     // 7a. Let propDesc be props.[[GetOwnProperty]](nextKey).
6299     // 7b. ReturnIfAbrupt(propDesc).
6300     bool success = false;
6301     LookupIterator it = LookupIterator::PropertyOrElement(
6302         isolate, props, next_key, &success, LookupIterator::OWN);
6303     DCHECK(success);
6304     Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
6305     if (!maybe.IsJust()) return MaybeHandle<Object>();
6306     PropertyAttributes attrs = maybe.FromJust();
6307     // 7c. If propDesc is not undefined and propDesc.[[Enumerable]] is true:
6308     if (attrs == ABSENT) continue;
6309     if (attrs & DONT_ENUM) continue;
6310     // 7c i. Let descObj be Get(props, nextKey).
6311     // 7c ii. ReturnIfAbrupt(descObj).
6312     Handle<Object> desc_obj;
6313     ASSIGN_RETURN_ON_EXCEPTION(isolate, desc_obj, Object::GetProperty(&it),
6314                                Object);
6315     // 7c iii. Let desc be ToPropertyDescriptor(descObj).
6316     success = PropertyDescriptor::ToPropertyDescriptor(
6317         isolate, desc_obj, &descriptors[descriptors_index]);
6318     // 7c iv. ReturnIfAbrupt(desc).
6319     if (!success) return MaybeHandle<Object>();
6320     // 7c v. Append the pair (a two element List) consisting of nextKey and
6321     //       desc to the end of descriptors.
6322     descriptors[descriptors_index].set_name(next_key);
6323     descriptors_index++;
6324   }
6325   // 8. For each pair from descriptors in list order,
6326   for (size_t i = 0; i < descriptors_index; ++i) {
6327     PropertyDescriptor* desc = &descriptors[i];
6328     // 8a. Let P be the first element of pair.
6329     // 8b. Let desc be the second element of pair.
6330     // 8c. Let status be DefinePropertyOrThrow(O, P, desc).
6331     Maybe<bool> status =
6332         DefineOwnProperty(isolate, Handle<JSReceiver>::cast(object),
6333                           desc->name(), desc, THROW_ON_ERROR);
6334     // 8d. ReturnIfAbrupt(status).
6335     if (!status.IsJust()) return MaybeHandle<Object>();
6336     CHECK(status.FromJust());
6337   }
6338   // 9. Return o.
6339   return object;
6340 }
6341 
6342 
6343 // static
DefineOwnProperty(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> key,PropertyDescriptor * desc,ShouldThrow should_throw)6344 Maybe<bool> JSReceiver::DefineOwnProperty(Isolate* isolate,
6345                                           Handle<JSReceiver> object,
6346                                           Handle<Object> key,
6347                                           PropertyDescriptor* desc,
6348                                           ShouldThrow should_throw) {
6349   if (object->IsJSArray()) {
6350     return JSArray::DefineOwnProperty(isolate, Handle<JSArray>::cast(object),
6351                                       key, desc, should_throw);
6352   }
6353   if (object->IsJSProxy()) {
6354     return JSProxy::DefineOwnProperty(isolate, Handle<JSProxy>::cast(object),
6355                                       key, desc, should_throw);
6356   }
6357   // TODO(jkummerow): Support Modules (ES6 9.4.6.6)
6358 
6359   // OrdinaryDefineOwnProperty, by virtue of calling
6360   // DefineOwnPropertyIgnoreAttributes, can handle arguments (ES6 9.4.4.2)
6361   // and IntegerIndexedExotics (ES6 9.4.5.3), with one exception:
6362   // TODO(jkummerow): Setting an indexed accessor on a typed array should throw.
6363   return OrdinaryDefineOwnProperty(isolate, Handle<JSObject>::cast(object), key,
6364                                    desc, should_throw);
6365 }
6366 
6367 
6368 // static
OrdinaryDefineOwnProperty(Isolate * isolate,Handle<JSObject> object,Handle<Object> key,PropertyDescriptor * desc,ShouldThrow should_throw)6369 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(Isolate* isolate,
6370                                                   Handle<JSObject> object,
6371                                                   Handle<Object> key,
6372                                                   PropertyDescriptor* desc,
6373                                                   ShouldThrow should_throw) {
6374   bool success = false;
6375   DCHECK(key->IsName() || key->IsNumber());  // |key| is a PropertyKey...
6376   LookupIterator it = LookupIterator::PropertyOrElement(
6377       isolate, object, key, &success, LookupIterator::OWN);
6378   DCHECK(success);  // ...so creating a LookupIterator can't fail.
6379 
6380   // Deal with access checks first.
6381   if (it.state() == LookupIterator::ACCESS_CHECK) {
6382     if (!it.HasAccess()) {
6383       isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
6384       RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
6385       return Just(true);
6386     }
6387     it.Next();
6388   }
6389 
6390   return OrdinaryDefineOwnProperty(&it, desc, should_throw);
6391 }
6392 
6393 
6394 // ES6 9.1.6.1
6395 // static
OrdinaryDefineOwnProperty(LookupIterator * it,PropertyDescriptor * desc,ShouldThrow should_throw)6396 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(LookupIterator* it,
6397                                                   PropertyDescriptor* desc,
6398                                                   ShouldThrow should_throw) {
6399   Isolate* isolate = it->isolate();
6400   // 1. Let current be O.[[GetOwnProperty]](P).
6401   // 2. ReturnIfAbrupt(current).
6402   PropertyDescriptor current;
6403   MAYBE_RETURN(GetOwnPropertyDescriptor(it, &current), Nothing<bool>());
6404 
6405   // TODO(jkummerow/verwaest): It would be nice if we didn't have to reset
6406   // the iterator every time. Currently, the reasons why we need it are:
6407   // - handle interceptors correctly
6408   // - handle accessors correctly (which might change the holder's map)
6409   it->Restart();
6410   // 3. Let extensible be the value of the [[Extensible]] internal slot of O.
6411   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
6412   bool extensible = JSObject::IsExtensible(object);
6413 
6414   return ValidateAndApplyPropertyDescriptor(isolate, it, extensible, desc,
6415                                             &current, should_throw);
6416 }
6417 
6418 
6419 // ES6 9.1.6.2
6420 // static
IsCompatiblePropertyDescriptor(Isolate * isolate,bool extensible,PropertyDescriptor * desc,PropertyDescriptor * current,Handle<Name> property_name,ShouldThrow should_throw)6421 Maybe<bool> JSReceiver::IsCompatiblePropertyDescriptor(
6422     Isolate* isolate, bool extensible, PropertyDescriptor* desc,
6423     PropertyDescriptor* current, Handle<Name> property_name,
6424     ShouldThrow should_throw) {
6425   // 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined,
6426   //    Extensible, Desc, Current).
6427   return ValidateAndApplyPropertyDescriptor(
6428       isolate, NULL, extensible, desc, current, should_throw, property_name);
6429 }
6430 
6431 
6432 // ES6 9.1.6.3
6433 // static
ValidateAndApplyPropertyDescriptor(Isolate * isolate,LookupIterator * it,bool extensible,PropertyDescriptor * desc,PropertyDescriptor * current,ShouldThrow should_throw,Handle<Name> property_name)6434 Maybe<bool> JSReceiver::ValidateAndApplyPropertyDescriptor(
6435     Isolate* isolate, LookupIterator* it, bool extensible,
6436     PropertyDescriptor* desc, PropertyDescriptor* current,
6437     ShouldThrow should_throw, Handle<Name> property_name) {
6438   // We either need a LookupIterator, or a property name.
6439   DCHECK((it == NULL) != property_name.is_null());
6440   Handle<JSObject> object;
6441   if (it != NULL) object = Handle<JSObject>::cast(it->GetReceiver());
6442   bool desc_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(desc);
6443   bool desc_is_accessor_descriptor =
6444       PropertyDescriptor::IsAccessorDescriptor(desc);
6445   bool desc_is_generic_descriptor =
6446       PropertyDescriptor::IsGenericDescriptor(desc);
6447   // 1. (Assert)
6448   // 2. If current is undefined, then
6449   if (current->is_empty()) {
6450     // 2a. If extensible is false, return false.
6451     if (!extensible) {
6452       RETURN_FAILURE(isolate, should_throw,
6453                      NewTypeError(MessageTemplate::kDefineDisallowed,
6454                                   it != NULL ? it->GetName() : property_name));
6455     }
6456     // 2c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then:
6457     // (This is equivalent to !IsAccessorDescriptor(desc).)
6458     DCHECK((desc_is_generic_descriptor || desc_is_data_descriptor) ==
6459            !desc_is_accessor_descriptor);
6460     if (!desc_is_accessor_descriptor) {
6461       // 2c i. If O is not undefined, create an own data property named P of
6462       // object O whose [[Value]], [[Writable]], [[Enumerable]] and
6463       // [[Configurable]] attribute values are described by Desc. If the value
6464       // of an attribute field of Desc is absent, the attribute of the newly
6465       // created property is set to its default value.
6466       if (it != NULL) {
6467         if (!desc->has_writable()) desc->set_writable(false);
6468         if (!desc->has_enumerable()) desc->set_enumerable(false);
6469         if (!desc->has_configurable()) desc->set_configurable(false);
6470         Handle<Object> value(
6471             desc->has_value()
6472                 ? desc->value()
6473                 : Handle<Object>::cast(isolate->factory()->undefined_value()));
6474         MaybeHandle<Object> result =
6475             JSObject::DefineOwnPropertyIgnoreAttributes(it, value,
6476                                                         desc->ToAttributes());
6477         if (result.is_null()) return Nothing<bool>();
6478       }
6479     } else {
6480       // 2d. Else Desc must be an accessor Property Descriptor,
6481       DCHECK(desc_is_accessor_descriptor);
6482       // 2d i. If O is not undefined, create an own accessor property named P
6483       // of object O whose [[Get]], [[Set]], [[Enumerable]] and
6484       // [[Configurable]] attribute values are described by Desc. If the value
6485       // of an attribute field of Desc is absent, the attribute of the newly
6486       // created property is set to its default value.
6487       if (it != NULL) {
6488         if (!desc->has_enumerable()) desc->set_enumerable(false);
6489         if (!desc->has_configurable()) desc->set_configurable(false);
6490         Handle<Object> getter(
6491             desc->has_get()
6492                 ? desc->get()
6493                 : Handle<Object>::cast(isolate->factory()->null_value()));
6494         Handle<Object> setter(
6495             desc->has_set()
6496                 ? desc->set()
6497                 : Handle<Object>::cast(isolate->factory()->null_value()));
6498         MaybeHandle<Object> result =
6499             JSObject::DefineAccessor(it, getter, setter, desc->ToAttributes());
6500         if (result.is_null()) return Nothing<bool>();
6501       }
6502     }
6503     // 2e. Return true.
6504     return Just(true);
6505   }
6506   // 3. Return true, if every field in Desc is absent.
6507   // 4. Return true, if every field in Desc also occurs in current and the
6508   // value of every field in Desc is the same value as the corresponding field
6509   // in current when compared using the SameValue algorithm.
6510   if ((!desc->has_enumerable() ||
6511        desc->enumerable() == current->enumerable()) &&
6512       (!desc->has_configurable() ||
6513        desc->configurable() == current->configurable()) &&
6514       (!desc->has_value() ||
6515        (current->has_value() && current->value()->SameValue(*desc->value()))) &&
6516       (!desc->has_writable() ||
6517        (current->has_writable() && current->writable() == desc->writable())) &&
6518       (!desc->has_get() ||
6519        (current->has_get() && current->get()->SameValue(*desc->get()))) &&
6520       (!desc->has_set() ||
6521        (current->has_set() && current->set()->SameValue(*desc->set())))) {
6522     return Just(true);
6523   }
6524   // 5. If the [[Configurable]] field of current is false, then
6525   if (!current->configurable()) {
6526     // 5a. Return false, if the [[Configurable]] field of Desc is true.
6527     if (desc->has_configurable() && desc->configurable()) {
6528       RETURN_FAILURE(isolate, should_throw,
6529                      NewTypeError(MessageTemplate::kRedefineDisallowed,
6530                                   it != NULL ? it->GetName() : property_name));
6531     }
6532     // 5b. Return false, if the [[Enumerable]] field of Desc is present and the
6533     // [[Enumerable]] fields of current and Desc are the Boolean negation of
6534     // each other.
6535     if (desc->has_enumerable() && desc->enumerable() != current->enumerable()) {
6536       RETURN_FAILURE(isolate, should_throw,
6537                      NewTypeError(MessageTemplate::kRedefineDisallowed,
6538                                   it != NULL ? it->GetName() : property_name));
6539     }
6540   }
6541 
6542   bool current_is_data_descriptor =
6543       PropertyDescriptor::IsDataDescriptor(current);
6544   // 6. If IsGenericDescriptor(Desc) is true, no further validation is required.
6545   if (desc_is_generic_descriptor) {
6546     // Nothing to see here.
6547 
6548     // 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have
6549     // different results, then:
6550   } else if (current_is_data_descriptor != desc_is_data_descriptor) {
6551     // 7a. Return false, if the [[Configurable]] field of current is false.
6552     if (!current->configurable()) {
6553       RETURN_FAILURE(isolate, should_throw,
6554                      NewTypeError(MessageTemplate::kRedefineDisallowed,
6555                                   it != NULL ? it->GetName() : property_name));
6556     }
6557     // 7b. If IsDataDescriptor(current) is true, then:
6558     if (current_is_data_descriptor) {
6559       // 7b i. If O is not undefined, convert the property named P of object O
6560       // from a data property to an accessor property. Preserve the existing
6561       // values of the converted property's [[Configurable]] and [[Enumerable]]
6562       // attributes and set the rest of the property's attributes to their
6563       // default values.
6564       // --> Folded into step 10.
6565     } else {
6566       // 7c i. If O is not undefined, convert the property named P of object O
6567       // from an accessor property to a data property. Preserve the existing
6568       // values of the converted property’s [[Configurable]] and [[Enumerable]]
6569       // attributes and set the rest of the property’s attributes to their
6570       // default values.
6571       // --> Folded into step 10.
6572     }
6573 
6574     // 8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both
6575     // true, then:
6576   } else if (current_is_data_descriptor && desc_is_data_descriptor) {
6577     // 8a. If the [[Configurable]] field of current is false, then:
6578     if (!current->configurable()) {
6579       // 8a i. Return false, if the [[Writable]] field of current is false and
6580       // the [[Writable]] field of Desc is true.
6581       if (!current->writable() && desc->has_writable() && desc->writable()) {
6582         RETURN_FAILURE(
6583             isolate, should_throw,
6584             NewTypeError(MessageTemplate::kRedefineDisallowed,
6585                          it != NULL ? it->GetName() : property_name));
6586       }
6587       // 8a ii. If the [[Writable]] field of current is false, then:
6588       if (!current->writable()) {
6589         // 8a ii 1. Return false, if the [[Value]] field of Desc is present and
6590         // SameValue(Desc.[[Value]], current.[[Value]]) is false.
6591         if (desc->has_value() && !desc->value()->SameValue(*current->value())) {
6592           RETURN_FAILURE(
6593               isolate, should_throw,
6594               NewTypeError(MessageTemplate::kRedefineDisallowed,
6595                            it != NULL ? it->GetName() : property_name));
6596         }
6597       }
6598     }
6599   } else {
6600     // 9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc)
6601     // are both true,
6602     DCHECK(PropertyDescriptor::IsAccessorDescriptor(current) &&
6603            desc_is_accessor_descriptor);
6604     // 9a. If the [[Configurable]] field of current is false, then:
6605     if (!current->configurable()) {
6606       // 9a i. Return false, if the [[Set]] field of Desc is present and
6607       // SameValue(Desc.[[Set]], current.[[Set]]) is false.
6608       if (desc->has_set() && !desc->set()->SameValue(*current->set())) {
6609         RETURN_FAILURE(
6610             isolate, should_throw,
6611             NewTypeError(MessageTemplate::kRedefineDisallowed,
6612                          it != NULL ? it->GetName() : property_name));
6613       }
6614       // 9a ii. Return false, if the [[Get]] field of Desc is present and
6615       // SameValue(Desc.[[Get]], current.[[Get]]) is false.
6616       if (desc->has_get() && !desc->get()->SameValue(*current->get())) {
6617         RETURN_FAILURE(
6618             isolate, should_throw,
6619             NewTypeError(MessageTemplate::kRedefineDisallowed,
6620                          it != NULL ? it->GetName() : property_name));
6621       }
6622     }
6623   }
6624 
6625   // 10. If O is not undefined, then:
6626   if (it != NULL) {
6627     // 10a. For each field of Desc that is present, set the corresponding
6628     // attribute of the property named P of object O to the value of the field.
6629     PropertyAttributes attrs = NONE;
6630 
6631     if (desc->has_enumerable()) {
6632       attrs = static_cast<PropertyAttributes>(
6633           attrs | (desc->enumerable() ? NONE : DONT_ENUM));
6634     } else {
6635       attrs = static_cast<PropertyAttributes>(
6636           attrs | (current->enumerable() ? NONE : DONT_ENUM));
6637     }
6638     if (desc->has_configurable()) {
6639       attrs = static_cast<PropertyAttributes>(
6640           attrs | (desc->configurable() ? NONE : DONT_DELETE));
6641     } else {
6642       attrs = static_cast<PropertyAttributes>(
6643           attrs | (current->configurable() ? NONE : DONT_DELETE));
6644     }
6645     if (desc_is_data_descriptor ||
6646         (desc_is_generic_descriptor && current_is_data_descriptor)) {
6647       if (desc->has_writable()) {
6648         attrs = static_cast<PropertyAttributes>(
6649             attrs | (desc->writable() ? NONE : READ_ONLY));
6650       } else {
6651         attrs = static_cast<PropertyAttributes>(
6652             attrs | (current->writable() ? NONE : READ_ONLY));
6653       }
6654       Handle<Object> value(
6655           desc->has_value() ? desc->value()
6656                             : current->has_value()
6657                                   ? current->value()
6658                                   : Handle<Object>::cast(
6659                                         isolate->factory()->undefined_value()));
6660       MaybeHandle<Object> result =
6661           JSObject::DefineOwnPropertyIgnoreAttributes(it, value, attrs);
6662       if (result.is_null()) return Nothing<bool>();
6663     } else {
6664       DCHECK(desc_is_accessor_descriptor ||
6665              (desc_is_generic_descriptor &&
6666               PropertyDescriptor::IsAccessorDescriptor(current)));
6667       Handle<Object> getter(
6668           desc->has_get()
6669               ? desc->get()
6670               : current->has_get()
6671                     ? current->get()
6672                     : Handle<Object>::cast(isolate->factory()->null_value()));
6673       Handle<Object> setter(
6674           desc->has_set()
6675               ? desc->set()
6676               : current->has_set()
6677                     ? current->set()
6678                     : Handle<Object>::cast(isolate->factory()->null_value()));
6679       MaybeHandle<Object> result =
6680           JSObject::DefineAccessor(it, getter, setter, attrs);
6681       if (result.is_null()) return Nothing<bool>();
6682     }
6683   }
6684 
6685   // 11. Return true.
6686   return Just(true);
6687 }
6688 
6689 
6690 // static
CreateDataProperty(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)6691 Maybe<bool> JSReceiver::CreateDataProperty(LookupIterator* it,
6692                                            Handle<Object> value,
6693                                            ShouldThrow should_throw) {
6694   DCHECK(!it->check_prototype_chain());
6695   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
6696   Isolate* isolate = receiver->GetIsolate();
6697 
6698   if (receiver->IsJSObject()) {
6699     return JSObject::CreateDataProperty(it, value, should_throw);  // Shortcut.
6700   }
6701 
6702   PropertyDescriptor new_desc;
6703   new_desc.set_value(value);
6704   new_desc.set_writable(true);
6705   new_desc.set_enumerable(true);
6706   new_desc.set_configurable(true);
6707 
6708   return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
6709                                        &new_desc, should_throw);
6710 }
6711 
CreateDataProperty(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)6712 Maybe<bool> JSObject::CreateDataProperty(LookupIterator* it,
6713                                          Handle<Object> value,
6714                                          ShouldThrow should_throw) {
6715   DCHECK(it->GetReceiver()->IsJSObject());
6716   MAYBE_RETURN(JSReceiver::GetPropertyAttributes(it), Nothing<bool>());
6717   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
6718   Isolate* isolate = receiver->GetIsolate();
6719 
6720   if (it->IsFound()) {
6721     Maybe<PropertyAttributes> attributes = GetPropertyAttributes(it);
6722     MAYBE_RETURN(attributes, Nothing<bool>());
6723     if ((attributes.FromJust() & DONT_DELETE) != 0) {
6724       RETURN_FAILURE(
6725           isolate, should_throw,
6726           NewTypeError(MessageTemplate::kRedefineDisallowed, it->GetName()));
6727     }
6728   } else {
6729     if (!JSObject::IsExtensible(Handle<JSObject>::cast(it->GetReceiver()))) {
6730       RETURN_FAILURE(
6731           isolate, should_throw,
6732           NewTypeError(MessageTemplate::kDefineDisallowed, it->GetName()));
6733     }
6734   }
6735 
6736   RETURN_ON_EXCEPTION_VALUE(it->isolate(),
6737                             DefineOwnPropertyIgnoreAttributes(it, value, NONE),
6738                             Nothing<bool>());
6739 
6740   return Just(true);
6741 }
6742 
6743 
6744 // TODO(jkummerow): Consider unification with FastAsArrayLength() in
6745 // accessors.cc.
PropertyKeyToArrayLength(Handle<Object> value,uint32_t * length)6746 bool PropertyKeyToArrayLength(Handle<Object> value, uint32_t* length) {
6747   DCHECK(value->IsNumber() || value->IsName());
6748   if (value->ToArrayLength(length)) return true;
6749   if (value->IsString()) return String::cast(*value)->AsArrayIndex(length);
6750   return false;
6751 }
6752 
6753 
PropertyKeyToArrayIndex(Handle<Object> index_obj,uint32_t * output)6754 bool PropertyKeyToArrayIndex(Handle<Object> index_obj, uint32_t* output) {
6755   return PropertyKeyToArrayLength(index_obj, output) && *output != kMaxUInt32;
6756 }
6757 
6758 
6759 // ES6 9.4.2.1
6760 // static
DefineOwnProperty(Isolate * isolate,Handle<JSArray> o,Handle<Object> name,PropertyDescriptor * desc,ShouldThrow should_throw)6761 Maybe<bool> JSArray::DefineOwnProperty(Isolate* isolate, Handle<JSArray> o,
6762                                        Handle<Object> name,
6763                                        PropertyDescriptor* desc,
6764                                        ShouldThrow should_throw) {
6765   // 1. Assert: IsPropertyKey(P) is true. ("P" is |name|.)
6766   // 2. If P is "length", then:
6767   // TODO(jkummerow): Check if we need slow string comparison.
6768   if (*name == isolate->heap()->length_string()) {
6769     // 2a. Return ArraySetLength(A, Desc).
6770     return ArraySetLength(isolate, o, desc, should_throw);
6771   }
6772   // 3. Else if P is an array index, then:
6773   uint32_t index = 0;
6774   if (PropertyKeyToArrayIndex(name, &index)) {
6775     // 3a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
6776     PropertyDescriptor old_len_desc;
6777     Maybe<bool> success = GetOwnPropertyDescriptor(
6778         isolate, o, isolate->factory()->length_string(), &old_len_desc);
6779     // 3b. (Assert)
6780     DCHECK(success.FromJust());
6781     USE(success);
6782     // 3c. Let oldLen be oldLenDesc.[[Value]].
6783     uint32_t old_len = 0;
6784     CHECK(old_len_desc.value()->ToArrayLength(&old_len));
6785     // 3d. Let index be ToUint32(P).
6786     // (Already done above.)
6787     // 3e. (Assert)
6788     // 3f. If index >= oldLen and oldLenDesc.[[Writable]] is false,
6789     //     return false.
6790     if (index >= old_len && old_len_desc.has_writable() &&
6791         !old_len_desc.writable()) {
6792       RETURN_FAILURE(isolate, should_throw,
6793                      NewTypeError(MessageTemplate::kDefineDisallowed, name));
6794     }
6795     // 3g. Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc).
6796     Maybe<bool> succeeded =
6797         OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
6798     // 3h. Assert: succeeded is not an abrupt completion.
6799     //     In our case, if should_throw == THROW_ON_ERROR, it can be!
6800     // 3i. If succeeded is false, return false.
6801     if (succeeded.IsNothing() || !succeeded.FromJust()) return succeeded;
6802     // 3j. If index >= oldLen, then:
6803     if (index >= old_len) {
6804       // 3j i. Set oldLenDesc.[[Value]] to index + 1.
6805       old_len_desc.set_value(isolate->factory()->NewNumberFromUint(index + 1));
6806       // 3j ii. Let succeeded be
6807       //        OrdinaryDefineOwnProperty(A, "length", oldLenDesc).
6808       succeeded = OrdinaryDefineOwnProperty(isolate, o,
6809                                             isolate->factory()->length_string(),
6810                                             &old_len_desc, should_throw);
6811       // 3j iii. Assert: succeeded is true.
6812       DCHECK(succeeded.FromJust());
6813       USE(succeeded);
6814     }
6815     // 3k. Return true.
6816     return Just(true);
6817   }
6818 
6819   // 4. Return OrdinaryDefineOwnProperty(A, P, Desc).
6820   return OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
6821 }
6822 
6823 
6824 // Part of ES6 9.4.2.4 ArraySetLength.
6825 // static
AnythingToArrayLength(Isolate * isolate,Handle<Object> length_object,uint32_t * output)6826 bool JSArray::AnythingToArrayLength(Isolate* isolate,
6827                                     Handle<Object> length_object,
6828                                     uint32_t* output) {
6829   // Fast path: check numbers and strings that can be converted directly
6830   // and unobservably.
6831   if (length_object->ToArrayLength(output)) return true;
6832   if (length_object->IsString() &&
6833       Handle<String>::cast(length_object)->AsArrayIndex(output)) {
6834     return true;
6835   }
6836   // Slow path: follow steps in ES6 9.4.2.4 "ArraySetLength".
6837   // 3. Let newLen be ToUint32(Desc.[[Value]]).
6838   Handle<Object> uint32_v;
6839   if (!Object::ToUint32(isolate, length_object).ToHandle(&uint32_v)) {
6840     // 4. ReturnIfAbrupt(newLen).
6841     return false;
6842   }
6843   // 5. Let numberLen be ToNumber(Desc.[[Value]]).
6844   Handle<Object> number_v;
6845   if (!Object::ToNumber(length_object).ToHandle(&number_v)) {
6846     // 6. ReturnIfAbrupt(newLen).
6847     return false;
6848   }
6849   // 7. If newLen != numberLen, throw a RangeError exception.
6850   if (uint32_v->Number() != number_v->Number()) {
6851     Handle<Object> exception =
6852         isolate->factory()->NewRangeError(MessageTemplate::kInvalidArrayLength);
6853     isolate->Throw(*exception);
6854     return false;
6855   }
6856   CHECK(uint32_v->ToArrayLength(output));
6857   return true;
6858 }
6859 
6860 
6861 // ES6 9.4.2.4
6862 // static
ArraySetLength(Isolate * isolate,Handle<JSArray> a,PropertyDescriptor * desc,ShouldThrow should_throw)6863 Maybe<bool> JSArray::ArraySetLength(Isolate* isolate, Handle<JSArray> a,
6864                                     PropertyDescriptor* desc,
6865                                     ShouldThrow should_throw) {
6866   // 1. If the [[Value]] field of Desc is absent, then
6867   if (!desc->has_value()) {
6868     // 1a. Return OrdinaryDefineOwnProperty(A, "length", Desc).
6869     return OrdinaryDefineOwnProperty(
6870         isolate, a, isolate->factory()->length_string(), desc, should_throw);
6871   }
6872   // 2. Let newLenDesc be a copy of Desc.
6873   // (Actual copying is not necessary.)
6874   PropertyDescriptor* new_len_desc = desc;
6875   // 3. - 7. Convert Desc.[[Value]] to newLen.
6876   uint32_t new_len = 0;
6877   if (!AnythingToArrayLength(isolate, desc->value(), &new_len)) {
6878     DCHECK(isolate->has_pending_exception());
6879     return Nothing<bool>();
6880   }
6881   // 8. Set newLenDesc.[[Value]] to newLen.
6882   // (Done below, if needed.)
6883   // 9. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
6884   PropertyDescriptor old_len_desc;
6885   Maybe<bool> success = GetOwnPropertyDescriptor(
6886       isolate, a, isolate->factory()->length_string(), &old_len_desc);
6887   // 10. (Assert)
6888   DCHECK(success.FromJust());
6889   USE(success);
6890   // 11. Let oldLen be oldLenDesc.[[Value]].
6891   uint32_t old_len = 0;
6892   CHECK(old_len_desc.value()->ToArrayLength(&old_len));
6893   // 12. If newLen >= oldLen, then
6894   if (new_len >= old_len) {
6895     // 8. Set newLenDesc.[[Value]] to newLen.
6896     // 12a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).
6897     new_len_desc->set_value(isolate->factory()->NewNumberFromUint(new_len));
6898     return OrdinaryDefineOwnProperty(isolate, a,
6899                                      isolate->factory()->length_string(),
6900                                      new_len_desc, should_throw);
6901   }
6902   // 13. If oldLenDesc.[[Writable]] is false, return false.
6903   if (!old_len_desc.writable()) {
6904     RETURN_FAILURE(isolate, should_throw,
6905                    NewTypeError(MessageTemplate::kRedefineDisallowed,
6906                                 isolate->factory()->length_string()));
6907   }
6908   // 14. If newLenDesc.[[Writable]] is absent or has the value true,
6909   // let newWritable be true.
6910   bool new_writable = false;
6911   if (!new_len_desc->has_writable() || new_len_desc->writable()) {
6912     new_writable = true;
6913   } else {
6914     // 15. Else,
6915     // 15a. Need to defer setting the [[Writable]] attribute to false in case
6916     //      any elements cannot be deleted.
6917     // 15b. Let newWritable be false. (It's initialized as "false" anyway.)
6918     // 15c. Set newLenDesc.[[Writable]] to true.
6919     // (Not needed.)
6920   }
6921   // Most of steps 16 through 19 is implemented by JSArray::SetLength.
6922   JSArray::SetLength(a, new_len);
6923   // Steps 19d-ii, 20.
6924   if (!new_writable) {
6925     PropertyDescriptor readonly;
6926     readonly.set_writable(false);
6927     Maybe<bool> success = OrdinaryDefineOwnProperty(
6928         isolate, a, isolate->factory()->length_string(), &readonly,
6929         should_throw);
6930     DCHECK(success.FromJust());
6931     USE(success);
6932   }
6933   uint32_t actual_new_len = 0;
6934   CHECK(a->length()->ToArrayLength(&actual_new_len));
6935   // Steps 19d-v, 21. Return false if there were non-deletable elements.
6936   bool result = actual_new_len == new_len;
6937   if (!result) {
6938     RETURN_FAILURE(
6939         isolate, should_throw,
6940         NewTypeError(MessageTemplate::kStrictDeleteProperty,
6941                      isolate->factory()->NewNumberFromUint(actual_new_len - 1),
6942                      a));
6943   }
6944   return Just(result);
6945 }
6946 
6947 
6948 // ES6 9.5.6
6949 // static
DefineOwnProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Object> key,PropertyDescriptor * desc,ShouldThrow should_throw)6950 Maybe<bool> JSProxy::DefineOwnProperty(Isolate* isolate, Handle<JSProxy> proxy,
6951                                        Handle<Object> key,
6952                                        PropertyDescriptor* desc,
6953                                        ShouldThrow should_throw) {
6954   STACK_CHECK(isolate, Nothing<bool>());
6955   if (key->IsSymbol() && Handle<Symbol>::cast(key)->IsPrivate()) {
6956     return SetPrivateProperty(isolate, proxy, Handle<Symbol>::cast(key), desc,
6957                               should_throw);
6958   }
6959   Handle<String> trap_name = isolate->factory()->defineProperty_string();
6960   // 1. Assert: IsPropertyKey(P) is true.
6961   DCHECK(key->IsName() || key->IsNumber());
6962   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
6963   Handle<Object> handler(proxy->handler(), isolate);
6964   // 3. If handler is null, throw a TypeError exception.
6965   // 4. Assert: Type(handler) is Object.
6966   if (proxy->IsRevoked()) {
6967     isolate->Throw(*isolate->factory()->NewTypeError(
6968         MessageTemplate::kProxyRevoked, trap_name));
6969     return Nothing<bool>();
6970   }
6971   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
6972   Handle<JSReceiver> target(proxy->target(), isolate);
6973   // 6. Let trap be ? GetMethod(handler, "defineProperty").
6974   Handle<Object> trap;
6975   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
6976       isolate, trap,
6977       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
6978       Nothing<bool>());
6979   // 7. If trap is undefined, then:
6980   if (trap->IsUndefined(isolate)) {
6981     // 7a. Return target.[[DefineOwnProperty]](P, Desc).
6982     return JSReceiver::DefineOwnProperty(isolate, target, key, desc,
6983                                          should_throw);
6984   }
6985   // 8. Let descObj be FromPropertyDescriptor(Desc).
6986   Handle<Object> desc_obj = desc->ToObject(isolate);
6987   // 9. Let booleanTrapResult be
6988   //    ToBoolean(? Call(trap, handler, «target, P, descObj»)).
6989   Handle<Name> property_name =
6990       key->IsName()
6991           ? Handle<Name>::cast(key)
6992           : Handle<Name>::cast(isolate->factory()->NumberToString(key));
6993   // Do not leak private property names.
6994   DCHECK(!property_name->IsPrivate());
6995   Handle<Object> trap_result_obj;
6996   Handle<Object> args[] = {target, property_name, desc_obj};
6997   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
6998       isolate, trap_result_obj,
6999       Execution::Call(isolate, trap, handler, arraysize(args), args),
7000       Nothing<bool>());
7001   // 10. If booleanTrapResult is false, return false.
7002   if (!trap_result_obj->BooleanValue()) {
7003     RETURN_FAILURE(isolate, should_throw,
7004                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
7005                                 trap_name, property_name));
7006   }
7007   // 11. Let targetDesc be ? target.[[GetOwnProperty]](P).
7008   PropertyDescriptor target_desc;
7009   Maybe<bool> target_found =
7010       JSReceiver::GetOwnPropertyDescriptor(isolate, target, key, &target_desc);
7011   MAYBE_RETURN(target_found, Nothing<bool>());
7012   // 12. Let extensibleTarget be ? IsExtensible(target).
7013   Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target);
7014   MAYBE_RETURN(maybe_extensible, Nothing<bool>());
7015   bool extensible_target = maybe_extensible.FromJust();
7016   // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]]
7017   //     is false, then:
7018   // 13a. Let settingConfigFalse be true.
7019   // 14. Else let settingConfigFalse be false.
7020   bool setting_config_false = desc->has_configurable() && !desc->configurable();
7021   // 15. If targetDesc is undefined, then
7022   if (!target_found.FromJust()) {
7023     // 15a. If extensibleTarget is false, throw a TypeError exception.
7024     if (!extensible_target) {
7025       isolate->Throw(*isolate->factory()->NewTypeError(
7026           MessageTemplate::kProxyDefinePropertyNonExtensible, property_name));
7027       return Nothing<bool>();
7028     }
7029     // 15b. If settingConfigFalse is true, throw a TypeError exception.
7030     if (setting_config_false) {
7031       isolate->Throw(*isolate->factory()->NewTypeError(
7032           MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
7033       return Nothing<bool>();
7034     }
7035   } else {
7036     // 16. Else targetDesc is not undefined,
7037     // 16a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc,
7038     //      targetDesc) is false, throw a TypeError exception.
7039     Maybe<bool> valid =
7040         IsCompatiblePropertyDescriptor(isolate, extensible_target, desc,
7041                                        &target_desc, property_name, DONT_THROW);
7042     MAYBE_RETURN(valid, Nothing<bool>());
7043     if (!valid.FromJust()) {
7044       isolate->Throw(*isolate->factory()->NewTypeError(
7045           MessageTemplate::kProxyDefinePropertyIncompatible, property_name));
7046       return Nothing<bool>();
7047     }
7048     // 16b. If settingConfigFalse is true and targetDesc.[[Configurable]] is
7049     //      true, throw a TypeError exception.
7050     if (setting_config_false && target_desc.configurable()) {
7051       isolate->Throw(*isolate->factory()->NewTypeError(
7052           MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
7053       return Nothing<bool>();
7054     }
7055   }
7056   // 17. Return true.
7057   return Just(true);
7058 }
7059 
7060 
7061 // static
SetPrivateProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Symbol> private_name,PropertyDescriptor * desc,ShouldThrow should_throw)7062 Maybe<bool> JSProxy::SetPrivateProperty(Isolate* isolate, Handle<JSProxy> proxy,
7063                                         Handle<Symbol> private_name,
7064                                         PropertyDescriptor* desc,
7065                                         ShouldThrow should_throw) {
7066   // Despite the generic name, this can only add private data properties.
7067   if (!PropertyDescriptor::IsDataDescriptor(desc) ||
7068       desc->ToAttributes() != DONT_ENUM) {
7069     RETURN_FAILURE(isolate, should_throw,
7070                    NewTypeError(MessageTemplate::kProxyPrivate));
7071   }
7072   DCHECK(proxy->map()->is_dictionary_map());
7073   Handle<Object> value =
7074       desc->has_value()
7075           ? desc->value()
7076           : Handle<Object>::cast(isolate->factory()->undefined_value());
7077 
7078   LookupIterator it(proxy, private_name, proxy);
7079 
7080   if (it.IsFound()) {
7081     DCHECK_EQ(LookupIterator::DATA, it.state());
7082     DCHECK_EQ(DONT_ENUM, it.property_attributes());
7083     it.WriteDataValue(value);
7084     return Just(true);
7085   }
7086 
7087   Handle<NameDictionary> dict(proxy->property_dictionary());
7088   PropertyDetails details(DONT_ENUM, DATA, 0, PropertyCellType::kNoCell);
7089   Handle<NameDictionary> result =
7090       NameDictionary::Add(dict, private_name, value, details);
7091   if (!dict.is_identical_to(result)) proxy->set_properties(*result);
7092   return Just(true);
7093 }
7094 
7095 
7096 // static
GetOwnPropertyDescriptor(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> key,PropertyDescriptor * desc)7097 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(Isolate* isolate,
7098                                                  Handle<JSReceiver> object,
7099                                                  Handle<Object> key,
7100                                                  PropertyDescriptor* desc) {
7101   bool success = false;
7102   DCHECK(key->IsName() || key->IsNumber());  // |key| is a PropertyKey...
7103   LookupIterator it = LookupIterator::PropertyOrElement(
7104       isolate, object, key, &success, LookupIterator::OWN);
7105   DCHECK(success);  // ...so creating a LookupIterator can't fail.
7106   return GetOwnPropertyDescriptor(&it, desc);
7107 }
7108 
7109 
7110 // ES6 9.1.5.1
7111 // Returns true on success, false if the property didn't exist, nothing if
7112 // an exception was thrown.
7113 // static
GetOwnPropertyDescriptor(LookupIterator * it,PropertyDescriptor * desc)7114 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(LookupIterator* it,
7115                                                  PropertyDescriptor* desc) {
7116   Isolate* isolate = it->isolate();
7117   // "Virtual" dispatch.
7118   if (it->IsFound() && it->GetHolder<JSReceiver>()->IsJSProxy()) {
7119     return JSProxy::GetOwnPropertyDescriptor(isolate, it->GetHolder<JSProxy>(),
7120                                              it->GetName(), desc);
7121   }
7122 
7123   // 1. (Assert)
7124   // 2. If O does not have an own property with key P, return undefined.
7125   Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(it);
7126   MAYBE_RETURN(maybe, Nothing<bool>());
7127   PropertyAttributes attrs = maybe.FromJust();
7128   if (attrs == ABSENT) return Just(false);
7129   DCHECK(!isolate->has_pending_exception());
7130 
7131   // 3. Let D be a newly created Property Descriptor with no fields.
7132   DCHECK(desc->is_empty());
7133   // 4. Let X be O's own property whose key is P.
7134   // 5. If X is a data property, then
7135   bool is_accessor_pair = it->state() == LookupIterator::ACCESSOR &&
7136                           it->GetAccessors()->IsAccessorPair();
7137   if (!is_accessor_pair) {
7138     // 5a. Set D.[[Value]] to the value of X's [[Value]] attribute.
7139     Handle<Object> value;
7140     if (!Object::GetProperty(it).ToHandle(&value)) {
7141       DCHECK(isolate->has_pending_exception());
7142       return Nothing<bool>();
7143     }
7144     desc->set_value(value);
7145     // 5b. Set D.[[Writable]] to the value of X's [[Writable]] attribute
7146     desc->set_writable((attrs & READ_ONLY) == 0);
7147   } else {
7148     // 6. Else X is an accessor property, so
7149     Handle<AccessorPair> accessors =
7150         Handle<AccessorPair>::cast(it->GetAccessors());
7151     // 6a. Set D.[[Get]] to the value of X's [[Get]] attribute.
7152     desc->set_get(AccessorPair::GetComponent(accessors, ACCESSOR_GETTER));
7153     // 6b. Set D.[[Set]] to the value of X's [[Set]] attribute.
7154     desc->set_set(AccessorPair::GetComponent(accessors, ACCESSOR_SETTER));
7155   }
7156 
7157   // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
7158   desc->set_enumerable((attrs & DONT_ENUM) == 0);
7159   // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
7160   desc->set_configurable((attrs & DONT_DELETE) == 0);
7161   // 9. Return D.
7162   DCHECK(PropertyDescriptor::IsAccessorDescriptor(desc) !=
7163          PropertyDescriptor::IsDataDescriptor(desc));
7164   return Just(true);
7165 }
7166 
7167 
7168 // ES6 9.5.5
7169 // static
GetOwnPropertyDescriptor(Isolate * isolate,Handle<JSProxy> proxy,Handle<Name> name,PropertyDescriptor * desc)7170 Maybe<bool> JSProxy::GetOwnPropertyDescriptor(Isolate* isolate,
7171                                               Handle<JSProxy> proxy,
7172                                               Handle<Name> name,
7173                                               PropertyDescriptor* desc) {
7174   DCHECK(!name->IsPrivate());
7175   STACK_CHECK(isolate, Nothing<bool>());
7176 
7177   Handle<String> trap_name =
7178       isolate->factory()->getOwnPropertyDescriptor_string();
7179   // 1. (Assert)
7180   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
7181   Handle<Object> handler(proxy->handler(), isolate);
7182   // 3. If handler is null, throw a TypeError exception.
7183   // 4. Assert: Type(handler) is Object.
7184   if (proxy->IsRevoked()) {
7185     isolate->Throw(*isolate->factory()->NewTypeError(
7186         MessageTemplate::kProxyRevoked, trap_name));
7187     return Nothing<bool>();
7188   }
7189   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
7190   Handle<JSReceiver> target(proxy->target(), isolate);
7191   // 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
7192   Handle<Object> trap;
7193   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7194       isolate, trap,
7195       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
7196       Nothing<bool>());
7197   // 7. If trap is undefined, then
7198   if (trap->IsUndefined(isolate)) {
7199     // 7a. Return target.[[GetOwnProperty]](P).
7200     return JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, desc);
7201   }
7202   // 8. Let trapResultObj be ? Call(trap, handler, «target, P»).
7203   Handle<Object> trap_result_obj;
7204   Handle<Object> args[] = {target, name};
7205   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7206       isolate, trap_result_obj,
7207       Execution::Call(isolate, trap, handler, arraysize(args), args),
7208       Nothing<bool>());
7209   // 9. If Type(trapResultObj) is neither Object nor Undefined, throw a
7210   //    TypeError exception.
7211   if (!trap_result_obj->IsJSReceiver() &&
7212       !trap_result_obj->IsUndefined(isolate)) {
7213     isolate->Throw(*isolate->factory()->NewTypeError(
7214         MessageTemplate::kProxyGetOwnPropertyDescriptorInvalid, name));
7215     return Nothing<bool>();
7216   }
7217   // 10. Let targetDesc be ? target.[[GetOwnProperty]](P).
7218   PropertyDescriptor target_desc;
7219   Maybe<bool> found =
7220       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
7221   MAYBE_RETURN(found, Nothing<bool>());
7222   // 11. If trapResultObj is undefined, then
7223   if (trap_result_obj->IsUndefined(isolate)) {
7224     // 11a. If targetDesc is undefined, return undefined.
7225     if (!found.FromJust()) return Just(false);
7226     // 11b. If targetDesc.[[Configurable]] is false, throw a TypeError
7227     //      exception.
7228     if (!target_desc.configurable()) {
7229       isolate->Throw(*isolate->factory()->NewTypeError(
7230           MessageTemplate::kProxyGetOwnPropertyDescriptorUndefined, name));
7231       return Nothing<bool>();
7232     }
7233     // 11c. Let extensibleTarget be ? IsExtensible(target).
7234     Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
7235     MAYBE_RETURN(extensible_target, Nothing<bool>());
7236     // 11d. (Assert)
7237     // 11e. If extensibleTarget is false, throw a TypeError exception.
7238     if (!extensible_target.FromJust()) {
7239       isolate->Throw(*isolate->factory()->NewTypeError(
7240           MessageTemplate::kProxyGetOwnPropertyDescriptorNonExtensible, name));
7241       return Nothing<bool>();
7242     }
7243     // 11f. Return undefined.
7244     return Just(false);
7245   }
7246   // 12. Let extensibleTarget be ? IsExtensible(target).
7247   Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
7248   MAYBE_RETURN(extensible_target, Nothing<bool>());
7249   // 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
7250   if (!PropertyDescriptor::ToPropertyDescriptor(isolate, trap_result_obj,
7251                                                 desc)) {
7252     DCHECK(isolate->has_pending_exception());
7253     return Nothing<bool>();
7254   }
7255   // 14. Call CompletePropertyDescriptor(resultDesc).
7256   PropertyDescriptor::CompletePropertyDescriptor(isolate, desc);
7257   // 15. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget,
7258   //     resultDesc, targetDesc).
7259   Maybe<bool> valid =
7260       IsCompatiblePropertyDescriptor(isolate, extensible_target.FromJust(),
7261                                      desc, &target_desc, name, DONT_THROW);
7262   MAYBE_RETURN(valid, Nothing<bool>());
7263   // 16. If valid is false, throw a TypeError exception.
7264   if (!valid.FromJust()) {
7265     isolate->Throw(*isolate->factory()->NewTypeError(
7266         MessageTemplate::kProxyGetOwnPropertyDescriptorIncompatible, name));
7267     return Nothing<bool>();
7268   }
7269   // 17. If resultDesc.[[Configurable]] is false, then
7270   if (!desc->configurable()) {
7271     // 17a. If targetDesc is undefined or targetDesc.[[Configurable]] is true:
7272     if (target_desc.is_empty() || target_desc.configurable()) {
7273       // 17a i. Throw a TypeError exception.
7274       isolate->Throw(*isolate->factory()->NewTypeError(
7275           MessageTemplate::kProxyGetOwnPropertyDescriptorNonConfigurable,
7276           name));
7277       return Nothing<bool>();
7278     }
7279   }
7280   // 18. Return resultDesc.
7281   return Just(true);
7282 }
7283 
7284 
ReferencesObjectFromElements(FixedArray * elements,ElementsKind kind,Object * object)7285 bool JSObject::ReferencesObjectFromElements(FixedArray* elements,
7286                                             ElementsKind kind,
7287                                             Object* object) {
7288   Isolate* isolate = elements->GetIsolate();
7289   if (IsFastObjectElementsKind(kind) || kind == FAST_STRING_WRAPPER_ELEMENTS) {
7290     int length = IsJSArray()
7291         ? Smi::cast(JSArray::cast(this)->length())->value()
7292         : elements->length();
7293     for (int i = 0; i < length; ++i) {
7294       Object* element = elements->get(i);
7295       if (!element->IsTheHole(isolate) && element == object) return true;
7296     }
7297   } else {
7298     DCHECK(kind == DICTIONARY_ELEMENTS || kind == SLOW_STRING_WRAPPER_ELEMENTS);
7299     Object* key =
7300         SeededNumberDictionary::cast(elements)->SlowReverseLookup(object);
7301     if (!key->IsUndefined(isolate)) return true;
7302   }
7303   return false;
7304 }
7305 
7306 
7307 // Check whether this object references another object.
ReferencesObject(Object * obj)7308 bool JSObject::ReferencesObject(Object* obj) {
7309   Map* map_of_this = map();
7310   Heap* heap = GetHeap();
7311   DisallowHeapAllocation no_allocation;
7312 
7313   // Is the object the constructor for this object?
7314   if (map_of_this->GetConstructor() == obj) {
7315     return true;
7316   }
7317 
7318   // Is the object the prototype for this object?
7319   if (map_of_this->prototype() == obj) {
7320     return true;
7321   }
7322 
7323   // Check if the object is among the named properties.
7324   Object* key = SlowReverseLookup(obj);
7325   if (!key->IsUndefined(heap->isolate())) {
7326     return true;
7327   }
7328 
7329   // Check if the object is among the indexed properties.
7330   ElementsKind kind = GetElementsKind();
7331   switch (kind) {
7332     // Raw pixels and external arrays do not reference other
7333     // objects.
7334 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                        \
7335     case TYPE##_ELEMENTS:                                                      \
7336       break;
7337 
7338     TYPED_ARRAYS(TYPED_ARRAY_CASE)
7339 #undef TYPED_ARRAY_CASE
7340 
7341     case FAST_DOUBLE_ELEMENTS:
7342     case FAST_HOLEY_DOUBLE_ELEMENTS:
7343       break;
7344     case FAST_SMI_ELEMENTS:
7345     case FAST_HOLEY_SMI_ELEMENTS:
7346       break;
7347     case FAST_ELEMENTS:
7348     case FAST_HOLEY_ELEMENTS:
7349     case DICTIONARY_ELEMENTS:
7350     case FAST_STRING_WRAPPER_ELEMENTS:
7351     case SLOW_STRING_WRAPPER_ELEMENTS: {
7352       FixedArray* elements = FixedArray::cast(this->elements());
7353       if (ReferencesObjectFromElements(elements, kind, obj)) return true;
7354       break;
7355     }
7356     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
7357     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
7358       FixedArray* parameter_map = FixedArray::cast(elements());
7359       // Check the mapped parameters.
7360       int length = parameter_map->length();
7361       for (int i = 2; i < length; ++i) {
7362         Object* value = parameter_map->get(i);
7363         if (!value->IsTheHole(heap->isolate()) && value == obj) return true;
7364       }
7365       // Check the arguments.
7366       FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
7367       kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS :
7368           FAST_HOLEY_ELEMENTS;
7369       if (ReferencesObjectFromElements(arguments, kind, obj)) return true;
7370       break;
7371     }
7372     case NO_ELEMENTS:
7373       break;
7374   }
7375 
7376   // For functions check the context.
7377   if (IsJSFunction()) {
7378     // Get the constructor function for arguments array.
7379     Map* arguments_map =
7380         heap->isolate()->context()->native_context()->sloppy_arguments_map();
7381     JSFunction* arguments_function =
7382         JSFunction::cast(arguments_map->GetConstructor());
7383 
7384     // Get the context and don't check if it is the native context.
7385     JSFunction* f = JSFunction::cast(this);
7386     Context* context = f->context();
7387     if (context->IsNativeContext()) {
7388       return false;
7389     }
7390 
7391     // Check the non-special context slots.
7392     for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
7393       // Only check JS objects.
7394       if (context->get(i)->IsJSObject()) {
7395         JSObject* ctxobj = JSObject::cast(context->get(i));
7396         // If it is an arguments array check the content.
7397         if (ctxobj->map()->GetConstructor() == arguments_function) {
7398           if (ctxobj->ReferencesObject(obj)) {
7399             return true;
7400           }
7401         } else if (ctxobj == obj) {
7402           return true;
7403         }
7404       }
7405     }
7406 
7407     // Check the context extension (if any) if it can have references.
7408     if (context->has_extension() && !context->IsCatchContext()) {
7409       // With harmony scoping, a JSFunction may have a script context.
7410       // TODO(mvstanton): walk into the ScopeInfo.
7411       if (context->IsScriptContext()) {
7412         return false;
7413       }
7414 
7415       return context->extension_object()->ReferencesObject(obj);
7416     }
7417   }
7418 
7419   // No references to object.
7420   return false;
7421 }
7422 
7423 
SetIntegrityLevel(Handle<JSReceiver> receiver,IntegrityLevel level,ShouldThrow should_throw)7424 Maybe<bool> JSReceiver::SetIntegrityLevel(Handle<JSReceiver> receiver,
7425                                           IntegrityLevel level,
7426                                           ShouldThrow should_throw) {
7427   DCHECK(level == SEALED || level == FROZEN);
7428 
7429   if (receiver->IsJSObject()) {
7430     Handle<JSObject> object = Handle<JSObject>::cast(receiver);
7431     if (!object->HasSloppyArgumentsElements()) {  // Fast path.
7432       if (level == SEALED) {
7433         return JSObject::PreventExtensionsWithTransition<SEALED>(object,
7434                                                                  should_throw);
7435       } else {
7436         return JSObject::PreventExtensionsWithTransition<FROZEN>(object,
7437                                                                  should_throw);
7438       }
7439     }
7440   }
7441 
7442   Isolate* isolate = receiver->GetIsolate();
7443 
7444   MAYBE_RETURN(JSReceiver::PreventExtensions(receiver, should_throw),
7445                Nothing<bool>());
7446 
7447   Handle<FixedArray> keys;
7448   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7449       isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing<bool>());
7450 
7451   PropertyDescriptor no_conf;
7452   no_conf.set_configurable(false);
7453 
7454   PropertyDescriptor no_conf_no_write;
7455   no_conf_no_write.set_configurable(false);
7456   no_conf_no_write.set_writable(false);
7457 
7458   if (level == SEALED) {
7459     for (int i = 0; i < keys->length(); ++i) {
7460       Handle<Object> key(keys->get(i), isolate);
7461       MAYBE_RETURN(
7462           DefineOwnProperty(isolate, receiver, key, &no_conf, THROW_ON_ERROR),
7463           Nothing<bool>());
7464     }
7465     return Just(true);
7466   }
7467 
7468   for (int i = 0; i < keys->length(); ++i) {
7469     Handle<Object> key(keys->get(i), isolate);
7470     PropertyDescriptor current_desc;
7471     Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
7472         isolate, receiver, key, &current_desc);
7473     MAYBE_RETURN(owned, Nothing<bool>());
7474     if (owned.FromJust()) {
7475       PropertyDescriptor desc =
7476           PropertyDescriptor::IsAccessorDescriptor(&current_desc)
7477               ? no_conf
7478               : no_conf_no_write;
7479       MAYBE_RETURN(
7480           DefineOwnProperty(isolate, receiver, key, &desc, THROW_ON_ERROR),
7481           Nothing<bool>());
7482     }
7483   }
7484   return Just(true);
7485 }
7486 
7487 
TestIntegrityLevel(Handle<JSReceiver> object,IntegrityLevel level)7488 Maybe<bool> JSReceiver::TestIntegrityLevel(Handle<JSReceiver> object,
7489                                            IntegrityLevel level) {
7490   DCHECK(level == SEALED || level == FROZEN);
7491   Isolate* isolate = object->GetIsolate();
7492 
7493   Maybe<bool> extensible = JSReceiver::IsExtensible(object);
7494   MAYBE_RETURN(extensible, Nothing<bool>());
7495   if (extensible.FromJust()) return Just(false);
7496 
7497   Handle<FixedArray> keys;
7498   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7499       isolate, keys, JSReceiver::OwnPropertyKeys(object), Nothing<bool>());
7500 
7501   for (int i = 0; i < keys->length(); ++i) {
7502     Handle<Object> key(keys->get(i), isolate);
7503     PropertyDescriptor current_desc;
7504     Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
7505         isolate, object, key, &current_desc);
7506     MAYBE_RETURN(owned, Nothing<bool>());
7507     if (owned.FromJust()) {
7508       if (current_desc.configurable()) return Just(false);
7509       if (level == FROZEN &&
7510           PropertyDescriptor::IsDataDescriptor(&current_desc) &&
7511           current_desc.writable()) {
7512         return Just(false);
7513       }
7514     }
7515   }
7516   return Just(true);
7517 }
7518 
7519 
PreventExtensions(Handle<JSReceiver> object,ShouldThrow should_throw)7520 Maybe<bool> JSReceiver::PreventExtensions(Handle<JSReceiver> object,
7521                                           ShouldThrow should_throw) {
7522   if (object->IsJSProxy()) {
7523     return JSProxy::PreventExtensions(Handle<JSProxy>::cast(object),
7524                                       should_throw);
7525   }
7526   DCHECK(object->IsJSObject());
7527   return JSObject::PreventExtensions(Handle<JSObject>::cast(object),
7528                                      should_throw);
7529 }
7530 
7531 
PreventExtensions(Handle<JSProxy> proxy,ShouldThrow should_throw)7532 Maybe<bool> JSProxy::PreventExtensions(Handle<JSProxy> proxy,
7533                                        ShouldThrow should_throw) {
7534   Isolate* isolate = proxy->GetIsolate();
7535   STACK_CHECK(isolate, Nothing<bool>());
7536   Factory* factory = isolate->factory();
7537   Handle<String> trap_name = factory->preventExtensions_string();
7538 
7539   if (proxy->IsRevoked()) {
7540     isolate->Throw(
7541         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
7542     return Nothing<bool>();
7543   }
7544   Handle<JSReceiver> target(proxy->target(), isolate);
7545   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
7546 
7547   Handle<Object> trap;
7548   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7549       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
7550   if (trap->IsUndefined(isolate)) {
7551     return JSReceiver::PreventExtensions(target, should_throw);
7552   }
7553 
7554   Handle<Object> trap_result;
7555   Handle<Object> args[] = {target};
7556   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7557       isolate, trap_result,
7558       Execution::Call(isolate, trap, handler, arraysize(args), args),
7559       Nothing<bool>());
7560   if (!trap_result->BooleanValue()) {
7561     RETURN_FAILURE(
7562         isolate, should_throw,
7563         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
7564   }
7565 
7566   // Enforce the invariant.
7567   Maybe<bool> target_result = JSReceiver::IsExtensible(target);
7568   MAYBE_RETURN(target_result, Nothing<bool>());
7569   if (target_result.FromJust()) {
7570     isolate->Throw(*factory->NewTypeError(
7571         MessageTemplate::kProxyPreventExtensionsExtensible));
7572     return Nothing<bool>();
7573   }
7574   return Just(true);
7575 }
7576 
7577 
PreventExtensions(Handle<JSObject> object,ShouldThrow should_throw)7578 Maybe<bool> JSObject::PreventExtensions(Handle<JSObject> object,
7579                                         ShouldThrow should_throw) {
7580   Isolate* isolate = object->GetIsolate();
7581 
7582   if (!object->HasSloppyArgumentsElements()) {
7583     return PreventExtensionsWithTransition<NONE>(object, should_throw);
7584   }
7585 
7586   if (object->IsAccessCheckNeeded() &&
7587       !isolate->MayAccess(handle(isolate->context()), object)) {
7588     isolate->ReportFailedAccessCheck(object);
7589     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
7590     RETURN_FAILURE(isolate, should_throw,
7591                    NewTypeError(MessageTemplate::kNoAccess));
7592   }
7593 
7594   if (!object->map()->is_extensible()) return Just(true);
7595 
7596   if (object->IsJSGlobalProxy()) {
7597     PrototypeIterator iter(isolate, object);
7598     if (iter.IsAtEnd()) return Just(true);
7599     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
7600     return PreventExtensions(PrototypeIterator::GetCurrent<JSObject>(iter),
7601                              should_throw);
7602   }
7603 
7604   if (!object->HasFixedTypedArrayElements()) {
7605     // If there are fast elements we normalize.
7606     Handle<SeededNumberDictionary> dictionary = NormalizeElements(object);
7607     DCHECK(object->HasDictionaryElements() ||
7608            object->HasSlowArgumentsElements());
7609 
7610     // Make sure that we never go back to fast case.
7611     object->RequireSlowElements(*dictionary);
7612   }
7613 
7614   // Do a map transition, other objects with this map may still
7615   // be extensible.
7616   // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
7617   Handle<Map> new_map = Map::Copy(handle(object->map()), "PreventExtensions");
7618 
7619   new_map->set_is_extensible(false);
7620   JSObject::MigrateToMap(object, new_map);
7621   DCHECK(!object->map()->is_extensible());
7622 
7623   return Just(true);
7624 }
7625 
7626 
IsExtensible(Handle<JSReceiver> object)7627 Maybe<bool> JSReceiver::IsExtensible(Handle<JSReceiver> object) {
7628   if (object->IsJSProxy()) {
7629     return JSProxy::IsExtensible(Handle<JSProxy>::cast(object));
7630   }
7631   return Just(JSObject::IsExtensible(Handle<JSObject>::cast(object)));
7632 }
7633 
7634 
IsExtensible(Handle<JSProxy> proxy)7635 Maybe<bool> JSProxy::IsExtensible(Handle<JSProxy> proxy) {
7636   Isolate* isolate = proxy->GetIsolate();
7637   STACK_CHECK(isolate, Nothing<bool>());
7638   Factory* factory = isolate->factory();
7639   Handle<String> trap_name = factory->isExtensible_string();
7640 
7641   if (proxy->IsRevoked()) {
7642     isolate->Throw(
7643         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
7644     return Nothing<bool>();
7645   }
7646   Handle<JSReceiver> target(proxy->target(), isolate);
7647   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
7648 
7649   Handle<Object> trap;
7650   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7651       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
7652   if (trap->IsUndefined(isolate)) {
7653     return JSReceiver::IsExtensible(target);
7654   }
7655 
7656   Handle<Object> trap_result;
7657   Handle<Object> args[] = {target};
7658   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7659       isolate, trap_result,
7660       Execution::Call(isolate, trap, handler, arraysize(args), args),
7661       Nothing<bool>());
7662 
7663   // Enforce the invariant.
7664   Maybe<bool> target_result = JSReceiver::IsExtensible(target);
7665   MAYBE_RETURN(target_result, Nothing<bool>());
7666   if (target_result.FromJust() != trap_result->BooleanValue()) {
7667     isolate->Throw(
7668         *factory->NewTypeError(MessageTemplate::kProxyIsExtensibleInconsistent,
7669                                factory->ToBoolean(target_result.FromJust())));
7670     return Nothing<bool>();
7671   }
7672   return target_result;
7673 }
7674 
7675 
IsExtensible(Handle<JSObject> object)7676 bool JSObject::IsExtensible(Handle<JSObject> object) {
7677   Isolate* isolate = object->GetIsolate();
7678   if (object->IsAccessCheckNeeded() &&
7679       !isolate->MayAccess(handle(isolate->context()), object)) {
7680     return true;
7681   }
7682   if (object->IsJSGlobalProxy()) {
7683     PrototypeIterator iter(isolate, *object);
7684     if (iter.IsAtEnd()) return false;
7685     DCHECK(iter.GetCurrent()->IsJSGlobalObject());
7686     return iter.GetCurrent<JSObject>()->map()->is_extensible();
7687   }
7688   return object->map()->is_extensible();
7689 }
7690 
7691 
7692 template <typename Dictionary>
ApplyAttributesToDictionary(Dictionary * dictionary,const PropertyAttributes attributes)7693 static void ApplyAttributesToDictionary(Dictionary* dictionary,
7694                                         const PropertyAttributes attributes) {
7695   int capacity = dictionary->Capacity();
7696   Isolate* isolate = dictionary->GetIsolate();
7697   for (int i = 0; i < capacity; i++) {
7698     Object* k = dictionary->KeyAt(i);
7699     if (dictionary->IsKey(isolate, k) &&
7700         !(k->IsSymbol() && Symbol::cast(k)->is_private())) {
7701       PropertyDetails details = dictionary->DetailsAt(i);
7702       int attrs = attributes;
7703       // READ_ONLY is an invalid attribute for JS setters/getters.
7704       if ((attributes & READ_ONLY) && details.type() == ACCESSOR_CONSTANT) {
7705         Object* v = dictionary->ValueAt(i);
7706         if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value();
7707         if (v->IsAccessorPair()) attrs &= ~READ_ONLY;
7708       }
7709       details = details.CopyAddAttributes(
7710           static_cast<PropertyAttributes>(attrs));
7711       dictionary->DetailsAtPut(i, details);
7712     }
7713   }
7714 }
7715 
7716 
7717 template <PropertyAttributes attrs>
PreventExtensionsWithTransition(Handle<JSObject> object,ShouldThrow should_throw)7718 Maybe<bool> JSObject::PreventExtensionsWithTransition(
7719     Handle<JSObject> object, ShouldThrow should_throw) {
7720   STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN);
7721 
7722   // Sealing/freezing sloppy arguments should be handled elsewhere.
7723   DCHECK(!object->HasSloppyArgumentsElements());
7724 
7725   Isolate* isolate = object->GetIsolate();
7726   if (object->IsAccessCheckNeeded() &&
7727       !isolate->MayAccess(handle(isolate->context()), object)) {
7728     isolate->ReportFailedAccessCheck(object);
7729     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
7730     RETURN_FAILURE(isolate, should_throw,
7731                    NewTypeError(MessageTemplate::kNoAccess));
7732   }
7733 
7734   if (attrs == NONE && !object->map()->is_extensible()) return Just(true);
7735 
7736   if (object->IsJSGlobalProxy()) {
7737     PrototypeIterator iter(isolate, object);
7738     if (iter.IsAtEnd()) return Just(true);
7739     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
7740     return PreventExtensionsWithTransition<attrs>(
7741         PrototypeIterator::GetCurrent<JSObject>(iter), should_throw);
7742   }
7743 
7744   Handle<SeededNumberDictionary> new_element_dictionary;
7745   if (!object->HasFixedTypedArrayElements() &&
7746       !object->HasDictionaryElements() &&
7747       !object->HasSlowStringWrapperElements()) {
7748     int length =
7749         object->IsJSArray()
7750             ? Smi::cast(Handle<JSArray>::cast(object)->length())->value()
7751             : object->elements()->length();
7752     new_element_dictionary =
7753         length == 0 ? isolate->factory()->empty_slow_element_dictionary()
7754                     : object->GetElementsAccessor()->Normalize(object);
7755   }
7756 
7757   Handle<Symbol> transition_marker;
7758   if (attrs == NONE) {
7759     transition_marker = isolate->factory()->nonextensible_symbol();
7760   } else if (attrs == SEALED) {
7761     transition_marker = isolate->factory()->sealed_symbol();
7762   } else {
7763     DCHECK(attrs == FROZEN);
7764     transition_marker = isolate->factory()->frozen_symbol();
7765   }
7766 
7767   Handle<Map> old_map(object->map(), isolate);
7768   Map* transition =
7769       TransitionArray::SearchSpecial(*old_map, *transition_marker);
7770   if (transition != NULL) {
7771     Handle<Map> transition_map(transition, isolate);
7772     DCHECK(transition_map->has_dictionary_elements() ||
7773            transition_map->has_fixed_typed_array_elements() ||
7774            transition_map->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS);
7775     DCHECK(!transition_map->is_extensible());
7776     JSObject::MigrateToMap(object, transition_map);
7777   } else if (TransitionArray::CanHaveMoreTransitions(old_map)) {
7778     // Create a new descriptor array with the appropriate property attributes
7779     Handle<Map> new_map = Map::CopyForPreventExtensions(
7780         old_map, attrs, transition_marker, "CopyForPreventExtensions");
7781     JSObject::MigrateToMap(object, new_map);
7782   } else {
7783     DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map());
7784     // Slow path: need to normalize properties for safety
7785     NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0,
7786                         "SlowPreventExtensions");
7787 
7788     // Create a new map, since other objects with this map may be extensible.
7789     // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
7790     Handle<Map> new_map =
7791         Map::Copy(handle(object->map()), "SlowCopyForPreventExtensions");
7792     new_map->set_is_extensible(false);
7793     if (!new_element_dictionary.is_null()) {
7794       ElementsKind new_kind =
7795           IsStringWrapperElementsKind(old_map->elements_kind())
7796               ? SLOW_STRING_WRAPPER_ELEMENTS
7797               : DICTIONARY_ELEMENTS;
7798       new_map->set_elements_kind(new_kind);
7799     }
7800     JSObject::MigrateToMap(object, new_map);
7801 
7802     if (attrs != NONE) {
7803       if (object->IsJSGlobalObject()) {
7804         ApplyAttributesToDictionary(object->global_dictionary(), attrs);
7805       } else {
7806         ApplyAttributesToDictionary(object->property_dictionary(), attrs);
7807       }
7808     }
7809   }
7810 
7811   // Both seal and preventExtensions always go through without modifications to
7812   // typed array elements. Freeze works only if there are no actual elements.
7813   if (object->HasFixedTypedArrayElements()) {
7814     if (attrs == FROZEN &&
7815         JSArrayBufferView::cast(*object)->byte_length()->Number() > 0) {
7816       isolate->Throw(*isolate->factory()->NewTypeError(
7817           MessageTemplate::kCannotFreezeArrayBufferView));
7818       return Nothing<bool>();
7819     }
7820     return Just(true);
7821   }
7822 
7823   DCHECK(object->map()->has_dictionary_elements() ||
7824          object->map()->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS);
7825   if (!new_element_dictionary.is_null()) {
7826     object->set_elements(*new_element_dictionary);
7827   }
7828 
7829   if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) {
7830     SeededNumberDictionary* dictionary = object->element_dictionary();
7831     // Make sure we never go back to the fast case
7832     object->RequireSlowElements(dictionary);
7833     if (attrs != NONE) {
7834       ApplyAttributesToDictionary(dictionary, attrs);
7835     }
7836   }
7837 
7838   return Just(true);
7839 }
7840 
7841 
FastPropertyAt(Handle<JSObject> object,Representation representation,FieldIndex index)7842 Handle<Object> JSObject::FastPropertyAt(Handle<JSObject> object,
7843                                         Representation representation,
7844                                         FieldIndex index) {
7845   Isolate* isolate = object->GetIsolate();
7846   if (object->IsUnboxedDoubleField(index)) {
7847     double value = object->RawFastDoublePropertyAt(index);
7848     return isolate->factory()->NewHeapNumber(value);
7849   }
7850   Handle<Object> raw_value(object->RawFastPropertyAt(index), isolate);
7851   return Object::WrapForRead(isolate, raw_value, representation);
7852 }
7853 
7854 template <class ContextObject>
7855 class JSObjectWalkVisitor {
7856  public:
JSObjectWalkVisitor(ContextObject * site_context,bool copying,JSObject::DeepCopyHints hints)7857   JSObjectWalkVisitor(ContextObject* site_context, bool copying,
7858                       JSObject::DeepCopyHints hints)
7859     : site_context_(site_context),
7860       copying_(copying),
7861       hints_(hints) {}
7862 
7863   MUST_USE_RESULT MaybeHandle<JSObject> StructureWalk(Handle<JSObject> object);
7864 
7865  protected:
VisitElementOrProperty(Handle<JSObject> object,Handle<JSObject> value)7866   MUST_USE_RESULT inline MaybeHandle<JSObject> VisitElementOrProperty(
7867       Handle<JSObject> object,
7868       Handle<JSObject> value) {
7869     Handle<AllocationSite> current_site = site_context()->EnterNewScope();
7870     MaybeHandle<JSObject> copy_of_value = StructureWalk(value);
7871     site_context()->ExitScope(current_site, value);
7872     return copy_of_value;
7873   }
7874 
site_context()7875   inline ContextObject* site_context() { return site_context_; }
isolate()7876   inline Isolate* isolate() { return site_context()->isolate(); }
7877 
copying() const7878   inline bool copying() const { return copying_; }
7879 
7880  private:
7881   ContextObject* site_context_;
7882   const bool copying_;
7883   const JSObject::DeepCopyHints hints_;
7884 };
7885 
7886 template <class ContextObject>
StructureWalk(Handle<JSObject> object)7887 MaybeHandle<JSObject> JSObjectWalkVisitor<ContextObject>::StructureWalk(
7888     Handle<JSObject> object) {
7889   Isolate* isolate = this->isolate();
7890   bool copying = this->copying();
7891   bool shallow = hints_ == JSObject::kObjectIsShallow;
7892 
7893   if (!shallow) {
7894     StackLimitCheck check(isolate);
7895 
7896     if (check.HasOverflowed()) {
7897       isolate->StackOverflow();
7898       return MaybeHandle<JSObject>();
7899     }
7900   }
7901 
7902   if (object->map()->is_deprecated()) {
7903     JSObject::MigrateInstance(object);
7904   }
7905 
7906   Handle<JSObject> copy;
7907   if (copying) {
7908     // JSFunction objects are not allowed to be in normal boilerplates at all.
7909     DCHECK(!object->IsJSFunction());
7910     Handle<AllocationSite> site_to_pass;
7911     if (site_context()->ShouldCreateMemento(object)) {
7912       site_to_pass = site_context()->current();
7913     }
7914     copy = isolate->factory()->CopyJSObjectWithAllocationSite(
7915         object, site_to_pass);
7916   } else {
7917     copy = object;
7918   }
7919 
7920   DCHECK(copying || copy.is_identical_to(object));
7921 
7922   ElementsKind kind = copy->GetElementsKind();
7923   if (copying && IsFastSmiOrObjectElementsKind(kind) &&
7924       FixedArray::cast(copy->elements())->map() ==
7925         isolate->heap()->fixed_cow_array_map()) {
7926     isolate->counters()->cow_arrays_created_runtime()->Increment();
7927   }
7928 
7929   if (!shallow) {
7930     HandleScope scope(isolate);
7931 
7932     // Deep copy own properties.
7933     if (copy->HasFastProperties()) {
7934       Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors());
7935       int limit = copy->map()->NumberOfOwnDescriptors();
7936       for (int i = 0; i < limit; i++) {
7937         PropertyDetails details = descriptors->GetDetails(i);
7938         if (details.type() != DATA) continue;
7939         FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i);
7940         if (object->IsUnboxedDoubleField(index)) {
7941           if (copying) {
7942             double value = object->RawFastDoublePropertyAt(index);
7943             copy->RawFastDoublePropertyAtPut(index, value);
7944           }
7945         } else {
7946           Handle<Object> value(object->RawFastPropertyAt(index), isolate);
7947           if (value->IsJSObject()) {
7948             ASSIGN_RETURN_ON_EXCEPTION(
7949                 isolate, value,
7950                 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
7951                 JSObject);
7952             if (copying) {
7953               copy->FastPropertyAtPut(index, *value);
7954             }
7955           } else {
7956             if (copying) {
7957               Representation representation = details.representation();
7958               value = Object::NewStorageFor(isolate, value, representation);
7959               copy->FastPropertyAtPut(index, *value);
7960             }
7961           }
7962         }
7963       }
7964     } else {
7965       // Only deep copy fields from the object literal expression.
7966       // In particular, don't try to copy the length attribute of
7967       // an array.
7968       PropertyFilter filter = static_cast<PropertyFilter>(
7969           ONLY_WRITABLE | ONLY_ENUMERABLE | ONLY_CONFIGURABLE);
7970       KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly, filter);
7971       accumulator.CollectOwnPropertyNames(copy, copy);
7972       Handle<FixedArray> names = accumulator.GetKeys();
7973       for (int i = 0; i < names->length(); i++) {
7974         DCHECK(names->get(i)->IsName());
7975         Handle<Name> name(Name::cast(names->get(i)));
7976         Handle<Object> value =
7977             JSObject::GetProperty(copy, name).ToHandleChecked();
7978         if (value->IsJSObject()) {
7979           Handle<JSObject> result;
7980           ASSIGN_RETURN_ON_EXCEPTION(
7981               isolate, result,
7982               VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
7983               JSObject);
7984           if (copying) {
7985             // Creating object copy for literals. No strict mode needed.
7986             JSObject::SetProperty(copy, name, result, SLOPPY).Assert();
7987           }
7988         }
7989       }
7990     }
7991 
7992     // Deep copy own elements.
7993     switch (kind) {
7994       case FAST_ELEMENTS:
7995       case FAST_HOLEY_ELEMENTS: {
7996         Handle<FixedArray> elements(FixedArray::cast(copy->elements()));
7997         if (elements->map() == isolate->heap()->fixed_cow_array_map()) {
7998 #ifdef DEBUG
7999           for (int i = 0; i < elements->length(); i++) {
8000             DCHECK(!elements->get(i)->IsJSObject());
8001           }
8002 #endif
8003         } else {
8004           for (int i = 0; i < elements->length(); i++) {
8005             Handle<Object> value(elements->get(i), isolate);
8006             if (value->IsJSObject()) {
8007               Handle<JSObject> result;
8008               ASSIGN_RETURN_ON_EXCEPTION(
8009                   isolate, result,
8010                   VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
8011                   JSObject);
8012               if (copying) {
8013                 elements->set(i, *result);
8014               }
8015             }
8016           }
8017         }
8018         break;
8019       }
8020       case DICTIONARY_ELEMENTS: {
8021         Handle<SeededNumberDictionary> element_dictionary(
8022             copy->element_dictionary());
8023         int capacity = element_dictionary->Capacity();
8024         for (int i = 0; i < capacity; i++) {
8025           Object* k = element_dictionary->KeyAt(i);
8026           if (element_dictionary->IsKey(isolate, k)) {
8027             Handle<Object> value(element_dictionary->ValueAt(i), isolate);
8028             if (value->IsJSObject()) {
8029               Handle<JSObject> result;
8030               ASSIGN_RETURN_ON_EXCEPTION(
8031                   isolate, result,
8032                   VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
8033                   JSObject);
8034               if (copying) {
8035                 element_dictionary->ValueAtPut(i, *result);
8036               }
8037             }
8038           }
8039         }
8040         break;
8041       }
8042       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
8043       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
8044         UNIMPLEMENTED();
8045         break;
8046       case FAST_STRING_WRAPPER_ELEMENTS:
8047       case SLOW_STRING_WRAPPER_ELEMENTS:
8048         UNREACHABLE();
8049         break;
8050 
8051 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                        \
8052       case TYPE##_ELEMENTS:                                                    \
8053 
8054       TYPED_ARRAYS(TYPED_ARRAY_CASE)
8055 #undef TYPED_ARRAY_CASE
8056       // Typed elements cannot be created using an object literal.
8057       UNREACHABLE();
8058       break;
8059 
8060       case FAST_SMI_ELEMENTS:
8061       case FAST_HOLEY_SMI_ELEMENTS:
8062       case FAST_DOUBLE_ELEMENTS:
8063       case FAST_HOLEY_DOUBLE_ELEMENTS:
8064       case NO_ELEMENTS:
8065         // No contained objects, nothing to do.
8066         break;
8067     }
8068   }
8069 
8070   return copy;
8071 }
8072 
8073 
DeepWalk(Handle<JSObject> object,AllocationSiteCreationContext * site_context)8074 MaybeHandle<JSObject> JSObject::DeepWalk(
8075     Handle<JSObject> object,
8076     AllocationSiteCreationContext* site_context) {
8077   JSObjectWalkVisitor<AllocationSiteCreationContext> v(site_context, false,
8078                                                        kNoHints);
8079   MaybeHandle<JSObject> result = v.StructureWalk(object);
8080   Handle<JSObject> for_assert;
8081   DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object));
8082   return result;
8083 }
8084 
8085 
DeepCopy(Handle<JSObject> object,AllocationSiteUsageContext * site_context,DeepCopyHints hints)8086 MaybeHandle<JSObject> JSObject::DeepCopy(
8087     Handle<JSObject> object,
8088     AllocationSiteUsageContext* site_context,
8089     DeepCopyHints hints) {
8090   JSObjectWalkVisitor<AllocationSiteUsageContext> v(site_context, true, hints);
8091   MaybeHandle<JSObject> copy = v.StructureWalk(object);
8092   Handle<JSObject> for_assert;
8093   DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object));
8094   return copy;
8095 }
8096 
8097 // static
ToPrimitive(Handle<JSReceiver> receiver,ToPrimitiveHint hint)8098 MaybeHandle<Object> JSReceiver::ToPrimitive(Handle<JSReceiver> receiver,
8099                                             ToPrimitiveHint hint) {
8100   Isolate* const isolate = receiver->GetIsolate();
8101   Handle<Object> exotic_to_prim;
8102   ASSIGN_RETURN_ON_EXCEPTION(
8103       isolate, exotic_to_prim,
8104       GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object);
8105   if (!exotic_to_prim->IsUndefined(isolate)) {
8106     Handle<Object> hint_string;
8107     switch (hint) {
8108       case ToPrimitiveHint::kDefault:
8109         hint_string = isolate->factory()->default_string();
8110         break;
8111       case ToPrimitiveHint::kNumber:
8112         hint_string = isolate->factory()->number_string();
8113         break;
8114       case ToPrimitiveHint::kString:
8115         hint_string = isolate->factory()->string_string();
8116         break;
8117     }
8118     Handle<Object> result;
8119     ASSIGN_RETURN_ON_EXCEPTION(
8120         isolate, result,
8121         Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string),
8122         Object);
8123     if (result->IsPrimitive()) return result;
8124     THROW_NEW_ERROR(isolate,
8125                     NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
8126                     Object);
8127   }
8128   return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString)
8129                                            ? OrdinaryToPrimitiveHint::kString
8130                                            : OrdinaryToPrimitiveHint::kNumber);
8131 }
8132 
8133 
8134 // static
OrdinaryToPrimitive(Handle<JSReceiver> receiver,OrdinaryToPrimitiveHint hint)8135 MaybeHandle<Object> JSReceiver::OrdinaryToPrimitive(
8136     Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint) {
8137   Isolate* const isolate = receiver->GetIsolate();
8138   Handle<String> method_names[2];
8139   switch (hint) {
8140     case OrdinaryToPrimitiveHint::kNumber:
8141       method_names[0] = isolate->factory()->valueOf_string();
8142       method_names[1] = isolate->factory()->toString_string();
8143       break;
8144     case OrdinaryToPrimitiveHint::kString:
8145       method_names[0] = isolate->factory()->toString_string();
8146       method_names[1] = isolate->factory()->valueOf_string();
8147       break;
8148   }
8149   for (Handle<String> name : method_names) {
8150     Handle<Object> method;
8151     ASSIGN_RETURN_ON_EXCEPTION(isolate, method,
8152                                JSReceiver::GetProperty(receiver, name), Object);
8153     if (method->IsCallable()) {
8154       Handle<Object> result;
8155       ASSIGN_RETURN_ON_EXCEPTION(
8156           isolate, result, Execution::Call(isolate, method, receiver, 0, NULL),
8157           Object);
8158       if (result->IsPrimitive()) return result;
8159     }
8160   }
8161   THROW_NEW_ERROR(isolate,
8162                   NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
8163                   Object);
8164 }
8165 
8166 
8167 // TODO(cbruni/jkummerow): Consider moving this into elements.cc.
HasEnumerableElements()8168 bool JSObject::HasEnumerableElements() {
8169   // TODO(cbruni): cleanup
8170   JSObject* object = this;
8171   switch (object->GetElementsKind()) {
8172     case FAST_SMI_ELEMENTS:
8173     case FAST_ELEMENTS:
8174     case FAST_DOUBLE_ELEMENTS: {
8175       int length = object->IsJSArray()
8176                        ? Smi::cast(JSArray::cast(object)->length())->value()
8177                        : object->elements()->length();
8178       return length > 0;
8179     }
8180     case FAST_HOLEY_SMI_ELEMENTS:
8181     case FAST_HOLEY_ELEMENTS: {
8182       FixedArray* elements = FixedArray::cast(object->elements());
8183       int length = object->IsJSArray()
8184                        ? Smi::cast(JSArray::cast(object)->length())->value()
8185                        : elements->length();
8186       for (int i = 0; i < length; i++) {
8187         if (!elements->is_the_hole(i)) return true;
8188       }
8189       return false;
8190     }
8191     case FAST_HOLEY_DOUBLE_ELEMENTS: {
8192       int length = object->IsJSArray()
8193                        ? Smi::cast(JSArray::cast(object)->length())->value()
8194                        : object->elements()->length();
8195       // Zero-length arrays would use the empty FixedArray...
8196       if (length == 0) return false;
8197       // ...so only cast to FixedDoubleArray otherwise.
8198       FixedDoubleArray* elements = FixedDoubleArray::cast(object->elements());
8199       for (int i = 0; i < length; i++) {
8200         if (!elements->is_the_hole(i)) return true;
8201       }
8202       return false;
8203     }
8204 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
8205     case TYPE##_ELEMENTS:
8206 
8207       TYPED_ARRAYS(TYPED_ARRAY_CASE)
8208 #undef TYPED_ARRAY_CASE
8209       {
8210         int length = object->elements()->length();
8211         return length > 0;
8212       }
8213     case DICTIONARY_ELEMENTS: {
8214       SeededNumberDictionary* elements =
8215           SeededNumberDictionary::cast(object->elements());
8216       return elements->NumberOfElementsFilterAttributes(ONLY_ENUMERABLE) > 0;
8217     }
8218     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
8219     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
8220       // We're approximating non-empty arguments objects here.
8221       return true;
8222     case FAST_STRING_WRAPPER_ELEMENTS:
8223     case SLOW_STRING_WRAPPER_ELEMENTS:
8224       if (String::cast(JSValue::cast(object)->value())->length() > 0) {
8225         return true;
8226       }
8227       return object->elements()->length() > 0;
8228     case NO_ELEMENTS:
8229       return false;
8230   }
8231   UNREACHABLE();
8232   return true;
8233 }
8234 
8235 
NumberOfDescribedProperties(DescriptorFlag which,PropertyFilter filter)8236 int Map::NumberOfDescribedProperties(DescriptorFlag which,
8237                                      PropertyFilter filter) {
8238   int result = 0;
8239   DescriptorArray* descs = instance_descriptors();
8240   int limit = which == ALL_DESCRIPTORS
8241       ? descs->number_of_descriptors()
8242       : NumberOfOwnDescriptors();
8243   for (int i = 0; i < limit; i++) {
8244     if ((descs->GetDetails(i).attributes() & filter) == 0 &&
8245         !descs->GetKey(i)->FilterKey(filter)) {
8246       result++;
8247     }
8248   }
8249   return result;
8250 }
8251 
8252 
NextFreePropertyIndex()8253 int Map::NextFreePropertyIndex() {
8254   int free_index = 0;
8255   int number_of_own_descriptors = NumberOfOwnDescriptors();
8256   DescriptorArray* descs = instance_descriptors();
8257   for (int i = 0; i < number_of_own_descriptors; i++) {
8258     PropertyDetails details = descs->GetDetails(i);
8259     if (details.location() == kField) {
8260       int candidate = details.field_index() + details.field_width_in_words();
8261       if (candidate > free_index) free_index = candidate;
8262     }
8263   }
8264   return free_index;
8265 }
8266 
8267 
OnlyHasSimpleProperties()8268 bool Map::OnlyHasSimpleProperties() {
8269   // Wrapped string elements aren't explicitly stored in the elements backing
8270   // store, but are loaded indirectly from the underlying string.
8271   return !IsStringWrapperElementsKind(elements_kind()) &&
8272          instance_type() > LAST_SPECIAL_RECEIVER_TYPE &&
8273          !has_hidden_prototype() && !is_dictionary_map();
8274 }
8275 
FastGetOwnValuesOrEntries(Isolate * isolate,Handle<JSReceiver> receiver,bool get_entries,Handle<FixedArray> * result)8276 MUST_USE_RESULT Maybe<bool> FastGetOwnValuesOrEntries(
8277     Isolate* isolate, Handle<JSReceiver> receiver, bool get_entries,
8278     Handle<FixedArray>* result) {
8279   Handle<Map> map(JSReceiver::cast(*receiver)->map(), isolate);
8280 
8281   if (!map->IsJSObjectMap()) return Just(false);
8282   if (!map->OnlyHasSimpleProperties()) return Just(false);
8283 
8284   Handle<JSObject> object(JSObject::cast(*receiver));
8285 
8286   Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate);
8287   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
8288   int number_of_own_elements =
8289       object->GetElementsAccessor()->GetCapacity(*object, object->elements());
8290   Handle<FixedArray> values_or_entries = isolate->factory()->NewFixedArray(
8291       number_of_own_descriptors + number_of_own_elements);
8292   int count = 0;
8293 
8294   if (object->elements() != isolate->heap()->empty_fixed_array()) {
8295     MAYBE_RETURN(object->GetElementsAccessor()->CollectValuesOrEntries(
8296                      isolate, object, values_or_entries, get_entries, &count,
8297                      ENUMERABLE_STRINGS),
8298                  Nothing<bool>());
8299   }
8300 
8301   bool stable = object->map() == *map;
8302 
8303   for (int index = 0; index < number_of_own_descriptors; index++) {
8304     Handle<Name> next_key(descriptors->GetKey(index), isolate);
8305     if (!next_key->IsString()) continue;
8306     Handle<Object> prop_value;
8307 
8308     // Directly decode from the descriptor array if |from| did not change shape.
8309     if (stable) {
8310       PropertyDetails details = descriptors->GetDetails(index);
8311       if (!details.IsEnumerable()) continue;
8312       if (details.kind() == kData) {
8313         if (details.location() == kDescriptor) {
8314           prop_value = handle(descriptors->GetValue(index), isolate);
8315         } else {
8316           Representation representation = details.representation();
8317           FieldIndex field_index = FieldIndex::ForDescriptor(*map, index);
8318           prop_value =
8319               JSObject::FastPropertyAt(object, representation, field_index);
8320         }
8321       } else {
8322         ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8323             isolate, prop_value, JSReceiver::GetProperty(object, next_key),
8324             Nothing<bool>());
8325         stable = object->map() == *map;
8326       }
8327     } else {
8328       // If the map did change, do a slower lookup. We are still guaranteed that
8329       // the object has a simple shape, and that the key is a name.
8330       LookupIterator it(object, next_key, LookupIterator::OWN_SKIP_INTERCEPTOR);
8331       if (!it.IsFound()) continue;
8332       DCHECK(it.state() == LookupIterator::DATA ||
8333              it.state() == LookupIterator::ACCESSOR);
8334       if (!it.IsEnumerable()) continue;
8335       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8336           isolate, prop_value, Object::GetProperty(&it), Nothing<bool>());
8337     }
8338 
8339     if (get_entries) {
8340       prop_value = MakeEntryPair(isolate, next_key, prop_value);
8341     }
8342 
8343     values_or_entries->set(count, *prop_value);
8344     count++;
8345   }
8346 
8347   if (count < values_or_entries->length()) values_or_entries->Shrink(count);
8348   *result = values_or_entries;
8349   return Just(true);
8350 }
8351 
GetOwnValuesOrEntries(Isolate * isolate,Handle<JSReceiver> object,PropertyFilter filter,bool get_entries)8352 MaybeHandle<FixedArray> GetOwnValuesOrEntries(Isolate* isolate,
8353                                               Handle<JSReceiver> object,
8354                                               PropertyFilter filter,
8355                                               bool get_entries) {
8356   Handle<FixedArray> values_or_entries;
8357   if (filter == ENUMERABLE_STRINGS) {
8358     Maybe<bool> fast_values_or_entries = FastGetOwnValuesOrEntries(
8359         isolate, object, get_entries, &values_or_entries);
8360     if (fast_values_or_entries.IsNothing()) return MaybeHandle<FixedArray>();
8361     if (fast_values_or_entries.FromJust()) return values_or_entries;
8362   }
8363 
8364   PropertyFilter key_filter =
8365       static_cast<PropertyFilter>(filter & ~ONLY_ENUMERABLE);
8366 
8367   Handle<FixedArray> keys;
8368   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8369       isolate, keys,
8370       KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly, key_filter,
8371                               GetKeysConversion::kConvertToString),
8372       MaybeHandle<FixedArray>());
8373 
8374   values_or_entries = isolate->factory()->NewFixedArray(keys->length());
8375   int length = 0;
8376 
8377   for (int i = 0; i < keys->length(); ++i) {
8378     Handle<Name> key = Handle<Name>::cast(handle(keys->get(i), isolate));
8379 
8380     if (filter & ONLY_ENUMERABLE) {
8381       PropertyDescriptor descriptor;
8382       Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor(
8383           isolate, object, key, &descriptor);
8384       MAYBE_RETURN(did_get_descriptor, MaybeHandle<FixedArray>());
8385       if (!did_get_descriptor.FromJust() || !descriptor.enumerable()) continue;
8386     }
8387 
8388     Handle<Object> value;
8389     ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8390         isolate, value, JSReceiver::GetPropertyOrElement(object, key),
8391         MaybeHandle<FixedArray>());
8392 
8393     if (get_entries) {
8394       Handle<FixedArray> entry_storage =
8395           isolate->factory()->NewUninitializedFixedArray(2);
8396       entry_storage->set(0, *key);
8397       entry_storage->set(1, *value);
8398       value = isolate->factory()->NewJSArrayWithElements(entry_storage,
8399                                                          FAST_ELEMENTS, 2);
8400     }
8401 
8402     values_or_entries->set(length, *value);
8403     length++;
8404   }
8405   if (length < values_or_entries->length()) values_or_entries->Shrink(length);
8406   return values_or_entries;
8407 }
8408 
GetOwnValues(Handle<JSReceiver> object,PropertyFilter filter)8409 MaybeHandle<FixedArray> JSReceiver::GetOwnValues(Handle<JSReceiver> object,
8410                                                  PropertyFilter filter) {
8411   return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, false);
8412 }
8413 
GetOwnEntries(Handle<JSReceiver> object,PropertyFilter filter)8414 MaybeHandle<FixedArray> JSReceiver::GetOwnEntries(Handle<JSReceiver> object,
8415                                                   PropertyFilter filter) {
8416   return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, true);
8417 }
8418 
DictionaryElementsInPrototypeChainOnly()8419 bool Map::DictionaryElementsInPrototypeChainOnly() {
8420   if (IsDictionaryElementsKind(elements_kind())) {
8421     return false;
8422   }
8423 
8424   for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) {
8425     // Be conservative, don't walk into proxies.
8426     if (iter.GetCurrent()->IsJSProxy()) return true;
8427     // String wrappers have non-configurable, non-writable elements.
8428     if (iter.GetCurrent()->IsStringWrapper()) return true;
8429     JSObject* current = iter.GetCurrent<JSObject>();
8430 
8431     if (current->HasDictionaryElements() &&
8432         current->element_dictionary()->requires_slow_elements()) {
8433       return true;
8434     }
8435 
8436     if (current->HasSlowArgumentsElements()) {
8437       FixedArray* parameter_map = FixedArray::cast(current->elements());
8438       Object* arguments = parameter_map->get(1);
8439       if (SeededNumberDictionary::cast(arguments)->requires_slow_elements()) {
8440         return true;
8441       }
8442     }
8443   }
8444 
8445   return false;
8446 }
8447 
8448 
DefineAccessor(Handle<JSObject> object,Handle<Name> name,Handle<Object> getter,Handle<Object> setter,PropertyAttributes attributes)8449 MaybeHandle<Object> JSObject::DefineAccessor(Handle<JSObject> object,
8450                                              Handle<Name> name,
8451                                              Handle<Object> getter,
8452                                              Handle<Object> setter,
8453                                              PropertyAttributes attributes) {
8454   Isolate* isolate = object->GetIsolate();
8455 
8456   LookupIterator it = LookupIterator::PropertyOrElement(
8457       isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
8458   return DefineAccessor(&it, getter, setter, attributes);
8459 }
8460 
8461 
DefineAccessor(LookupIterator * it,Handle<Object> getter,Handle<Object> setter,PropertyAttributes attributes)8462 MaybeHandle<Object> JSObject::DefineAccessor(LookupIterator* it,
8463                                              Handle<Object> getter,
8464                                              Handle<Object> setter,
8465                                              PropertyAttributes attributes) {
8466   Isolate* isolate = it->isolate();
8467 
8468   it->UpdateProtector();
8469 
8470   if (it->state() == LookupIterator::ACCESS_CHECK) {
8471     if (!it->HasAccess()) {
8472       isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
8473       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
8474       return isolate->factory()->undefined_value();
8475     }
8476     it->Next();
8477   }
8478 
8479   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
8480   // Ignore accessors on typed arrays.
8481   if (it->IsElement() && object->HasFixedTypedArrayElements()) {
8482     return it->factory()->undefined_value();
8483   }
8484 
8485   DCHECK(getter->IsCallable() || getter->IsUndefined(isolate) ||
8486          getter->IsNull(isolate) || getter->IsFunctionTemplateInfo());
8487   DCHECK(setter->IsCallable() || setter->IsUndefined(isolate) ||
8488          setter->IsNull(isolate) || getter->IsFunctionTemplateInfo());
8489   it->TransitionToAccessorProperty(getter, setter, attributes);
8490 
8491   return isolate->factory()->undefined_value();
8492 }
8493 
8494 
SetAccessor(Handle<JSObject> object,Handle<AccessorInfo> info)8495 MaybeHandle<Object> JSObject::SetAccessor(Handle<JSObject> object,
8496                                           Handle<AccessorInfo> info) {
8497   Isolate* isolate = object->GetIsolate();
8498   Handle<Name> name(Name::cast(info->name()), isolate);
8499 
8500   LookupIterator it = LookupIterator::PropertyOrElement(
8501       isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
8502 
8503   // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that
8504   // the FailedAccessCheckCallbackFunction doesn't throw an exception.
8505   //
8506   // TODO(verwaest): Force throw an exception if the callback doesn't, so we can
8507   // remove reliance on default return values.
8508   if (it.state() == LookupIterator::ACCESS_CHECK) {
8509     if (!it.HasAccess()) {
8510       isolate->ReportFailedAccessCheck(object);
8511       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
8512       return it.factory()->undefined_value();
8513     }
8514     it.Next();
8515   }
8516 
8517   // Ignore accessors on typed arrays.
8518   if (it.IsElement() && object->HasFixedTypedArrayElements()) {
8519     return it.factory()->undefined_value();
8520   }
8521 
8522   CHECK(GetPropertyAttributes(&it).IsJust());
8523 
8524   // ES5 forbids turning a property into an accessor if it's not
8525   // configurable. See 8.6.1 (Table 5).
8526   if (it.IsFound() && !it.IsConfigurable()) {
8527     return it.factory()->undefined_value();
8528   }
8529 
8530   it.TransitionToAccessorPair(info, info->property_attributes());
8531 
8532   return object;
8533 }
8534 
SlowReverseLookup(Object * value)8535 Object* JSObject::SlowReverseLookup(Object* value) {
8536   if (HasFastProperties()) {
8537     int number_of_own_descriptors = map()->NumberOfOwnDescriptors();
8538     DescriptorArray* descs = map()->instance_descriptors();
8539     bool value_is_number = value->IsNumber();
8540     for (int i = 0; i < number_of_own_descriptors; i++) {
8541       if (descs->GetType(i) == DATA) {
8542         FieldIndex field_index = FieldIndex::ForDescriptor(map(), i);
8543         if (IsUnboxedDoubleField(field_index)) {
8544           if (value_is_number) {
8545             double property = RawFastDoublePropertyAt(field_index);
8546             if (property == value->Number()) {
8547               return descs->GetKey(i);
8548             }
8549           }
8550         } else {
8551           Object* property = RawFastPropertyAt(field_index);
8552           if (field_index.is_double()) {
8553             DCHECK(property->IsMutableHeapNumber());
8554             if (value_is_number && property->Number() == value->Number()) {
8555               return descs->GetKey(i);
8556             }
8557           } else if (property == value) {
8558             return descs->GetKey(i);
8559           }
8560         }
8561       } else if (descs->GetType(i) == DATA_CONSTANT) {
8562         if (descs->GetConstant(i) == value) {
8563           return descs->GetKey(i);
8564         }
8565       }
8566     }
8567     return GetHeap()->undefined_value();
8568   } else if (IsJSGlobalObject()) {
8569     return global_dictionary()->SlowReverseLookup(value);
8570   } else {
8571     return property_dictionary()->SlowReverseLookup(value);
8572   }
8573 }
8574 
8575 
RawCopy(Handle<Map> map,int instance_size)8576 Handle<Map> Map::RawCopy(Handle<Map> map, int instance_size) {
8577   Isolate* isolate = map->GetIsolate();
8578   Handle<Map> result =
8579       isolate->factory()->NewMap(map->instance_type(), instance_size);
8580   Handle<Object> prototype(map->prototype(), isolate);
8581   Map::SetPrototype(result, prototype);
8582   result->set_constructor_or_backpointer(map->GetConstructor());
8583   result->set_bit_field(map->bit_field());
8584   result->set_bit_field2(map->bit_field2());
8585   int new_bit_field3 = map->bit_field3();
8586   new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true);
8587   new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0);
8588   new_bit_field3 = EnumLengthBits::update(new_bit_field3,
8589                                           kInvalidEnumCacheSentinel);
8590   new_bit_field3 = Deprecated::update(new_bit_field3, false);
8591   if (!map->is_dictionary_map()) {
8592     new_bit_field3 = IsUnstable::update(new_bit_field3, false);
8593   }
8594   result->set_bit_field3(new_bit_field3);
8595   return result;
8596 }
8597 
8598 
Normalize(Handle<Map> fast_map,PropertyNormalizationMode mode,const char * reason)8599 Handle<Map> Map::Normalize(Handle<Map> fast_map, PropertyNormalizationMode mode,
8600                            const char* reason) {
8601   DCHECK(!fast_map->is_dictionary_map());
8602 
8603   Isolate* isolate = fast_map->GetIsolate();
8604   Handle<Object> maybe_cache(isolate->native_context()->normalized_map_cache(),
8605                              isolate);
8606   bool use_cache =
8607       !fast_map->is_prototype_map() && !maybe_cache->IsUndefined(isolate);
8608   Handle<NormalizedMapCache> cache;
8609   if (use_cache) cache = Handle<NormalizedMapCache>::cast(maybe_cache);
8610 
8611   Handle<Map> new_map;
8612   if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) {
8613 #ifdef VERIFY_HEAP
8614     if (FLAG_verify_heap) new_map->DictionaryMapVerify();
8615 #endif
8616 #ifdef ENABLE_SLOW_DCHECKS
8617     if (FLAG_enable_slow_asserts) {
8618       // The cached map should match newly created normalized map bit-by-bit,
8619       // except for the code cache, which can contain some ics which can be
8620       // applied to the shared map, dependent code and weak cell cache.
8621       Handle<Map> fresh = Map::CopyNormalized(fast_map, mode);
8622 
8623       if (new_map->is_prototype_map()) {
8624         // For prototype maps, the PrototypeInfo is not copied.
8625         DCHECK(memcmp(fresh->address(), new_map->address(),
8626                       kTransitionsOrPrototypeInfoOffset) == 0);
8627         DCHECK(fresh->raw_transitions() == Smi::FromInt(0));
8628         STATIC_ASSERT(kDescriptorsOffset ==
8629                       kTransitionsOrPrototypeInfoOffset + kPointerSize);
8630         DCHECK(memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset),
8631                       HeapObject::RawField(*new_map, kDescriptorsOffset),
8632                       kCodeCacheOffset - kDescriptorsOffset) == 0);
8633       } else {
8634         DCHECK(memcmp(fresh->address(), new_map->address(),
8635                       Map::kCodeCacheOffset) == 0);
8636       }
8637       STATIC_ASSERT(Map::kDependentCodeOffset ==
8638                     Map::kCodeCacheOffset + kPointerSize);
8639       STATIC_ASSERT(Map::kWeakCellCacheOffset ==
8640                     Map::kDependentCodeOffset + kPointerSize);
8641       int offset = Map::kWeakCellCacheOffset + kPointerSize;
8642       DCHECK(memcmp(fresh->address() + offset,
8643                     new_map->address() + offset,
8644                     Map::kSize - offset) == 0);
8645     }
8646 #endif
8647   } else {
8648     new_map = Map::CopyNormalized(fast_map, mode);
8649     if (use_cache) {
8650       cache->Set(fast_map, new_map);
8651       isolate->counters()->maps_normalized()->Increment();
8652     }
8653 #if TRACE_MAPS
8654     if (FLAG_trace_maps) {
8655       PrintF("[TraceMaps: Normalize from= %p to= %p reason= %s ]\n",
8656              reinterpret_cast<void*>(*fast_map),
8657              reinterpret_cast<void*>(*new_map), reason);
8658     }
8659 #endif
8660   }
8661   fast_map->NotifyLeafMapLayoutChange();
8662   return new_map;
8663 }
8664 
8665 
CopyNormalized(Handle<Map> map,PropertyNormalizationMode mode)8666 Handle<Map> Map::CopyNormalized(Handle<Map> map,
8667                                 PropertyNormalizationMode mode) {
8668   int new_instance_size = map->instance_size();
8669   if (mode == CLEAR_INOBJECT_PROPERTIES) {
8670     new_instance_size -= map->GetInObjectProperties() * kPointerSize;
8671   }
8672 
8673   Handle<Map> result = RawCopy(map, new_instance_size);
8674 
8675   if (mode != CLEAR_INOBJECT_PROPERTIES) {
8676     result->SetInObjectProperties(map->GetInObjectProperties());
8677   }
8678 
8679   result->set_dictionary_map(true);
8680   result->set_migration_target(false);
8681   result->set_construction_counter(kNoSlackTracking);
8682 
8683 #ifdef VERIFY_HEAP
8684   if (FLAG_verify_heap) result->DictionaryMapVerify();
8685 #endif
8686 
8687   return result;
8688 }
8689 
8690 
CopyInitialMap(Handle<Map> map,int instance_size,int in_object_properties,int unused_property_fields)8691 Handle<Map> Map::CopyInitialMap(Handle<Map> map, int instance_size,
8692                                 int in_object_properties,
8693                                 int unused_property_fields) {
8694 #ifdef DEBUG
8695   Isolate* isolate = map->GetIsolate();
8696   // Strict function maps have Function as a constructor but the
8697   // Function's initial map is a sloppy function map. Same holds for
8698   // GeneratorFunction and its initial map.
8699   Object* constructor = map->GetConstructor();
8700   DCHECK(constructor->IsJSFunction());
8701   DCHECK(*map == JSFunction::cast(constructor)->initial_map() ||
8702          *map == *isolate->strict_function_map() ||
8703          *map == *isolate->strict_generator_function_map());
8704 #endif
8705   // Initial maps must always own their descriptors and it's descriptor array
8706   // does not contain descriptors that do not belong to the map.
8707   DCHECK(map->owns_descriptors());
8708   DCHECK_EQ(map->NumberOfOwnDescriptors(),
8709             map->instance_descriptors()->number_of_descriptors());
8710 
8711   Handle<Map> result = RawCopy(map, instance_size);
8712 
8713   // Please note instance_type and instance_size are set when allocated.
8714   result->SetInObjectProperties(in_object_properties);
8715   result->set_unused_property_fields(unused_property_fields);
8716 
8717   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
8718   if (number_of_own_descriptors > 0) {
8719     // The copy will use the same descriptors array.
8720     result->UpdateDescriptors(map->instance_descriptors(),
8721                               map->GetLayoutDescriptor());
8722     result->SetNumberOfOwnDescriptors(number_of_own_descriptors);
8723 
8724     DCHECK_EQ(result->NumberOfFields(),
8725               in_object_properties - unused_property_fields);
8726   }
8727 
8728   return result;
8729 }
8730 
8731 
CopyDropDescriptors(Handle<Map> map)8732 Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) {
8733   Handle<Map> result = RawCopy(map, map->instance_size());
8734 
8735   // Please note instance_type and instance_size are set when allocated.
8736   if (map->IsJSObjectMap()) {
8737     result->SetInObjectProperties(map->GetInObjectProperties());
8738     result->set_unused_property_fields(map->unused_property_fields());
8739   }
8740   result->ClearCodeCache(map->GetHeap());
8741   map->NotifyLeafMapLayoutChange();
8742   return result;
8743 }
8744 
8745 
ShareDescriptor(Handle<Map> map,Handle<DescriptorArray> descriptors,Descriptor * descriptor)8746 Handle<Map> Map::ShareDescriptor(Handle<Map> map,
8747                                  Handle<DescriptorArray> descriptors,
8748                                  Descriptor* descriptor) {
8749   // Sanity check. This path is only to be taken if the map owns its descriptor
8750   // array, implying that its NumberOfOwnDescriptors equals the number of
8751   // descriptors in the descriptor array.
8752   DCHECK_EQ(map->NumberOfOwnDescriptors(),
8753             map->instance_descriptors()->number_of_descriptors());
8754 
8755   Handle<Map> result = CopyDropDescriptors(map);
8756   Handle<Name> name = descriptor->GetKey();
8757 
8758   // Ensure there's space for the new descriptor in the shared descriptor array.
8759   if (descriptors->NumberOfSlackDescriptors() == 0) {
8760     int old_size = descriptors->number_of_descriptors();
8761     if (old_size == 0) {
8762       descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1);
8763     } else {
8764       int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors);
8765       EnsureDescriptorSlack(map, slack);
8766       descriptors = handle(map->instance_descriptors());
8767     }
8768   }
8769 
8770   Handle<LayoutDescriptor> layout_descriptor =
8771       FLAG_unbox_double_fields
8772           ? LayoutDescriptor::ShareAppend(map, descriptor->GetDetails())
8773           : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
8774 
8775   {
8776     DisallowHeapAllocation no_gc;
8777     descriptors->Append(descriptor);
8778     result->InitializeDescriptors(*descriptors, *layout_descriptor);
8779   }
8780 
8781   DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1);
8782   ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION);
8783 
8784   return result;
8785 }
8786 
8787 
8788 #if TRACE_MAPS
8789 
8790 // static
TraceTransition(const char * what,Map * from,Map * to,Name * name)8791 void Map::TraceTransition(const char* what, Map* from, Map* to, Name* name) {
8792   if (FLAG_trace_maps) {
8793     PrintF("[TraceMaps: %s from= %p to= %p name= ", what,
8794            reinterpret_cast<void*>(from), reinterpret_cast<void*>(to));
8795     name->NameShortPrint();
8796     PrintF(" ]\n");
8797   }
8798 }
8799 
8800 
8801 // static
TraceAllTransitions(Map * map)8802 void Map::TraceAllTransitions(Map* map) {
8803   Object* transitions = map->raw_transitions();
8804   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
8805   for (int i = -0; i < num_transitions; ++i) {
8806     Map* target = TransitionArray::GetTarget(transitions, i);
8807     Name* key = TransitionArray::GetKey(transitions, i);
8808     Map::TraceTransition("Transition", map, target, key);
8809     Map::TraceAllTransitions(target);
8810   }
8811 }
8812 
8813 #endif  // TRACE_MAPS
8814 
8815 
ConnectTransition(Handle<Map> parent,Handle<Map> child,Handle<Name> name,SimpleTransitionFlag flag)8816 void Map::ConnectTransition(Handle<Map> parent, Handle<Map> child,
8817                             Handle<Name> name, SimpleTransitionFlag flag) {
8818   if (!parent->GetBackPointer()->IsUndefined(parent->GetIsolate())) {
8819     parent->set_owns_descriptors(false);
8820   } else {
8821     // |parent| is initial map and it must keep the ownership, there must be no
8822     // descriptors in the descriptors array that do not belong to the map.
8823     DCHECK(parent->owns_descriptors());
8824     DCHECK_EQ(parent->NumberOfOwnDescriptors(),
8825               parent->instance_descriptors()->number_of_descriptors());
8826   }
8827   if (parent->is_prototype_map()) {
8828     DCHECK(child->is_prototype_map());
8829 #if TRACE_MAPS
8830     Map::TraceTransition("NoTransition", *parent, *child, *name);
8831 #endif
8832   } else {
8833     TransitionArray::Insert(parent, name, child, flag);
8834 #if TRACE_MAPS
8835     Map::TraceTransition("Transition", *parent, *child, *name);
8836 #endif
8837   }
8838 }
8839 
8840 
CopyReplaceDescriptors(Handle<Map> map,Handle<DescriptorArray> descriptors,Handle<LayoutDescriptor> layout_descriptor,TransitionFlag flag,MaybeHandle<Name> maybe_name,const char * reason,SimpleTransitionFlag simple_flag)8841 Handle<Map> Map::CopyReplaceDescriptors(
8842     Handle<Map> map, Handle<DescriptorArray> descriptors,
8843     Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
8844     MaybeHandle<Name> maybe_name, const char* reason,
8845     SimpleTransitionFlag simple_flag) {
8846   DCHECK(descriptors->IsSortedNoDuplicates());
8847 
8848   Handle<Map> result = CopyDropDescriptors(map);
8849 
8850   if (!map->is_prototype_map()) {
8851     if (flag == INSERT_TRANSITION &&
8852         TransitionArray::CanHaveMoreTransitions(map)) {
8853       result->InitializeDescriptors(*descriptors, *layout_descriptor);
8854 
8855       Handle<Name> name;
8856       CHECK(maybe_name.ToHandle(&name));
8857       ConnectTransition(map, result, name, simple_flag);
8858     } else {
8859       int length = descriptors->number_of_descriptors();
8860       for (int i = 0; i < length; i++) {
8861         descriptors->SetRepresentation(i, Representation::Tagged());
8862         if (descriptors->GetDetails(i).type() == DATA) {
8863           descriptors->SetValue(i, FieldType::Any());
8864         }
8865       }
8866       result->InitializeDescriptors(*descriptors,
8867                                     LayoutDescriptor::FastPointerLayout());
8868     }
8869   } else {
8870     result->InitializeDescriptors(*descriptors, *layout_descriptor);
8871   }
8872 #if TRACE_MAPS
8873   if (FLAG_trace_maps &&
8874       // Mirror conditions above that did not call ConnectTransition().
8875       (map->is_prototype_map() ||
8876        !(flag == INSERT_TRANSITION &&
8877          TransitionArray::CanHaveMoreTransitions(map)))) {
8878     PrintF("[TraceMaps: ReplaceDescriptors from= %p to= %p reason= %s ]\n",
8879            reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*result),
8880            reason);
8881   }
8882 #endif
8883 
8884   return result;
8885 }
8886 
8887 
8888 // Creates transition tree starting from |split_map| and adding all descriptors
8889 // starting from descriptor with index |split_map|.NumberOfOwnDescriptors().
8890 // The way how it is done is tricky because of GC and special descriptors
8891 // marking logic.
AddMissingTransitions(Handle<Map> split_map,Handle<DescriptorArray> descriptors,Handle<LayoutDescriptor> full_layout_descriptor)8892 Handle<Map> Map::AddMissingTransitions(
8893     Handle<Map> split_map, Handle<DescriptorArray> descriptors,
8894     Handle<LayoutDescriptor> full_layout_descriptor) {
8895   DCHECK(descriptors->IsSortedNoDuplicates());
8896   int split_nof = split_map->NumberOfOwnDescriptors();
8897   int nof_descriptors = descriptors->number_of_descriptors();
8898   DCHECK_LT(split_nof, nof_descriptors);
8899 
8900   // Start with creating last map which will own full descriptors array.
8901   // This is necessary to guarantee that GC will mark the whole descriptor
8902   // array if any of the allocations happening below fail.
8903   // Number of unused properties is temporarily incorrect and the layout
8904   // descriptor could unnecessarily be in slow mode but we will fix after
8905   // all the other intermediate maps are created.
8906   Handle<Map> last_map = CopyDropDescriptors(split_map);
8907   last_map->InitializeDescriptors(*descriptors, *full_layout_descriptor);
8908   last_map->set_unused_property_fields(0);
8909 
8910   // During creation of intermediate maps we violate descriptors sharing
8911   // invariant since the last map is not yet connected to the transition tree
8912   // we create here. But it is safe because GC never trims map's descriptors
8913   // if there are no dead transitions from that map and this is exactly the
8914   // case for all the intermediate maps we create here.
8915   Handle<Map> map = split_map;
8916   for (int i = split_nof; i < nof_descriptors - 1; ++i) {
8917     Handle<Map> new_map = CopyDropDescriptors(map);
8918     InstallDescriptors(map, new_map, i, descriptors, full_layout_descriptor);
8919     map = new_map;
8920   }
8921   map->NotifyLeafMapLayoutChange();
8922   InstallDescriptors(map, last_map, nof_descriptors - 1, descriptors,
8923                      full_layout_descriptor);
8924   return last_map;
8925 }
8926 
8927 
8928 // Since this method is used to rewrite an existing transition tree, it can
8929 // always insert transitions without checking.
InstallDescriptors(Handle<Map> parent,Handle<Map> child,int new_descriptor,Handle<DescriptorArray> descriptors,Handle<LayoutDescriptor> full_layout_descriptor)8930 void Map::InstallDescriptors(Handle<Map> parent, Handle<Map> child,
8931                              int new_descriptor,
8932                              Handle<DescriptorArray> descriptors,
8933                              Handle<LayoutDescriptor> full_layout_descriptor) {
8934   DCHECK(descriptors->IsSortedNoDuplicates());
8935 
8936   child->set_instance_descriptors(*descriptors);
8937   child->SetNumberOfOwnDescriptors(new_descriptor + 1);
8938 
8939   int unused_property_fields = parent->unused_property_fields();
8940   PropertyDetails details = descriptors->GetDetails(new_descriptor);
8941   if (details.location() == kField) {
8942     unused_property_fields = parent->unused_property_fields() - 1;
8943     if (unused_property_fields < 0) {
8944       unused_property_fields += JSObject::kFieldsAdded;
8945     }
8946   }
8947   child->set_unused_property_fields(unused_property_fields);
8948 
8949   if (FLAG_unbox_double_fields) {
8950     Handle<LayoutDescriptor> layout_descriptor =
8951         LayoutDescriptor::AppendIfFastOrUseFull(parent, details,
8952                                                 full_layout_descriptor);
8953     child->set_layout_descriptor(*layout_descriptor);
8954 #ifdef VERIFY_HEAP
8955     // TODO(ishell): remove these checks from VERIFY_HEAP mode.
8956     if (FLAG_verify_heap) {
8957       CHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
8958     }
8959 #else
8960     SLOW_DCHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
8961 #endif
8962     child->set_visitor_id(Heap::GetStaticVisitorIdForMap(*child));
8963   }
8964 
8965   Handle<Name> name = handle(descriptors->GetKey(new_descriptor));
8966   ConnectTransition(parent, child, name, SIMPLE_PROPERTY_TRANSITION);
8967 }
8968 
8969 
CopyAsElementsKind(Handle<Map> map,ElementsKind kind,TransitionFlag flag)8970 Handle<Map> Map::CopyAsElementsKind(Handle<Map> map, ElementsKind kind,
8971                                     TransitionFlag flag) {
8972   Map* maybe_elements_transition_map = NULL;
8973   if (flag == INSERT_TRANSITION) {
8974     // Ensure we are requested to add elements kind transition "near the root".
8975     DCHECK_EQ(map->FindRootMap()->NumberOfOwnDescriptors(),
8976               map->NumberOfOwnDescriptors());
8977 
8978     maybe_elements_transition_map = map->ElementsTransitionMap();
8979     DCHECK(maybe_elements_transition_map == NULL ||
8980            (maybe_elements_transition_map->elements_kind() ==
8981                 DICTIONARY_ELEMENTS &&
8982             kind == DICTIONARY_ELEMENTS));
8983     DCHECK(!IsFastElementsKind(kind) ||
8984            IsMoreGeneralElementsKindTransition(map->elements_kind(), kind));
8985     DCHECK(kind != map->elements_kind());
8986   }
8987 
8988   bool insert_transition = flag == INSERT_TRANSITION &&
8989                            TransitionArray::CanHaveMoreTransitions(map) &&
8990                            maybe_elements_transition_map == NULL;
8991 
8992   if (insert_transition) {
8993     Handle<Map> new_map = CopyForTransition(map, "CopyAsElementsKind");
8994     new_map->set_elements_kind(kind);
8995 
8996     Isolate* isolate = map->GetIsolate();
8997     Handle<Name> name = isolate->factory()->elements_transition_symbol();
8998     ConnectTransition(map, new_map, name, SPECIAL_TRANSITION);
8999     return new_map;
9000   }
9001 
9002   // Create a new free-floating map only if we are not allowed to store it.
9003   Handle<Map> new_map = Copy(map, "CopyAsElementsKind");
9004   new_map->set_elements_kind(kind);
9005   return new_map;
9006 }
9007 
9008 
AsLanguageMode(Handle<Map> initial_map,LanguageMode language_mode,FunctionKind kind)9009 Handle<Map> Map::AsLanguageMode(Handle<Map> initial_map,
9010                                 LanguageMode language_mode, FunctionKind kind) {
9011   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
9012   // Initial map for sloppy mode function is stored in the function
9013   // constructor. Initial maps for strict mode are cached as special transitions
9014   // using |strict_function_transition_symbol| as a key.
9015   if (language_mode == SLOPPY) return initial_map;
9016   Isolate* isolate = initial_map->GetIsolate();
9017   Factory* factory = isolate->factory();
9018   Handle<Symbol> transition_symbol;
9019 
9020   int map_index = Context::FunctionMapIndex(language_mode, kind);
9021   Handle<Map> function_map(
9022       Map::cast(isolate->native_context()->get(map_index)));
9023 
9024   STATIC_ASSERT(LANGUAGE_END == 3);
9025   switch (language_mode) {
9026     case STRICT:
9027       transition_symbol = factory->strict_function_transition_symbol();
9028       break;
9029     default:
9030       UNREACHABLE();
9031       break;
9032   }
9033   Map* maybe_transition =
9034       TransitionArray::SearchSpecial(*initial_map, *transition_symbol);
9035   if (maybe_transition != NULL) {
9036     return handle(maybe_transition, isolate);
9037   }
9038   initial_map->NotifyLeafMapLayoutChange();
9039 
9040   // Create new map taking descriptors from the |function_map| and all
9041   // the other details from the |initial_map|.
9042   Handle<Map> map =
9043       Map::CopyInitialMap(function_map, initial_map->instance_size(),
9044                           initial_map->GetInObjectProperties(),
9045                           initial_map->unused_property_fields());
9046   map->SetConstructor(initial_map->GetConstructor());
9047   map->set_prototype(initial_map->prototype());
9048 
9049   if (TransitionArray::CanHaveMoreTransitions(initial_map)) {
9050     Map::ConnectTransition(initial_map, map, transition_symbol,
9051                            SPECIAL_TRANSITION);
9052   }
9053   return map;
9054 }
9055 
9056 
CopyForTransition(Handle<Map> map,const char * reason)9057 Handle<Map> Map::CopyForTransition(Handle<Map> map, const char* reason) {
9058   DCHECK(!map->is_prototype_map());
9059   Handle<Map> new_map = CopyDropDescriptors(map);
9060 
9061   if (map->owns_descriptors()) {
9062     // In case the map owned its own descriptors, share the descriptors and
9063     // transfer ownership to the new map.
9064     // The properties did not change, so reuse descriptors.
9065     new_map->InitializeDescriptors(map->instance_descriptors(),
9066                                    map->GetLayoutDescriptor());
9067   } else {
9068     // In case the map did not own its own descriptors, a split is forced by
9069     // copying the map; creating a new descriptor array cell.
9070     Handle<DescriptorArray> descriptors(map->instance_descriptors());
9071     int number_of_own_descriptors = map->NumberOfOwnDescriptors();
9072     Handle<DescriptorArray> new_descriptors =
9073         DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
9074     Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
9075                                                    map->GetIsolate());
9076     new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor);
9077   }
9078 
9079 #if TRACE_MAPS
9080   if (FLAG_trace_maps) {
9081     PrintF("[TraceMaps: CopyForTransition from= %p to= %p reason= %s ]\n",
9082            reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*new_map),
9083            reason);
9084   }
9085 #endif
9086 
9087   return new_map;
9088 }
9089 
9090 
Copy(Handle<Map> map,const char * reason)9091 Handle<Map> Map::Copy(Handle<Map> map, const char* reason) {
9092   Handle<DescriptorArray> descriptors(map->instance_descriptors());
9093   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
9094   Handle<DescriptorArray> new_descriptors =
9095       DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
9096   Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
9097                                                  map->GetIsolate());
9098   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
9099                                 OMIT_TRANSITION, MaybeHandle<Name>(), reason,
9100                                 SPECIAL_TRANSITION);
9101 }
9102 
9103 
Create(Isolate * isolate,int inobject_properties)9104 Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) {
9105   Handle<Map> copy =
9106       Copy(handle(isolate->object_function()->initial_map()), "MapCreate");
9107 
9108   // Check that we do not overflow the instance size when adding the extra
9109   // inobject properties. If the instance size overflows, we allocate as many
9110   // properties as we can as inobject properties.
9111   int max_extra_properties =
9112       (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2;
9113 
9114   if (inobject_properties > max_extra_properties) {
9115     inobject_properties = max_extra_properties;
9116   }
9117 
9118   int new_instance_size =
9119       JSObject::kHeaderSize + kPointerSize * inobject_properties;
9120 
9121   // Adjust the map with the extra inobject properties.
9122   copy->SetInObjectProperties(inobject_properties);
9123   copy->set_unused_property_fields(inobject_properties);
9124   copy->set_instance_size(new_instance_size);
9125   copy->set_visitor_id(Heap::GetStaticVisitorIdForMap(*copy));
9126   return copy;
9127 }
9128 
9129 
CopyForPreventExtensions(Handle<Map> map,PropertyAttributes attrs_to_add,Handle<Symbol> transition_marker,const char * reason)9130 Handle<Map> Map::CopyForPreventExtensions(Handle<Map> map,
9131                                           PropertyAttributes attrs_to_add,
9132                                           Handle<Symbol> transition_marker,
9133                                           const char* reason) {
9134   int num_descriptors = map->NumberOfOwnDescriptors();
9135   Isolate* isolate = map->GetIsolate();
9136   Handle<DescriptorArray> new_desc = DescriptorArray::CopyUpToAddAttributes(
9137       handle(map->instance_descriptors(), isolate), num_descriptors,
9138       attrs_to_add);
9139   Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
9140                                                  isolate);
9141   Handle<Map> new_map = CopyReplaceDescriptors(
9142       map, new_desc, new_layout_descriptor, INSERT_TRANSITION,
9143       transition_marker, reason, SPECIAL_TRANSITION);
9144   new_map->set_is_extensible(false);
9145   if (!IsFixedTypedArrayElementsKind(map->elements_kind())) {
9146     ElementsKind new_kind = IsStringWrapperElementsKind(map->elements_kind())
9147                                 ? SLOW_STRING_WRAPPER_ELEMENTS
9148                                 : DICTIONARY_ELEMENTS;
9149     new_map->set_elements_kind(new_kind);
9150   }
9151   return new_map;
9152 }
9153 
GetFieldType(int descriptor_number)9154 FieldType* DescriptorArray::GetFieldType(int descriptor_number) {
9155   DCHECK(GetDetails(descriptor_number).location() == kField);
9156   Object* value = GetValue(descriptor_number);
9157   if (value->IsWeakCell()) {
9158     if (WeakCell::cast(value)->cleared()) return FieldType::None();
9159     value = WeakCell::cast(value)->value();
9160   }
9161   return FieldType::cast(value);
9162 }
9163 
9164 namespace {
9165 
CanHoldValue(DescriptorArray * descriptors,int descriptor,Object * value)9166 bool CanHoldValue(DescriptorArray* descriptors, int descriptor, Object* value) {
9167   PropertyDetails details = descriptors->GetDetails(descriptor);
9168   switch (details.type()) {
9169     case DATA:
9170       return value->FitsRepresentation(details.representation()) &&
9171              descriptors->GetFieldType(descriptor)->NowContains(value);
9172 
9173     case DATA_CONSTANT:
9174       DCHECK(descriptors->GetConstant(descriptor) != value ||
9175              value->FitsRepresentation(details.representation()));
9176       return descriptors->GetConstant(descriptor) == value;
9177 
9178     case ACCESSOR:
9179     case ACCESSOR_CONSTANT:
9180       return false;
9181   }
9182 
9183   UNREACHABLE();
9184   return false;
9185 }
9186 
UpdateDescriptorForValue(Handle<Map> map,int descriptor,Handle<Object> value)9187 Handle<Map> UpdateDescriptorForValue(Handle<Map> map, int descriptor,
9188                                      Handle<Object> value) {
9189   if (CanHoldValue(map->instance_descriptors(), descriptor, *value)) return map;
9190 
9191   Isolate* isolate = map->GetIsolate();
9192   PropertyAttributes attributes =
9193       map->instance_descriptors()->GetDetails(descriptor).attributes();
9194   Representation representation = value->OptimalRepresentation();
9195   Handle<FieldType> type = value->OptimalType(isolate, representation);
9196 
9197   return Map::ReconfigureProperty(map, descriptor, kData, attributes,
9198                                   representation, type, FORCE_FIELD);
9199 }
9200 
9201 }  // namespace
9202 
9203 // static
PrepareForDataProperty(Handle<Map> map,int descriptor,Handle<Object> value)9204 Handle<Map> Map::PrepareForDataProperty(Handle<Map> map, int descriptor,
9205                                         Handle<Object> value) {
9206   // Dictionaries can store any property value.
9207   DCHECK(!map->is_dictionary_map());
9208   // Update to the newest map before storing the property.
9209   return UpdateDescriptorForValue(Update(map), descriptor, value);
9210 }
9211 
9212 
TransitionToDataProperty(Handle<Map> map,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes,StoreFromKeyed store_mode)9213 Handle<Map> Map::TransitionToDataProperty(Handle<Map> map, Handle<Name> name,
9214                                           Handle<Object> value,
9215                                           PropertyAttributes attributes,
9216                                           StoreFromKeyed store_mode) {
9217   RuntimeCallTimerScope stats_scope(
9218       *map, map->is_prototype_map()
9219                 ? &RuntimeCallStats::PrototypeMap_TransitionToDataProperty
9220                 : &RuntimeCallStats::Map_TransitionToDataProperty);
9221 
9222   DCHECK(name->IsUniqueName());
9223   DCHECK(!map->is_dictionary_map());
9224 
9225   // Migrate to the newest map before storing the property.
9226   map = Update(map);
9227 
9228   Map* maybe_transition =
9229       TransitionArray::SearchTransition(*map, kData, *name, attributes);
9230   if (maybe_transition != NULL) {
9231     Handle<Map> transition(maybe_transition);
9232     int descriptor = transition->LastAdded();
9233 
9234     DCHECK_EQ(attributes, transition->instance_descriptors()
9235                               ->GetDetails(descriptor)
9236                               .attributes());
9237 
9238     return UpdateDescriptorForValue(transition, descriptor, value);
9239   }
9240 
9241   TransitionFlag flag = INSERT_TRANSITION;
9242   MaybeHandle<Map> maybe_map;
9243   if (value->IsJSFunction()) {
9244     maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag);
9245   } else if (!map->TooManyFastProperties(store_mode)) {
9246     Isolate* isolate = name->GetIsolate();
9247     Representation representation = value->OptimalRepresentation();
9248     Handle<FieldType> type = value->OptimalType(isolate, representation);
9249     maybe_map =
9250         Map::CopyWithField(map, name, type, attributes, representation, flag);
9251   }
9252 
9253   Handle<Map> result;
9254   if (!maybe_map.ToHandle(&result)) {
9255 #if TRACE_MAPS
9256     if (FLAG_trace_maps) {
9257       Vector<char> name_buffer = Vector<char>::New(100);
9258       name->NameShortPrint(name_buffer);
9259       Vector<char> buffer = Vector<char>::New(128);
9260       SNPrintF(buffer, "TooManyFastProperties %s", name_buffer.start());
9261       return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, buffer.start());
9262     }
9263 #endif
9264     return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES,
9265                           "TooManyFastProperties");
9266   }
9267 
9268   return result;
9269 }
9270 
9271 
ReconfigureExistingProperty(Handle<Map> map,int descriptor,PropertyKind kind,PropertyAttributes attributes)9272 Handle<Map> Map::ReconfigureExistingProperty(Handle<Map> map, int descriptor,
9273                                              PropertyKind kind,
9274                                              PropertyAttributes attributes) {
9275   // Dictionaries have to be reconfigured in-place.
9276   DCHECK(!map->is_dictionary_map());
9277 
9278   if (!map->GetBackPointer()->IsMap()) {
9279     // There is no benefit from reconstructing transition tree for maps without
9280     // back pointers.
9281     return CopyGeneralizeAllRepresentations(
9282         map, map->elements_kind(), descriptor, FORCE_FIELD, kind, attributes,
9283         "GenAll_AttributesMismatchProtoMap");
9284   }
9285 
9286   if (FLAG_trace_generalization) {
9287     map->PrintReconfiguration(stdout, descriptor, kind, attributes);
9288   }
9289 
9290   Isolate* isolate = map->GetIsolate();
9291   Handle<Map> new_map = ReconfigureProperty(
9292       map, descriptor, kind, attributes, Representation::None(),
9293       FieldType::None(isolate), FORCE_FIELD);
9294   return new_map;
9295 }
9296 
TransitionToAccessorProperty(Isolate * isolate,Handle<Map> map,Handle<Name> name,int descriptor,Handle<Object> getter,Handle<Object> setter,PropertyAttributes attributes)9297 Handle<Map> Map::TransitionToAccessorProperty(Isolate* isolate, Handle<Map> map,
9298                                               Handle<Name> name, int descriptor,
9299                                               Handle<Object> getter,
9300                                               Handle<Object> setter,
9301                                               PropertyAttributes attributes) {
9302   RuntimeCallTimerScope stats_scope(
9303       isolate,
9304       map->is_prototype_map()
9305           ? &RuntimeCallStats::PrototypeMap_TransitionToAccessorProperty
9306           : &RuntimeCallStats::Map_TransitionToAccessorProperty);
9307 
9308   // At least one of the accessors needs to be a new value.
9309   DCHECK(!getter->IsNull(isolate) || !setter->IsNull(isolate));
9310   DCHECK(name->IsUniqueName());
9311 
9312   // Dictionary maps can always have additional data properties.
9313   if (map->is_dictionary_map()) return map;
9314 
9315   // Migrate to the newest map before transitioning to the new property.
9316   map = Update(map);
9317 
9318   PropertyNormalizationMode mode = map->is_prototype_map()
9319                                        ? KEEP_INOBJECT_PROPERTIES
9320                                        : CLEAR_INOBJECT_PROPERTIES;
9321 
9322   Map* maybe_transition =
9323       TransitionArray::SearchTransition(*map, kAccessor, *name, attributes);
9324   if (maybe_transition != NULL) {
9325     Handle<Map> transition(maybe_transition, isolate);
9326     DescriptorArray* descriptors = transition->instance_descriptors();
9327     int descriptor = transition->LastAdded();
9328     DCHECK(descriptors->GetKey(descriptor)->Equals(*name));
9329 
9330     DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind());
9331     DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes());
9332 
9333     Handle<Object> maybe_pair(descriptors->GetValue(descriptor), isolate);
9334     if (!maybe_pair->IsAccessorPair()) {
9335       return Map::Normalize(map, mode, "TransitionToAccessorFromNonPair");
9336     }
9337 
9338     Handle<AccessorPair> pair = Handle<AccessorPair>::cast(maybe_pair);
9339     if (!pair->Equals(*getter, *setter)) {
9340       return Map::Normalize(map, mode, "TransitionToDifferentAccessor");
9341     }
9342 
9343     return transition;
9344   }
9345 
9346   Handle<AccessorPair> pair;
9347   DescriptorArray* old_descriptors = map->instance_descriptors();
9348   if (descriptor != DescriptorArray::kNotFound) {
9349     if (descriptor != map->LastAdded()) {
9350       return Map::Normalize(map, mode, "AccessorsOverwritingNonLast");
9351     }
9352     PropertyDetails old_details = old_descriptors->GetDetails(descriptor);
9353     if (old_details.type() != ACCESSOR_CONSTANT) {
9354       return Map::Normalize(map, mode, "AccessorsOverwritingNonAccessors");
9355     }
9356 
9357     if (old_details.attributes() != attributes) {
9358       return Map::Normalize(map, mode, "AccessorsWithAttributes");
9359     }
9360 
9361     Handle<Object> maybe_pair(old_descriptors->GetValue(descriptor), isolate);
9362     if (!maybe_pair->IsAccessorPair()) {
9363       return Map::Normalize(map, mode, "AccessorsOverwritingNonPair");
9364     }
9365 
9366     Handle<AccessorPair> current_pair = Handle<AccessorPair>::cast(maybe_pair);
9367     if (current_pair->Equals(*getter, *setter)) return map;
9368 
9369     bool overwriting_accessor = false;
9370     if (!getter->IsNull(isolate) &&
9371         !current_pair->get(ACCESSOR_GETTER)->IsNull(isolate) &&
9372         current_pair->get(ACCESSOR_GETTER) != *getter) {
9373       overwriting_accessor = true;
9374     }
9375     if (!setter->IsNull(isolate) &&
9376         !current_pair->get(ACCESSOR_SETTER)->IsNull(isolate) &&
9377         current_pair->get(ACCESSOR_SETTER) != *setter) {
9378       overwriting_accessor = true;
9379     }
9380     if (overwriting_accessor) {
9381       return Map::Normalize(map, mode, "AccessorsOverwritingAccessors");
9382     }
9383 
9384     pair = AccessorPair::Copy(Handle<AccessorPair>::cast(maybe_pair));
9385   } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors ||
9386              map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) {
9387     return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors");
9388   } else {
9389     pair = isolate->factory()->NewAccessorPair();
9390   }
9391 
9392   pair->SetComponents(*getter, *setter);
9393 
9394   TransitionFlag flag = INSERT_TRANSITION;
9395   AccessorConstantDescriptor new_desc(name, pair, attributes);
9396   return Map::CopyInsertDescriptor(map, &new_desc, flag);
9397 }
9398 
9399 
CopyAddDescriptor(Handle<Map> map,Descriptor * descriptor,TransitionFlag flag)9400 Handle<Map> Map::CopyAddDescriptor(Handle<Map> map,
9401                                    Descriptor* descriptor,
9402                                    TransitionFlag flag) {
9403   Handle<DescriptorArray> descriptors(map->instance_descriptors());
9404 
9405   // Share descriptors only if map owns descriptors and it not an initial map.
9406   if (flag == INSERT_TRANSITION && map->owns_descriptors() &&
9407       !map->GetBackPointer()->IsUndefined(map->GetIsolate()) &&
9408       TransitionArray::CanHaveMoreTransitions(map)) {
9409     return ShareDescriptor(map, descriptors, descriptor);
9410   }
9411 
9412   int nof = map->NumberOfOwnDescriptors();
9413   Handle<DescriptorArray> new_descriptors =
9414       DescriptorArray::CopyUpTo(descriptors, nof, 1);
9415   new_descriptors->Append(descriptor);
9416 
9417   Handle<LayoutDescriptor> new_layout_descriptor =
9418       FLAG_unbox_double_fields
9419           ? LayoutDescriptor::New(map, new_descriptors, nof + 1)
9420           : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
9421 
9422   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
9423                                 flag, descriptor->GetKey(), "CopyAddDescriptor",
9424                                 SIMPLE_PROPERTY_TRANSITION);
9425 }
9426 
9427 
CopyInsertDescriptor(Handle<Map> map,Descriptor * descriptor,TransitionFlag flag)9428 Handle<Map> Map::CopyInsertDescriptor(Handle<Map> map,
9429                                       Descriptor* descriptor,
9430                                       TransitionFlag flag) {
9431   Handle<DescriptorArray> old_descriptors(map->instance_descriptors());
9432 
9433   // We replace the key if it is already present.
9434   int index = old_descriptors->SearchWithCache(map->GetIsolate(),
9435                                                *descriptor->GetKey(), *map);
9436   if (index != DescriptorArray::kNotFound) {
9437     return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag);
9438   }
9439   return CopyAddDescriptor(map, descriptor, flag);
9440 }
9441 
9442 
CopyUpTo(Handle<DescriptorArray> desc,int enumeration_index,int slack)9443 Handle<DescriptorArray> DescriptorArray::CopyUpTo(
9444     Handle<DescriptorArray> desc,
9445     int enumeration_index,
9446     int slack) {
9447   return DescriptorArray::CopyUpToAddAttributes(
9448       desc, enumeration_index, NONE, slack);
9449 }
9450 
9451 
CopyUpToAddAttributes(Handle<DescriptorArray> desc,int enumeration_index,PropertyAttributes attributes,int slack)9452 Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes(
9453     Handle<DescriptorArray> desc,
9454     int enumeration_index,
9455     PropertyAttributes attributes,
9456     int slack) {
9457   if (enumeration_index + slack == 0) {
9458     return desc->GetIsolate()->factory()->empty_descriptor_array();
9459   }
9460 
9461   int size = enumeration_index;
9462 
9463   Handle<DescriptorArray> descriptors =
9464       DescriptorArray::Allocate(desc->GetIsolate(), size, slack);
9465 
9466   if (attributes != NONE) {
9467     for (int i = 0; i < size; ++i) {
9468       Object* value = desc->GetValue(i);
9469       Name* key = desc->GetKey(i);
9470       PropertyDetails details = desc->GetDetails(i);
9471       // Bulk attribute changes never affect private properties.
9472       if (!key->IsPrivate()) {
9473         int mask = DONT_DELETE | DONT_ENUM;
9474         // READ_ONLY is an invalid attribute for JS setters/getters.
9475         if (details.type() != ACCESSOR_CONSTANT || !value->IsAccessorPair()) {
9476           mask |= READ_ONLY;
9477         }
9478         details = details.CopyAddAttributes(
9479             static_cast<PropertyAttributes>(attributes & mask));
9480       }
9481       Descriptor inner_desc(
9482           handle(key), handle(value, desc->GetIsolate()), details);
9483       descriptors->SetDescriptor(i, &inner_desc);
9484     }
9485   } else {
9486     for (int i = 0; i < size; ++i) {
9487       descriptors->CopyFrom(i, *desc);
9488     }
9489   }
9490 
9491   if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort();
9492 
9493   return descriptors;
9494 }
9495 
9496 
IsEqualUpTo(DescriptorArray * desc,int nof_descriptors)9497 bool DescriptorArray::IsEqualUpTo(DescriptorArray* desc, int nof_descriptors) {
9498   for (int i = 0; i < nof_descriptors; i++) {
9499     if (GetKey(i) != desc->GetKey(i) || GetValue(i) != desc->GetValue(i)) {
9500       return false;
9501     }
9502     PropertyDetails details = GetDetails(i);
9503     PropertyDetails other_details = desc->GetDetails(i);
9504     if (details.type() != other_details.type() ||
9505         !details.representation().Equals(other_details.representation())) {
9506       return false;
9507     }
9508   }
9509   return true;
9510 }
9511 
9512 
CopyReplaceDescriptor(Handle<Map> map,Handle<DescriptorArray> descriptors,Descriptor * descriptor,int insertion_index,TransitionFlag flag)9513 Handle<Map> Map::CopyReplaceDescriptor(Handle<Map> map,
9514                                        Handle<DescriptorArray> descriptors,
9515                                        Descriptor* descriptor,
9516                                        int insertion_index,
9517                                        TransitionFlag flag) {
9518   Handle<Name> key = descriptor->GetKey();
9519   DCHECK(*key == descriptors->GetKey(insertion_index));
9520 
9521   Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
9522       descriptors, map->NumberOfOwnDescriptors());
9523 
9524   new_descriptors->Replace(insertion_index, descriptor);
9525   Handle<LayoutDescriptor> new_layout_descriptor = LayoutDescriptor::New(
9526       map, new_descriptors, new_descriptors->number_of_descriptors());
9527 
9528   SimpleTransitionFlag simple_flag =
9529       (insertion_index == descriptors->number_of_descriptors() - 1)
9530           ? SIMPLE_PROPERTY_TRANSITION
9531           : PROPERTY_TRANSITION;
9532   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
9533                                 flag, key, "CopyReplaceDescriptor",
9534                                 simple_flag);
9535 }
9536 
9537 // Helper class to manage a Map's code cache. The layout depends on the number
9538 // of entries; this is worthwhile because most code caches are very small,
9539 // but some are huge (thousands of entries).
9540 // For zero entries, the EmptyFixedArray is used.
9541 // For one entry, we use a 2-element FixedArray containing [name, code].
9542 // For 2..100 entries, we use a FixedArray with linear lookups, the layout is:
9543 //   [0] - number of slots that are currently in use
9544 //   [1] - first name
9545 //   [2] - first code
9546 //   [3] - second name
9547 //   [4] - second code
9548 //   etc.
9549 // For more than 128 entries, we use a CodeCacheHashTable.
9550 class CodeCache : public AllStatic {
9551  public:
9552   // Returns the new cache, to be stored on the map.
Put(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9553   static Handle<FixedArray> Put(Isolate* isolate, Handle<FixedArray> cache,
9554                                 Handle<Name> name, Handle<Code> code) {
9555     int length = cache->length();
9556     if (length == 0) return PutFirstElement(isolate, name, code);
9557     if (length == kEntrySize) {
9558       return PutSecondElement(isolate, cache, name, code);
9559     }
9560     if (length <= kLinearMaxSize) {
9561       Handle<FixedArray> result = PutLinearElement(isolate, cache, name, code);
9562       if (!result.is_null()) return result;
9563       // Fall through if linear storage is getting too large.
9564     }
9565     return PutHashTableElement(isolate, cache, name, code);
9566   }
9567 
Lookup(FixedArray * cache,Name * name,Code::Flags flags)9568   static Code* Lookup(FixedArray* cache, Name* name, Code::Flags flags) {
9569     int length = cache->length();
9570     if (length == 0) return nullptr;
9571     if (length == kEntrySize) return OneElementLookup(cache, name, flags);
9572     if (!cache->IsCodeCacheHashTable()) {
9573       return LinearLookup(cache, name, flags);
9574     } else {
9575       return CodeCacheHashTable::cast(cache)->Lookup(name, flags);
9576     }
9577   }
9578 
9579  private:
9580   static const int kNameIndex = 0;
9581   static const int kCodeIndex = 1;
9582   static const int kEntrySize = 2;
9583 
9584   static const int kLinearUsageIndex = 0;
9585   static const int kLinearReservedSlots = 1;
9586   static const int kLinearInitialCapacity = 2;
9587   static const int kLinearMaxSize = 257;  // == LinearSizeFor(128);
9588 
9589   static const int kHashTableInitialCapacity = 200;  // Number of entries.
9590 
LinearSizeFor(int entries)9591   static int LinearSizeFor(int entries) {
9592     return kLinearReservedSlots + kEntrySize * entries;
9593   }
9594 
LinearNewSize(int old_size)9595   static int LinearNewSize(int old_size) {
9596     int old_entries = (old_size - kLinearReservedSlots) / kEntrySize;
9597     return LinearSizeFor(old_entries * 2);
9598   }
9599 
OneElementLookup(FixedArray * cache,Name * name,Code::Flags flags)9600   static Code* OneElementLookup(FixedArray* cache, Name* name,
9601                                 Code::Flags flags) {
9602     DCHECK_EQ(cache->length(), kEntrySize);
9603     if (cache->get(kNameIndex) != name) return nullptr;
9604     Code* maybe_code = Code::cast(cache->get(kCodeIndex));
9605     if (maybe_code->flags() != flags) return nullptr;
9606     return maybe_code;
9607   }
9608 
LinearLookup(FixedArray * cache,Name * name,Code::Flags flags)9609   static Code* LinearLookup(FixedArray* cache, Name* name, Code::Flags flags) {
9610     DCHECK_GE(cache->length(), kEntrySize);
9611     DCHECK(!cache->IsCodeCacheHashTable());
9612     int usage = GetLinearUsage(cache);
9613     for (int i = kLinearReservedSlots; i < usage; i += kEntrySize) {
9614       if (cache->get(i + kNameIndex) != name) continue;
9615       Code* code = Code::cast(cache->get(i + kCodeIndex));
9616       if (code->flags() == flags) return code;
9617     }
9618     return nullptr;
9619   }
9620 
PutFirstElement(Isolate * isolate,Handle<Name> name,Handle<Code> code)9621   static Handle<FixedArray> PutFirstElement(Isolate* isolate, Handle<Name> name,
9622                                             Handle<Code> code) {
9623     Handle<FixedArray> cache = isolate->factory()->NewFixedArray(kEntrySize);
9624     cache->set(kNameIndex, *name);
9625     cache->set(kCodeIndex, *code);
9626     return cache;
9627   }
9628 
PutSecondElement(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9629   static Handle<FixedArray> PutSecondElement(Isolate* isolate,
9630                                              Handle<FixedArray> cache,
9631                                              Handle<Name> name,
9632                                              Handle<Code> code) {
9633     DCHECK_EQ(cache->length(), kEntrySize);
9634     Handle<FixedArray> new_cache = isolate->factory()->NewFixedArray(
9635         LinearSizeFor(kLinearInitialCapacity));
9636     new_cache->set(kLinearReservedSlots + kNameIndex, cache->get(kNameIndex));
9637     new_cache->set(kLinearReservedSlots + kCodeIndex, cache->get(kCodeIndex));
9638     new_cache->set(LinearSizeFor(1) + kNameIndex, *name);
9639     new_cache->set(LinearSizeFor(1) + kCodeIndex, *code);
9640     new_cache->set(kLinearUsageIndex, Smi::FromInt(LinearSizeFor(2)));
9641     return new_cache;
9642   }
9643 
PutLinearElement(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9644   static Handle<FixedArray> PutLinearElement(Isolate* isolate,
9645                                              Handle<FixedArray> cache,
9646                                              Handle<Name> name,
9647                                              Handle<Code> code) {
9648     int length = cache->length();
9649     int usage = GetLinearUsage(*cache);
9650     DCHECK_LE(usage, length);
9651     // Check if we need to grow.
9652     if (usage == length) {
9653       int new_length = LinearNewSize(length);
9654       if (new_length > kLinearMaxSize) return Handle<FixedArray>::null();
9655       Handle<FixedArray> new_cache =
9656           isolate->factory()->NewFixedArray(new_length);
9657       for (int i = kLinearReservedSlots; i < length; i++) {
9658         new_cache->set(i, cache->get(i));
9659       }
9660       cache = new_cache;
9661     }
9662     // Store new entry.
9663     DCHECK_GE(cache->length(), usage + kEntrySize);
9664     cache->set(usage + kNameIndex, *name);
9665     cache->set(usage + kCodeIndex, *code);
9666     cache->set(kLinearUsageIndex, Smi::FromInt(usage + kEntrySize));
9667     return cache;
9668   }
9669 
PutHashTableElement(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9670   static Handle<FixedArray> PutHashTableElement(Isolate* isolate,
9671                                                 Handle<FixedArray> cache,
9672                                                 Handle<Name> name,
9673                                                 Handle<Code> code) {
9674     // Check if we need to transition from linear to hash table storage.
9675     if (!cache->IsCodeCacheHashTable()) {
9676       // Check that the initial hash table capacity is large enough.
9677       DCHECK_EQ(kLinearMaxSize, LinearSizeFor(128));
9678       STATIC_ASSERT(kHashTableInitialCapacity > 128);
9679 
9680       int length = cache->length();
9681       // Only migrate from linear storage when it's full.
9682       DCHECK_EQ(length, GetLinearUsage(*cache));
9683       DCHECK_EQ(length, kLinearMaxSize);
9684       Handle<CodeCacheHashTable> table =
9685           CodeCacheHashTable::New(isolate, kHashTableInitialCapacity);
9686       HandleScope scope(isolate);
9687       for (int i = kLinearReservedSlots; i < length; i += kEntrySize) {
9688         Handle<Name> old_name(Name::cast(cache->get(i + kNameIndex)), isolate);
9689         Handle<Code> old_code(Code::cast(cache->get(i + kCodeIndex)), isolate);
9690         CodeCacheHashTable::Put(table, old_name, old_code);
9691       }
9692       cache = table;
9693     }
9694     // Store new entry.
9695     DCHECK(cache->IsCodeCacheHashTable());
9696     return CodeCacheHashTable::Put(Handle<CodeCacheHashTable>::cast(cache),
9697                                    name, code);
9698   }
9699 
GetLinearUsage(FixedArray * linear_cache)9700   static inline int GetLinearUsage(FixedArray* linear_cache) {
9701     DCHECK_GT(linear_cache->length(), kEntrySize);
9702     return Smi::cast(linear_cache->get(kLinearUsageIndex))->value();
9703   }
9704 };
9705 
UpdateCodeCache(Handle<Map> map,Handle<Name> name,Handle<Code> code)9706 void Map::UpdateCodeCache(Handle<Map> map,
9707                           Handle<Name> name,
9708                           Handle<Code> code) {
9709   Isolate* isolate = map->GetIsolate();
9710   Handle<FixedArray> cache(map->code_cache(), isolate);
9711   Handle<FixedArray> new_cache = CodeCache::Put(isolate, cache, name, code);
9712   map->set_code_cache(*new_cache);
9713 }
9714 
LookupInCodeCache(Name * name,Code::Flags flags)9715 Code* Map::LookupInCodeCache(Name* name, Code::Flags flags) {
9716   return CodeCache::Lookup(code_cache(), name, flags);
9717 }
9718 
9719 
9720 // The key in the code cache hash table consists of the property name and the
9721 // code object. The actual match is on the name and the code flags. If a key
9722 // is created using the flags and not a code object it can only be used for
9723 // lookup not to create a new entry.
9724 class CodeCacheHashTableKey : public HashTableKey {
9725  public:
CodeCacheHashTableKey(Handle<Name> name,Code::Flags flags)9726   CodeCacheHashTableKey(Handle<Name> name, Code::Flags flags)
9727       : name_(name), flags_(flags), code_() {
9728     DCHECK(name_->IsUniqueName());
9729   }
9730 
CodeCacheHashTableKey(Handle<Name> name,Handle<Code> code)9731   CodeCacheHashTableKey(Handle<Name> name, Handle<Code> code)
9732       : name_(name), flags_(code->flags()), code_(code) {
9733     DCHECK(name_->IsUniqueName());
9734   }
9735 
IsMatch(Object * other)9736   bool IsMatch(Object* other) override {
9737     DCHECK(other->IsFixedArray());
9738     FixedArray* pair = FixedArray::cast(other);
9739     Name* name = Name::cast(pair->get(0));
9740     Code::Flags flags = Code::cast(pair->get(1))->flags();
9741     if (flags != flags_) return false;
9742     DCHECK(name->IsUniqueName());
9743     return *name_ == name;
9744   }
9745 
NameFlagsHashHelper(Name * name,Code::Flags flags)9746   static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) {
9747     return name->Hash() ^ flags;
9748   }
9749 
Hash()9750   uint32_t Hash() override { return NameFlagsHashHelper(*name_, flags_); }
9751 
HashForObject(Object * obj)9752   uint32_t HashForObject(Object* obj) override {
9753     FixedArray* pair = FixedArray::cast(obj);
9754     Name* name = Name::cast(pair->get(0));
9755     Code* code = Code::cast(pair->get(1));
9756     return NameFlagsHashHelper(name, code->flags());
9757   }
9758 
AsHandle(Isolate * isolate)9759   MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
9760     Handle<Code> code = code_.ToHandleChecked();
9761     Handle<FixedArray> pair = isolate->factory()->NewFixedArray(2);
9762     pair->set(0, *name_);
9763     pair->set(1, *code);
9764     return pair;
9765   }
9766 
9767  private:
9768   Handle<Name> name_;
9769   Code::Flags flags_;
9770   // TODO(jkummerow): We should be able to get by without this.
9771   MaybeHandle<Code> code_;
9772 };
9773 
9774 
Put(Handle<CodeCacheHashTable> cache,Handle<Name> name,Handle<Code> code)9775 Handle<CodeCacheHashTable> CodeCacheHashTable::Put(
9776     Handle<CodeCacheHashTable> cache, Handle<Name> name, Handle<Code> code) {
9777   CodeCacheHashTableKey key(name, code);
9778 
9779   Handle<CodeCacheHashTable> new_cache = EnsureCapacity(cache, 1, &key);
9780 
9781   int entry = new_cache->FindInsertionEntry(key.Hash());
9782   Handle<Object> k = key.AsHandle(cache->GetIsolate());
9783 
9784   new_cache->set(EntryToIndex(entry), *k);
9785   new_cache->ElementAdded();
9786   return new_cache;
9787 }
9788 
Lookup(Name * name,Code::Flags flags)9789 Code* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) {
9790   DisallowHeapAllocation no_alloc;
9791   CodeCacheHashTableKey key(handle(name), flags);
9792   int entry = FindEntry(&key);
9793   if (entry == kNotFound) return nullptr;
9794   return Code::cast(FixedArray::cast(get(EntryToIndex(entry)))->get(1));
9795 }
9796 
Shrink(int new_length)9797 void FixedArray::Shrink(int new_length) {
9798   DCHECK(0 <= new_length && new_length <= length());
9799   if (new_length < length()) {
9800     GetHeap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
9801         this, length() - new_length);
9802   }
9803 }
9804 
9805 
CopyTo(int pos,FixedArray * dest,int dest_pos,int len)9806 void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
9807   DisallowHeapAllocation no_gc;
9808   WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
9809   for (int index = 0; index < len; index++) {
9810     dest->set(dest_pos+index, get(pos+index), mode);
9811   }
9812 }
9813 
9814 
9815 #ifdef DEBUG
IsEqualTo(FixedArray * other)9816 bool FixedArray::IsEqualTo(FixedArray* other) {
9817   if (length() != other->length()) return false;
9818   for (int i = 0 ; i < length(); ++i) {
9819     if (get(i) != other->get(i)) return false;
9820   }
9821   return true;
9822 }
9823 #endif
9824 
9825 
9826 // static
Set(Handle<WeakFixedArray> array,int index,Handle<HeapObject> value)9827 void WeakFixedArray::Set(Handle<WeakFixedArray> array, int index,
9828                          Handle<HeapObject> value) {
9829   DCHECK(array->IsEmptySlot(index));  // Don't overwrite anything.
9830   Handle<WeakCell> cell =
9831       value->IsMap() ? Map::WeakCellForMap(Handle<Map>::cast(value))
9832                      : array->GetIsolate()->factory()->NewWeakCell(value);
9833   Handle<FixedArray>::cast(array)->set(index + kFirstIndex, *cell);
9834   if (FLAG_trace_weak_arrays) {
9835     PrintF("[WeakFixedArray: storing at index %d ]\n", index);
9836   }
9837   array->set_last_used_index(index);
9838 }
9839 
9840 
9841 // static
Add(Handle<Object> maybe_array,Handle<HeapObject> value,int * assigned_index)9842 Handle<WeakFixedArray> WeakFixedArray::Add(Handle<Object> maybe_array,
9843                                            Handle<HeapObject> value,
9844                                            int* assigned_index) {
9845   Handle<WeakFixedArray> array =
9846       (maybe_array.is_null() || !maybe_array->IsWeakFixedArray())
9847           ? Allocate(value->GetIsolate(), 1, Handle<WeakFixedArray>::null())
9848           : Handle<WeakFixedArray>::cast(maybe_array);
9849   // Try to store the new entry if there's room. Optimize for consecutive
9850   // accesses.
9851   int first_index = array->last_used_index();
9852   int length = array->Length();
9853   if (length > 0) {
9854     for (int i = first_index;;) {
9855       if (array->IsEmptySlot((i))) {
9856         WeakFixedArray::Set(array, i, value);
9857         if (assigned_index != NULL) *assigned_index = i;
9858         return array;
9859       }
9860       if (FLAG_trace_weak_arrays) {
9861         PrintF("[WeakFixedArray: searching for free slot]\n");
9862       }
9863       i = (i + 1) % length;
9864       if (i == first_index) break;
9865     }
9866   }
9867 
9868   // No usable slot found, grow the array.
9869   int new_length = length == 0 ? 1 : length + (length >> 1) + 4;
9870   Handle<WeakFixedArray> new_array =
9871       Allocate(array->GetIsolate(), new_length, array);
9872   if (FLAG_trace_weak_arrays) {
9873     PrintF("[WeakFixedArray: growing to size %d ]\n", new_length);
9874   }
9875   WeakFixedArray::Set(new_array, length, value);
9876   if (assigned_index != NULL) *assigned_index = length;
9877   return new_array;
9878 }
9879 
9880 
9881 template <class CompactionCallback>
Compact()9882 void WeakFixedArray::Compact() {
9883   FixedArray* array = FixedArray::cast(this);
9884   int new_length = kFirstIndex;
9885   for (int i = kFirstIndex; i < array->length(); i++) {
9886     Object* element = array->get(i);
9887     if (element->IsSmi()) continue;
9888     if (WeakCell::cast(element)->cleared()) continue;
9889     Object* value = WeakCell::cast(element)->value();
9890     CompactionCallback::Callback(value, i - kFirstIndex,
9891                                  new_length - kFirstIndex);
9892     array->set(new_length++, element);
9893   }
9894   array->Shrink(new_length);
9895   set_last_used_index(0);
9896 }
9897 
9898 
Reset(Object * maybe_array)9899 void WeakFixedArray::Iterator::Reset(Object* maybe_array) {
9900   if (maybe_array->IsWeakFixedArray()) {
9901     list_ = WeakFixedArray::cast(maybe_array);
9902     index_ = 0;
9903 #ifdef DEBUG
9904     last_used_index_ = list_->last_used_index();
9905 #endif  // DEBUG
9906   }
9907 }
9908 
9909 
Callback(Object * value,int old_index,int new_index)9910 void JSObject::PrototypeRegistryCompactionCallback::Callback(Object* value,
9911                                                              int old_index,
9912                                                              int new_index) {
9913   DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map());
9914   Map* map = Map::cast(value);
9915   DCHECK(map->prototype_info()->IsPrototypeInfo());
9916   PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info());
9917   DCHECK_EQ(old_index, proto_info->registry_slot());
9918   proto_info->set_registry_slot(new_index);
9919 }
9920 
9921 
9922 template void WeakFixedArray::Compact<WeakFixedArray::NullCallback>();
9923 template void
9924 WeakFixedArray::Compact<JSObject::PrototypeRegistryCompactionCallback>();
9925 
9926 
Remove(Handle<HeapObject> value)9927 bool WeakFixedArray::Remove(Handle<HeapObject> value) {
9928   if (Length() == 0) return false;
9929   // Optimize for the most recently added element to be removed again.
9930   int first_index = last_used_index();
9931   for (int i = first_index;;) {
9932     if (Get(i) == *value) {
9933       Clear(i);
9934       // Users of WeakFixedArray should make sure that there are no duplicates.
9935       return true;
9936     }
9937     i = (i + 1) % Length();
9938     if (i == first_index) return false;
9939   }
9940   UNREACHABLE();
9941 }
9942 
9943 
9944 // static
Allocate(Isolate * isolate,int size,Handle<WeakFixedArray> initialize_from)9945 Handle<WeakFixedArray> WeakFixedArray::Allocate(
9946     Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from) {
9947   DCHECK(0 <= size);
9948   Handle<FixedArray> result =
9949       isolate->factory()->NewUninitializedFixedArray(size + kFirstIndex);
9950   int index = 0;
9951   if (!initialize_from.is_null()) {
9952     DCHECK(initialize_from->Length() <= size);
9953     Handle<FixedArray> raw_source = Handle<FixedArray>::cast(initialize_from);
9954     // Copy the entries without compacting, since the PrototypeInfo relies on
9955     // the index of the entries not to change.
9956     while (index < raw_source->length()) {
9957       result->set(index, raw_source->get(index));
9958       index++;
9959     }
9960   }
9961   while (index < result->length()) {
9962     result->set(index, Smi::FromInt(0));
9963     index++;
9964   }
9965   return Handle<WeakFixedArray>::cast(result);
9966 }
9967 
9968 
Add(Handle<ArrayList> array,Handle<Object> obj,AddMode mode)9969 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj,
9970                                  AddMode mode) {
9971   int length = array->Length();
9972   array = EnsureSpace(array, length + 1);
9973   if (mode == kReloadLengthAfterAllocation) {
9974     DCHECK(array->Length() <= length);
9975     length = array->Length();
9976   }
9977   array->Set(length, *obj);
9978   array->SetLength(length + 1);
9979   return array;
9980 }
9981 
Add(Handle<ArrayList> array,Handle<Object> obj1,Handle<Object> obj2,AddMode mode)9982 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj1,
9983                                  Handle<Object> obj2, AddMode mode) {
9984   int length = array->Length();
9985   array = EnsureSpace(array, length + 2);
9986   if (mode == kReloadLengthAfterAllocation) {
9987     length = array->Length();
9988   }
9989   array->Set(length, *obj1);
9990   array->Set(length + 1, *obj2);
9991   array->SetLength(length + 2);
9992   return array;
9993 }
9994 
9995 
IsFull()9996 bool ArrayList::IsFull() {
9997   int capacity = length();
9998   return kFirstIndex + Length() == capacity;
9999 }
10000 
10001 
EnsureSpace(Handle<ArrayList> array,int length)10002 Handle<ArrayList> ArrayList::EnsureSpace(Handle<ArrayList> array, int length) {
10003   int capacity = array->length();
10004   bool empty = (capacity == 0);
10005   if (capacity < kFirstIndex + length) {
10006     Isolate* isolate = array->GetIsolate();
10007     int new_capacity = kFirstIndex + length;
10008     new_capacity = new_capacity + Max(new_capacity / 2, 2);
10009     int grow_by = new_capacity - capacity;
10010     array = Handle<ArrayList>::cast(
10011         isolate->factory()->CopyFixedArrayAndGrow(array, grow_by));
10012     if (empty) array->SetLength(0);
10013   }
10014   return array;
10015 }
10016 
Allocate(Isolate * isolate,int number_of_descriptors,int slack,PretenureFlag pretenure)10017 Handle<DescriptorArray> DescriptorArray::Allocate(Isolate* isolate,
10018                                                   int number_of_descriptors,
10019                                                   int slack,
10020                                                   PretenureFlag pretenure) {
10021   DCHECK(0 <= number_of_descriptors);
10022   Factory* factory = isolate->factory();
10023   // Do not use DescriptorArray::cast on incomplete object.
10024   int size = number_of_descriptors + slack;
10025   if (size == 0) return factory->empty_descriptor_array();
10026   // Allocate the array of keys.
10027   Handle<FixedArray> result =
10028       factory->NewFixedArray(LengthFor(size), pretenure);
10029 
10030   result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors));
10031   result->set(kEnumCacheIndex, Smi::FromInt(0));
10032   return Handle<DescriptorArray>::cast(result);
10033 }
10034 
10035 
ClearEnumCache()10036 void DescriptorArray::ClearEnumCache() {
10037   set(kEnumCacheIndex, Smi::FromInt(0));
10038 }
10039 
10040 
Replace(int index,Descriptor * descriptor)10041 void DescriptorArray::Replace(int index, Descriptor* descriptor) {
10042   descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index));
10043   Set(index, descriptor);
10044 }
10045 
10046 
10047 // static
SetEnumCache(Handle<DescriptorArray> descriptors,Isolate * isolate,Handle<FixedArray> new_cache,Handle<FixedArray> new_index_cache)10048 void DescriptorArray::SetEnumCache(Handle<DescriptorArray> descriptors,
10049                                    Isolate* isolate,
10050                                    Handle<FixedArray> new_cache,
10051                                    Handle<FixedArray> new_index_cache) {
10052   DCHECK(!descriptors->IsEmpty());
10053   FixedArray* bridge_storage;
10054   bool needs_new_enum_cache = !descriptors->HasEnumCache();
10055   if (needs_new_enum_cache) {
10056     bridge_storage = *isolate->factory()->NewFixedArray(
10057         DescriptorArray::kEnumCacheBridgeLength);
10058   } else {
10059     bridge_storage = FixedArray::cast(descriptors->get(kEnumCacheIndex));
10060   }
10061   bridge_storage->set(kEnumCacheBridgeCacheIndex, *new_cache);
10062   bridge_storage->set(kEnumCacheBridgeIndicesCacheIndex,
10063                       new_index_cache.is_null() ? Object::cast(Smi::FromInt(0))
10064                                                 : *new_index_cache);
10065   if (needs_new_enum_cache) {
10066     descriptors->set(kEnumCacheIndex, bridge_storage);
10067   }
10068 }
10069 
10070 
CopyFrom(int index,DescriptorArray * src)10071 void DescriptorArray::CopyFrom(int index, DescriptorArray* src) {
10072   Object* value = src->GetValue(index);
10073   PropertyDetails details = src->GetDetails(index);
10074   Descriptor desc(handle(src->GetKey(index)),
10075                   handle(value, src->GetIsolate()),
10076                   details);
10077   SetDescriptor(index, &desc);
10078 }
10079 
10080 
Sort()10081 void DescriptorArray::Sort() {
10082   // In-place heap sort.
10083   int len = number_of_descriptors();
10084   // Reset sorting since the descriptor array might contain invalid pointers.
10085   for (int i = 0; i < len; ++i) SetSortedKey(i, i);
10086   // Bottom-up max-heap construction.
10087   // Index of the last node with children
10088   const int max_parent_index = (len / 2) - 1;
10089   for (int i = max_parent_index; i >= 0; --i) {
10090     int parent_index = i;
10091     const uint32_t parent_hash = GetSortedKey(i)->Hash();
10092     while (parent_index <= max_parent_index) {
10093       int child_index = 2 * parent_index + 1;
10094       uint32_t child_hash = GetSortedKey(child_index)->Hash();
10095       if (child_index + 1 < len) {
10096         uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
10097         if (right_child_hash > child_hash) {
10098           child_index++;
10099           child_hash = right_child_hash;
10100         }
10101       }
10102       if (child_hash <= parent_hash) break;
10103       SwapSortedKeys(parent_index, child_index);
10104       // Now element at child_index could be < its children.
10105       parent_index = child_index;  // parent_hash remains correct.
10106     }
10107   }
10108 
10109   // Extract elements and create sorted array.
10110   for (int i = len - 1; i > 0; --i) {
10111     // Put max element at the back of the array.
10112     SwapSortedKeys(0, i);
10113     // Shift down the new top element.
10114     int parent_index = 0;
10115     const uint32_t parent_hash = GetSortedKey(parent_index)->Hash();
10116     const int max_parent_index = (i / 2) - 1;
10117     while (parent_index <= max_parent_index) {
10118       int child_index = parent_index * 2 + 1;
10119       uint32_t child_hash = GetSortedKey(child_index)->Hash();
10120       if (child_index + 1 < i) {
10121         uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
10122         if (right_child_hash > child_hash) {
10123           child_index++;
10124           child_hash = right_child_hash;
10125         }
10126       }
10127       if (child_hash <= parent_hash) break;
10128       SwapSortedKeys(parent_index, child_index);
10129       parent_index = child_index;
10130     }
10131   }
10132   DCHECK(IsSortedNoDuplicates());
10133 }
10134 
10135 
Copy(Handle<AccessorPair> pair)10136 Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) {
10137   Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair();
10138   copy->set_getter(pair->getter());
10139   copy->set_setter(pair->setter());
10140   return copy;
10141 }
10142 
GetComponent(Handle<AccessorPair> accessor_pair,AccessorComponent component)10143 Handle<Object> AccessorPair::GetComponent(Handle<AccessorPair> accessor_pair,
10144                                           AccessorComponent component) {
10145   Object* accessor = accessor_pair->get(component);
10146   if (accessor->IsFunctionTemplateInfo()) {
10147     return ApiNatives::InstantiateFunction(
10148                handle(FunctionTemplateInfo::cast(accessor)))
10149         .ToHandleChecked();
10150   }
10151   Isolate* isolate = accessor_pair->GetIsolate();
10152   if (accessor->IsNull(isolate)) {
10153     return isolate->factory()->undefined_value();
10154   }
10155   return handle(accessor, isolate);
10156 }
10157 
New(Isolate * isolate,int deopt_entry_count,PretenureFlag pretenure)10158 Handle<DeoptimizationInputData> DeoptimizationInputData::New(
10159     Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) {
10160   return Handle<DeoptimizationInputData>::cast(
10161       isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count),
10162                                         pretenure));
10163 }
10164 
10165 
New(Isolate * isolate,int number_of_deopt_points,PretenureFlag pretenure)10166 Handle<DeoptimizationOutputData> DeoptimizationOutputData::New(
10167     Isolate* isolate,
10168     int number_of_deopt_points,
10169     PretenureFlag pretenure) {
10170   Handle<FixedArray> result;
10171   if (number_of_deopt_points == 0) {
10172     result = isolate->factory()->empty_fixed_array();
10173   } else {
10174     result = isolate->factory()->NewFixedArray(
10175         LengthOfFixedArray(number_of_deopt_points), pretenure);
10176   }
10177   return Handle<DeoptimizationOutputData>::cast(result);
10178 }
10179 
10180 const int LiteralsArray::kFeedbackVectorOffset =
10181     LiteralsArray::OffsetOfElementAt(LiteralsArray::kVectorIndex);
10182 
10183 const int LiteralsArray::kOffsetToFirstLiteral =
10184     LiteralsArray::OffsetOfElementAt(LiteralsArray::kFirstLiteralIndex);
10185 
10186 // static
New(Isolate * isolate,Handle<TypeFeedbackVector> vector,int number_of_literals,PretenureFlag pretenure)10187 Handle<LiteralsArray> LiteralsArray::New(Isolate* isolate,
10188                                          Handle<TypeFeedbackVector> vector,
10189                                          int number_of_literals,
10190                                          PretenureFlag pretenure) {
10191   if (vector->is_empty() && number_of_literals == 0) {
10192     return Handle<LiteralsArray>::cast(
10193         isolate->factory()->empty_literals_array());
10194   }
10195   Handle<FixedArray> literals = isolate->factory()->NewFixedArray(
10196       number_of_literals + kFirstLiteralIndex, pretenure);
10197   Handle<LiteralsArray> casted_literals = Handle<LiteralsArray>::cast(literals);
10198   casted_literals->set_feedback_vector(*vector);
10199   return casted_literals;
10200 }
10201 
LookupRange(int pc_offset,int * data_out,CatchPrediction * prediction_out)10202 int HandlerTable::LookupRange(int pc_offset, int* data_out,
10203                               CatchPrediction* prediction_out) {
10204   int innermost_handler = -1;
10205 #ifdef DEBUG
10206   // Assuming that ranges are well nested, we don't need to track the innermost
10207   // offsets. This is just to verify that the table is actually well nested.
10208   int innermost_start = std::numeric_limits<int>::min();
10209   int innermost_end = std::numeric_limits<int>::max();
10210 #endif
10211   for (int i = 0; i < length(); i += kRangeEntrySize) {
10212     int start_offset = Smi::cast(get(i + kRangeStartIndex))->value();
10213     int end_offset = Smi::cast(get(i + kRangeEndIndex))->value();
10214     int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
10215     int handler_offset = HandlerOffsetField::decode(handler_field);
10216     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
10217     int handler_data = Smi::cast(get(i + kRangeDataIndex))->value();
10218     if (pc_offset > start_offset && pc_offset <= end_offset) {
10219       DCHECK_GE(start_offset, innermost_start);
10220       DCHECK_LT(end_offset, innermost_end);
10221       innermost_handler = handler_offset;
10222 #ifdef DEBUG
10223       innermost_start = start_offset;
10224       innermost_end = end_offset;
10225 #endif
10226       if (data_out) *data_out = handler_data;
10227       if (prediction_out) *prediction_out = prediction;
10228     }
10229   }
10230   return innermost_handler;
10231 }
10232 
10233 
10234 // TODO(turbofan): Make sure table is sorted and use binary search.
LookupReturn(int pc_offset,CatchPrediction * prediction_out)10235 int HandlerTable::LookupReturn(int pc_offset, CatchPrediction* prediction_out) {
10236   for (int i = 0; i < length(); i += kReturnEntrySize) {
10237     int return_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
10238     int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
10239     if (pc_offset == return_offset) {
10240       if (prediction_out) {
10241         *prediction_out = HandlerPredictionField::decode(handler_field);
10242       }
10243       return HandlerOffsetField::decode(handler_field);
10244     }
10245   }
10246   return -1;
10247 }
10248 
10249 
10250 #ifdef DEBUG
IsEqualTo(DescriptorArray * other)10251 bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
10252   if (IsEmpty()) return other->IsEmpty();
10253   if (other->IsEmpty()) return false;
10254   if (length() != other->length()) return false;
10255   for (int i = 0; i < length(); ++i) {
10256     if (get(i) != other->get(i)) return false;
10257   }
10258   return true;
10259 }
10260 #endif
10261 
10262 // static
Trim(Handle<String> string,TrimMode mode)10263 Handle<String> String::Trim(Handle<String> string, TrimMode mode) {
10264   Isolate* const isolate = string->GetIsolate();
10265   string = String::Flatten(string);
10266   int const length = string->length();
10267 
10268   // Perform left trimming if requested.
10269   int left = 0;
10270   UnicodeCache* unicode_cache = isolate->unicode_cache();
10271   if (mode == kTrim || mode == kTrimLeft) {
10272     while (left < length &&
10273            unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
10274       left++;
10275     }
10276   }
10277 
10278   // Perform right trimming if requested.
10279   int right = length;
10280   if (mode == kTrim || mode == kTrimRight) {
10281     while (
10282         right > left &&
10283         unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
10284       right--;
10285     }
10286   }
10287 
10288   return isolate->factory()->NewSubString(string, left, right);
10289 }
10290 
LooksValid()10291 bool String::LooksValid() {
10292   if (!GetIsolate()->heap()->Contains(this)) return false;
10293   return true;
10294 }
10295 
10296 
10297 // static
ToFunctionName(Handle<Name> name)10298 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name) {
10299   if (name->IsString()) return Handle<String>::cast(name);
10300   // ES6 section 9.2.11 SetFunctionName, step 4.
10301   Isolate* const isolate = name->GetIsolate();
10302   Handle<Object> description(Handle<Symbol>::cast(name)->name(), isolate);
10303   if (description->IsUndefined(isolate)) {
10304     return isolate->factory()->empty_string();
10305   }
10306   IncrementalStringBuilder builder(isolate);
10307   builder.AppendCharacter('[');
10308   builder.AppendString(Handle<String>::cast(description));
10309   builder.AppendCharacter(']');
10310   return builder.Finish();
10311 }
10312 
10313 // static
ToFunctionName(Handle<Name> name,Handle<String> prefix)10314 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name,
10315                                          Handle<String> prefix) {
10316   Handle<String> name_string;
10317   Isolate* const isolate = name->GetIsolate();
10318   ASSIGN_RETURN_ON_EXCEPTION(isolate, name_string, ToFunctionName(name),
10319                              String);
10320   IncrementalStringBuilder builder(isolate);
10321   builder.AppendString(prefix);
10322   builder.AppendCharacter(' ');
10323   builder.AppendString(name_string);
10324   return builder.Finish();
10325 }
10326 
10327 namespace {
10328 
AreDigits(const uint8_t * s,int from,int to)10329 bool AreDigits(const uint8_t* s, int from, int to) {
10330   for (int i = from; i < to; i++) {
10331     if (s[i] < '0' || s[i] > '9') return false;
10332   }
10333 
10334   return true;
10335 }
10336 
10337 
ParseDecimalInteger(const uint8_t * s,int from,int to)10338 int ParseDecimalInteger(const uint8_t* s, int from, int to) {
10339   DCHECK(to - from < 10);  // Overflow is not possible.
10340   DCHECK(from < to);
10341   int d = s[from] - '0';
10342 
10343   for (int i = from + 1; i < to; i++) {
10344     d = 10 * d + (s[i] - '0');
10345   }
10346 
10347   return d;
10348 }
10349 
10350 }  // namespace
10351 
10352 
10353 // static
ToNumber(Handle<String> subject)10354 Handle<Object> String::ToNumber(Handle<String> subject) {
10355   Isolate* const isolate = subject->GetIsolate();
10356 
10357   // Flatten {subject} string first.
10358   subject = String::Flatten(subject);
10359 
10360   // Fast array index case.
10361   uint32_t index;
10362   if (subject->AsArrayIndex(&index)) {
10363     return isolate->factory()->NewNumberFromUint(index);
10364   }
10365 
10366   // Fast case: short integer or some sorts of junk values.
10367   if (subject->IsSeqOneByteString()) {
10368     int len = subject->length();
10369     if (len == 0) return handle(Smi::FromInt(0), isolate);
10370 
10371     DisallowHeapAllocation no_gc;
10372     uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
10373     bool minus = (data[0] == '-');
10374     int start_pos = (minus ? 1 : 0);
10375 
10376     if (start_pos == len) {
10377       return isolate->factory()->nan_value();
10378     } else if (data[start_pos] > '9') {
10379       // Fast check for a junk value. A valid string may start from a
10380       // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
10381       // or the 'I' character ('Infinity'). All of that have codes not greater
10382       // than '9' except 'I' and &nbsp;.
10383       if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
10384         return isolate->factory()->nan_value();
10385       }
10386     } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
10387       // The maximal/minimal smi has 10 digits. If the string has less digits
10388       // we know it will fit into the smi-data type.
10389       int d = ParseDecimalInteger(data, start_pos, len);
10390       if (minus) {
10391         if (d == 0) return isolate->factory()->minus_zero_value();
10392         d = -d;
10393       } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
10394                  (len == 1 || data[0] != '0')) {
10395         // String hash is not calculated yet but all the data are present.
10396         // Update the hash field to speed up sequential convertions.
10397         uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
10398 #ifdef DEBUG
10399         subject->Hash();  // Force hash calculation.
10400         DCHECK_EQ(static_cast<int>(subject->hash_field()),
10401                   static_cast<int>(hash));
10402 #endif
10403         subject->set_hash_field(hash);
10404       }
10405       return handle(Smi::FromInt(d), isolate);
10406     }
10407   }
10408 
10409   // Slower case.
10410   int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
10411   return isolate->factory()->NewNumber(
10412       StringToDouble(isolate->unicode_cache(), subject, flags));
10413 }
10414 
10415 
GetFlatContent()10416 String::FlatContent String::GetFlatContent() {
10417   DCHECK(!AllowHeapAllocation::IsAllowed());
10418   int length = this->length();
10419   StringShape shape(this);
10420   String* string = this;
10421   int offset = 0;
10422   if (shape.representation_tag() == kConsStringTag) {
10423     ConsString* cons = ConsString::cast(string);
10424     if (cons->second()->length() != 0) {
10425       return FlatContent();
10426     }
10427     string = cons->first();
10428     shape = StringShape(string);
10429   }
10430   if (shape.representation_tag() == kSlicedStringTag) {
10431     SlicedString* slice = SlicedString::cast(string);
10432     offset = slice->offset();
10433     string = slice->parent();
10434     shape = StringShape(string);
10435     DCHECK(shape.representation_tag() != kConsStringTag &&
10436            shape.representation_tag() != kSlicedStringTag);
10437   }
10438   if (shape.encoding_tag() == kOneByteStringTag) {
10439     const uint8_t* start;
10440     if (shape.representation_tag() == kSeqStringTag) {
10441       start = SeqOneByteString::cast(string)->GetChars();
10442     } else {
10443       start = ExternalOneByteString::cast(string)->GetChars();
10444     }
10445     return FlatContent(start + offset, length);
10446   } else {
10447     DCHECK(shape.encoding_tag() == kTwoByteStringTag);
10448     const uc16* start;
10449     if (shape.representation_tag() == kSeqStringTag) {
10450       start = SeqTwoByteString::cast(string)->GetChars();
10451     } else {
10452       start = ExternalTwoByteString::cast(string)->GetChars();
10453     }
10454     return FlatContent(start + offset, length);
10455   }
10456 }
10457 
10458 
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int offset,int length,int * length_return)10459 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
10460                                                 RobustnessFlag robust_flag,
10461                                                 int offset, int length,
10462                                                 int* length_return) {
10463   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
10464     return base::SmartArrayPointer<char>(NULL);
10465   }
10466   // Negative length means the to the end of the string.
10467   if (length < 0) length = kMaxInt - offset;
10468 
10469   // Compute the size of the UTF-8 string. Start at the specified offset.
10470   StringCharacterStream stream(this, offset);
10471   int character_position = offset;
10472   int utf8_bytes = 0;
10473   int last = unibrow::Utf16::kNoPreviousCharacter;
10474   while (stream.HasMore() && character_position++ < offset + length) {
10475     uint16_t character = stream.GetNext();
10476     utf8_bytes += unibrow::Utf8::Length(character, last);
10477     last = character;
10478   }
10479 
10480   if (length_return) {
10481     *length_return = utf8_bytes;
10482   }
10483 
10484   char* result = NewArray<char>(utf8_bytes + 1);
10485 
10486   // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
10487   stream.Reset(this, offset);
10488   character_position = offset;
10489   int utf8_byte_position = 0;
10490   last = unibrow::Utf16::kNoPreviousCharacter;
10491   while (stream.HasMore() && character_position++ < offset + length) {
10492     uint16_t character = stream.GetNext();
10493     if (allow_nulls == DISALLOW_NULLS && character == 0) {
10494       character = ' ';
10495     }
10496     utf8_byte_position +=
10497         unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
10498     last = character;
10499   }
10500   result[utf8_byte_position] = 0;
10501   return base::SmartArrayPointer<char>(result);
10502 }
10503 
10504 
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int * length_return)10505 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
10506                                                 RobustnessFlag robust_flag,
10507                                                 int* length_return) {
10508   return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
10509 }
10510 
10511 
GetTwoByteData(unsigned start)10512 const uc16* String::GetTwoByteData(unsigned start) {
10513   DCHECK(!IsOneByteRepresentationUnderneath());
10514   switch (StringShape(this).representation_tag()) {
10515     case kSeqStringTag:
10516       return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
10517     case kExternalStringTag:
10518       return ExternalTwoByteString::cast(this)->
10519         ExternalTwoByteStringGetData(start);
10520     case kSlicedStringTag: {
10521       SlicedString* slice = SlicedString::cast(this);
10522       return slice->parent()->GetTwoByteData(start + slice->offset());
10523     }
10524     case kConsStringTag:
10525       UNREACHABLE();
10526       return NULL;
10527   }
10528   UNREACHABLE();
10529   return NULL;
10530 }
10531 
10532 
SeqTwoByteStringGetData(unsigned start)10533 const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
10534   return reinterpret_cast<uc16*>(
10535       reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
10536 }
10537 
10538 
PostGarbageCollectionProcessing(Isolate * isolate)10539 void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) {
10540   Relocatable* current = isolate->relocatable_top();
10541   while (current != NULL) {
10542     current->PostGarbageCollection();
10543     current = current->prev_;
10544   }
10545 }
10546 
10547 
10548 // Reserve space for statics needing saving and restoring.
ArchiveSpacePerThread()10549 int Relocatable::ArchiveSpacePerThread() {
10550   return sizeof(Relocatable*);  // NOLINT
10551 }
10552 
10553 
10554 // Archive statics that are thread-local.
ArchiveState(Isolate * isolate,char * to)10555 char* Relocatable::ArchiveState(Isolate* isolate, char* to) {
10556   *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
10557   isolate->set_relocatable_top(NULL);
10558   return to + ArchiveSpacePerThread();
10559 }
10560 
10561 
10562 // Restore statics that are thread-local.
RestoreState(Isolate * isolate,char * from)10563 char* Relocatable::RestoreState(Isolate* isolate, char* from) {
10564   isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
10565   return from + ArchiveSpacePerThread();
10566 }
10567 
10568 
Iterate(ObjectVisitor * v,char * thread_storage)10569 char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
10570   Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
10571   Iterate(v, top);
10572   return thread_storage + ArchiveSpacePerThread();
10573 }
10574 
10575 
Iterate(Isolate * isolate,ObjectVisitor * v)10576 void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) {
10577   Iterate(v, isolate->relocatable_top());
10578 }
10579 
10580 
Iterate(ObjectVisitor * v,Relocatable * top)10581 void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
10582   Relocatable* current = top;
10583   while (current != NULL) {
10584     current->IterateInstance(v);
10585     current = current->prev_;
10586   }
10587 }
10588 
10589 
FlatStringReader(Isolate * isolate,Handle<String> str)10590 FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
10591     : Relocatable(isolate),
10592       str_(str.location()),
10593       length_(str->length()) {
10594   PostGarbageCollection();
10595 }
10596 
10597 
FlatStringReader(Isolate * isolate,Vector<const char> input)10598 FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
10599     : Relocatable(isolate),
10600       str_(0),
10601       is_one_byte_(true),
10602       length_(input.length()),
10603       start_(input.start()) {}
10604 
10605 
PostGarbageCollection()10606 void FlatStringReader::PostGarbageCollection() {
10607   if (str_ == NULL) return;
10608   Handle<String> str(str_);
10609   DCHECK(str->IsFlat());
10610   DisallowHeapAllocation no_gc;
10611   // This does not actually prevent the vector from being relocated later.
10612   String::FlatContent content = str->GetFlatContent();
10613   DCHECK(content.IsFlat());
10614   is_one_byte_ = content.IsOneByte();
10615   if (is_one_byte_) {
10616     start_ = content.ToOneByteVector().start();
10617   } else {
10618     start_ = content.ToUC16Vector().start();
10619   }
10620 }
10621 
10622 
Initialize(ConsString * cons_string,int offset)10623 void ConsStringIterator::Initialize(ConsString* cons_string, int offset) {
10624   DCHECK(cons_string != NULL);
10625   root_ = cons_string;
10626   consumed_ = offset;
10627   // Force stack blown condition to trigger restart.
10628   depth_ = 1;
10629   maximum_depth_ = kStackSize + depth_;
10630   DCHECK(StackBlown());
10631 }
10632 
10633 
Continue(int * offset_out)10634 String* ConsStringIterator::Continue(int* offset_out) {
10635   DCHECK(depth_ != 0);
10636   DCHECK_EQ(0, *offset_out);
10637   bool blew_stack = StackBlown();
10638   String* string = NULL;
10639   // Get the next leaf if there is one.
10640   if (!blew_stack) string = NextLeaf(&blew_stack);
10641   // Restart search from root.
10642   if (blew_stack) {
10643     DCHECK(string == NULL);
10644     string = Search(offset_out);
10645   }
10646   // Ensure future calls return null immediately.
10647   if (string == NULL) Reset(NULL);
10648   return string;
10649 }
10650 
10651 
Search(int * offset_out)10652 String* ConsStringIterator::Search(int* offset_out) {
10653   ConsString* cons_string = root_;
10654   // Reset the stack, pushing the root string.
10655   depth_ = 1;
10656   maximum_depth_ = 1;
10657   frames_[0] = cons_string;
10658   const int consumed = consumed_;
10659   int offset = 0;
10660   while (true) {
10661     // Loop until the string is found which contains the target offset.
10662     String* string = cons_string->first();
10663     int length = string->length();
10664     int32_t type;
10665     if (consumed < offset + length) {
10666       // Target offset is in the left branch.
10667       // Keep going if we're still in a ConString.
10668       type = string->map()->instance_type();
10669       if ((type & kStringRepresentationMask) == kConsStringTag) {
10670         cons_string = ConsString::cast(string);
10671         PushLeft(cons_string);
10672         continue;
10673       }
10674       // Tell the stack we're done descending.
10675       AdjustMaximumDepth();
10676     } else {
10677       // Descend right.
10678       // Update progress through the string.
10679       offset += length;
10680       // Keep going if we're still in a ConString.
10681       string = cons_string->second();
10682       type = string->map()->instance_type();
10683       if ((type & kStringRepresentationMask) == kConsStringTag) {
10684         cons_string = ConsString::cast(string);
10685         PushRight(cons_string);
10686         continue;
10687       }
10688       // Need this to be updated for the current string.
10689       length = string->length();
10690       // Account for the possibility of an empty right leaf.
10691       // This happens only if we have asked for an offset outside the string.
10692       if (length == 0) {
10693         // Reset so future operations will return null immediately.
10694         Reset(NULL);
10695         return NULL;
10696       }
10697       // Tell the stack we're done descending.
10698       AdjustMaximumDepth();
10699       // Pop stack so next iteration is in correct place.
10700       Pop();
10701     }
10702     DCHECK(length != 0);
10703     // Adjust return values and exit.
10704     consumed_ = offset + length;
10705     *offset_out = consumed - offset;
10706     return string;
10707   }
10708   UNREACHABLE();
10709   return NULL;
10710 }
10711 
10712 
NextLeaf(bool * blew_stack)10713 String* ConsStringIterator::NextLeaf(bool* blew_stack) {
10714   while (true) {
10715     // Tree traversal complete.
10716     if (depth_ == 0) {
10717       *blew_stack = false;
10718       return NULL;
10719     }
10720     // We've lost track of higher nodes.
10721     if (StackBlown()) {
10722       *blew_stack = true;
10723       return NULL;
10724     }
10725     // Go right.
10726     ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)];
10727     String* string = cons_string->second();
10728     int32_t type = string->map()->instance_type();
10729     if ((type & kStringRepresentationMask) != kConsStringTag) {
10730       // Pop stack so next iteration is in correct place.
10731       Pop();
10732       int length = string->length();
10733       // Could be a flattened ConsString.
10734       if (length == 0) continue;
10735       consumed_ += length;
10736       return string;
10737     }
10738     cons_string = ConsString::cast(string);
10739     PushRight(cons_string);
10740     // Need to traverse all the way left.
10741     while (true) {
10742       // Continue left.
10743       string = cons_string->first();
10744       type = string->map()->instance_type();
10745       if ((type & kStringRepresentationMask) != kConsStringTag) {
10746         AdjustMaximumDepth();
10747         int length = string->length();
10748         DCHECK(length != 0);
10749         consumed_ += length;
10750         return string;
10751       }
10752       cons_string = ConsString::cast(string);
10753       PushLeft(cons_string);
10754     }
10755   }
10756   UNREACHABLE();
10757   return NULL;
10758 }
10759 
10760 
ConsStringGet(int index)10761 uint16_t ConsString::ConsStringGet(int index) {
10762   DCHECK(index >= 0 && index < this->length());
10763 
10764   // Check for a flattened cons string
10765   if (second()->length() == 0) {
10766     String* left = first();
10767     return left->Get(index);
10768   }
10769 
10770   String* string = String::cast(this);
10771 
10772   while (true) {
10773     if (StringShape(string).IsCons()) {
10774       ConsString* cons_string = ConsString::cast(string);
10775       String* left = cons_string->first();
10776       if (left->length() > index) {
10777         string = left;
10778       } else {
10779         index -= left->length();
10780         string = cons_string->second();
10781       }
10782     } else {
10783       return string->Get(index);
10784     }
10785   }
10786 
10787   UNREACHABLE();
10788   return 0;
10789 }
10790 
10791 
SlicedStringGet(int index)10792 uint16_t SlicedString::SlicedStringGet(int index) {
10793   return parent()->Get(offset() + index);
10794 }
10795 
10796 
10797 template <typename sinkchar>
WriteToFlat(String * src,sinkchar * sink,int f,int t)10798 void String::WriteToFlat(String* src,
10799                          sinkchar* sink,
10800                          int f,
10801                          int t) {
10802   String* source = src;
10803   int from = f;
10804   int to = t;
10805   while (true) {
10806     DCHECK(0 <= from && from <= to && to <= source->length());
10807     switch (StringShape(source).full_representation_tag()) {
10808       case kOneByteStringTag | kExternalStringTag: {
10809         CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from,
10810                   to - from);
10811         return;
10812       }
10813       case kTwoByteStringTag | kExternalStringTag: {
10814         const uc16* data =
10815             ExternalTwoByteString::cast(source)->GetChars();
10816         CopyChars(sink,
10817                   data + from,
10818                   to - from);
10819         return;
10820       }
10821       case kOneByteStringTag | kSeqStringTag: {
10822         CopyChars(sink,
10823                   SeqOneByteString::cast(source)->GetChars() + from,
10824                   to - from);
10825         return;
10826       }
10827       case kTwoByteStringTag | kSeqStringTag: {
10828         CopyChars(sink,
10829                   SeqTwoByteString::cast(source)->GetChars() + from,
10830                   to - from);
10831         return;
10832       }
10833       case kOneByteStringTag | kConsStringTag:
10834       case kTwoByteStringTag | kConsStringTag: {
10835         ConsString* cons_string = ConsString::cast(source);
10836         String* first = cons_string->first();
10837         int boundary = first->length();
10838         if (to - boundary >= boundary - from) {
10839           // Right hand side is longer.  Recurse over left.
10840           if (from < boundary) {
10841             WriteToFlat(first, sink, from, boundary);
10842             if (from == 0 && cons_string->second() == first) {
10843               CopyChars(sink + boundary, sink, boundary);
10844               return;
10845             }
10846             sink += boundary - from;
10847             from = 0;
10848           } else {
10849             from -= boundary;
10850           }
10851           to -= boundary;
10852           source = cons_string->second();
10853         } else {
10854           // Left hand side is longer.  Recurse over right.
10855           if (to > boundary) {
10856             String* second = cons_string->second();
10857             // When repeatedly appending to a string, we get a cons string that
10858             // is unbalanced to the left, a list, essentially.  We inline the
10859             // common case of sequential one-byte right child.
10860             if (to - boundary == 1) {
10861               sink[boundary - from] = static_cast<sinkchar>(second->Get(0));
10862             } else if (second->IsSeqOneByteString()) {
10863               CopyChars(sink + boundary - from,
10864                         SeqOneByteString::cast(second)->GetChars(),
10865                         to - boundary);
10866             } else {
10867               WriteToFlat(second,
10868                           sink + boundary - from,
10869                           0,
10870                           to - boundary);
10871             }
10872             to = boundary;
10873           }
10874           source = first;
10875         }
10876         break;
10877       }
10878       case kOneByteStringTag | kSlicedStringTag:
10879       case kTwoByteStringTag | kSlicedStringTag: {
10880         SlicedString* slice = SlicedString::cast(source);
10881         unsigned offset = slice->offset();
10882         WriteToFlat(slice->parent(), sink, from + offset, to + offset);
10883         return;
10884       }
10885     }
10886   }
10887 }
10888 
10889 
10890 
10891 template <typename SourceChar>
CalculateLineEndsImpl(Isolate * isolate,List<int> * line_ends,Vector<const SourceChar> src,bool include_ending_line)10892 static void CalculateLineEndsImpl(Isolate* isolate,
10893                                   List<int>* line_ends,
10894                                   Vector<const SourceChar> src,
10895                                   bool include_ending_line) {
10896   const int src_len = src.length();
10897   UnicodeCache* cache = isolate->unicode_cache();
10898   for (int i = 0; i < src_len - 1; i++) {
10899     SourceChar current = src[i];
10900     SourceChar next = src[i + 1];
10901     if (cache->IsLineTerminatorSequence(current, next)) line_ends->Add(i);
10902   }
10903 
10904   if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) {
10905     line_ends->Add(src_len - 1);
10906   }
10907   if (include_ending_line) {
10908     // Include one character beyond the end of script. The rewriter uses that
10909     // position for the implicit return statement.
10910     line_ends->Add(src_len);
10911   }
10912 }
10913 
10914 
CalculateLineEnds(Handle<String> src,bool include_ending_line)10915 Handle<FixedArray> String::CalculateLineEnds(Handle<String> src,
10916                                              bool include_ending_line) {
10917   src = Flatten(src);
10918   // Rough estimate of line count based on a roughly estimated average
10919   // length of (unpacked) code.
10920   int line_count_estimate = src->length() >> 4;
10921   List<int> line_ends(line_count_estimate);
10922   Isolate* isolate = src->GetIsolate();
10923   { DisallowHeapAllocation no_allocation;  // ensure vectors stay valid.
10924     // Dispatch on type of strings.
10925     String::FlatContent content = src->GetFlatContent();
10926     DCHECK(content.IsFlat());
10927     if (content.IsOneByte()) {
10928       CalculateLineEndsImpl(isolate,
10929                             &line_ends,
10930                             content.ToOneByteVector(),
10931                             include_ending_line);
10932     } else {
10933       CalculateLineEndsImpl(isolate,
10934                             &line_ends,
10935                             content.ToUC16Vector(),
10936                             include_ending_line);
10937     }
10938   }
10939   int line_count = line_ends.length();
10940   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
10941   for (int i = 0; i < line_count; i++) {
10942     array->set(i, Smi::FromInt(line_ends[i]));
10943   }
10944   return array;
10945 }
10946 
10947 
10948 // Compares the contents of two strings by reading and comparing
10949 // int-sized blocks of characters.
10950 template <typename Char>
CompareRawStringContents(const Char * const a,const Char * const b,int length)10951 static inline bool CompareRawStringContents(const Char* const a,
10952                                             const Char* const b,
10953                                             int length) {
10954   return CompareChars(a, b, length) == 0;
10955 }
10956 
10957 
10958 template<typename Chars1, typename Chars2>
10959 class RawStringComparator : public AllStatic {
10960  public:
compare(const Chars1 * a,const Chars2 * b,int len)10961   static inline bool compare(const Chars1* a, const Chars2* b, int len) {
10962     DCHECK(sizeof(Chars1) != sizeof(Chars2));
10963     for (int i = 0; i < len; i++) {
10964       if (a[i] != b[i]) {
10965         return false;
10966       }
10967     }
10968     return true;
10969   }
10970 };
10971 
10972 
10973 template<>
10974 class RawStringComparator<uint16_t, uint16_t> {
10975  public:
compare(const uint16_t * a,const uint16_t * b,int len)10976   static inline bool compare(const uint16_t* a, const uint16_t* b, int len) {
10977     return CompareRawStringContents(a, b, len);
10978   }
10979 };
10980 
10981 
10982 template<>
10983 class RawStringComparator<uint8_t, uint8_t> {
10984  public:
compare(const uint8_t * a,const uint8_t * b,int len)10985   static inline bool compare(const uint8_t* a, const uint8_t* b, int len) {
10986     return CompareRawStringContents(a, b, len);
10987   }
10988 };
10989 
10990 
10991 class StringComparator {
10992   class State {
10993    public:
State()10994     State() : is_one_byte_(true), length_(0), buffer8_(NULL) {}
10995 
Init(String * string)10996     void Init(String* string) {
10997       ConsString* cons_string = String::VisitFlat(this, string);
10998       iter_.Reset(cons_string);
10999       if (cons_string != NULL) {
11000         int offset;
11001         string = iter_.Next(&offset);
11002         String::VisitFlat(this, string, offset);
11003       }
11004     }
11005 
VisitOneByteString(const uint8_t * chars,int length)11006     inline void VisitOneByteString(const uint8_t* chars, int length) {
11007       is_one_byte_ = true;
11008       buffer8_ = chars;
11009       length_ = length;
11010     }
11011 
VisitTwoByteString(const uint16_t * chars,int length)11012     inline void VisitTwoByteString(const uint16_t* chars, int length) {
11013       is_one_byte_ = false;
11014       buffer16_ = chars;
11015       length_ = length;
11016     }
11017 
Advance(int consumed)11018     void Advance(int consumed) {
11019       DCHECK(consumed <= length_);
11020       // Still in buffer.
11021       if (length_ != consumed) {
11022         if (is_one_byte_) {
11023           buffer8_ += consumed;
11024         } else {
11025           buffer16_ += consumed;
11026         }
11027         length_ -= consumed;
11028         return;
11029       }
11030       // Advance state.
11031       int offset;
11032       String* next = iter_.Next(&offset);
11033       DCHECK_EQ(0, offset);
11034       DCHECK(next != NULL);
11035       String::VisitFlat(this, next);
11036     }
11037 
11038     ConsStringIterator iter_;
11039     bool is_one_byte_;
11040     int length_;
11041     union {
11042       const uint8_t* buffer8_;
11043       const uint16_t* buffer16_;
11044     };
11045 
11046    private:
11047     DISALLOW_COPY_AND_ASSIGN(State);
11048   };
11049 
11050  public:
StringComparator()11051   inline StringComparator() {}
11052 
11053   template<typename Chars1, typename Chars2>
Equals(State * state_1,State * state_2,int to_check)11054   static inline bool Equals(State* state_1, State* state_2, int to_check) {
11055     const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_);
11056     const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_);
11057     return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check);
11058   }
11059 
Equals(String * string_1,String * string_2)11060   bool Equals(String* string_1, String* string_2) {
11061     int length = string_1->length();
11062     state_1_.Init(string_1);
11063     state_2_.Init(string_2);
11064     while (true) {
11065       int to_check = Min(state_1_.length_, state_2_.length_);
11066       DCHECK(to_check > 0 && to_check <= length);
11067       bool is_equal;
11068       if (state_1_.is_one_byte_) {
11069         if (state_2_.is_one_byte_) {
11070           is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check);
11071         } else {
11072           is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check);
11073         }
11074       } else {
11075         if (state_2_.is_one_byte_) {
11076           is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check);
11077         } else {
11078           is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check);
11079         }
11080       }
11081       // Looping done.
11082       if (!is_equal) return false;
11083       length -= to_check;
11084       // Exit condition. Strings are equal.
11085       if (length == 0) return true;
11086       state_1_.Advance(to_check);
11087       state_2_.Advance(to_check);
11088     }
11089   }
11090 
11091  private:
11092   State state_1_;
11093   State state_2_;
11094 
11095   DISALLOW_COPY_AND_ASSIGN(StringComparator);
11096 };
11097 
11098 
SlowEquals(String * other)11099 bool String::SlowEquals(String* other) {
11100   DisallowHeapAllocation no_gc;
11101   // Fast check: negative check with lengths.
11102   int len = length();
11103   if (len != other->length()) return false;
11104   if (len == 0) return true;
11105 
11106   // Fast check: if hash code is computed for both strings
11107   // a fast negative check can be performed.
11108   if (HasHashCode() && other->HasHashCode()) {
11109 #ifdef ENABLE_SLOW_DCHECKS
11110     if (FLAG_enable_slow_asserts) {
11111       if (Hash() != other->Hash()) {
11112         bool found_difference = false;
11113         for (int i = 0; i < len; i++) {
11114           if (Get(i) != other->Get(i)) {
11115             found_difference = true;
11116             break;
11117           }
11118         }
11119         DCHECK(found_difference);
11120       }
11121     }
11122 #endif
11123     if (Hash() != other->Hash()) return false;
11124   }
11125 
11126   // We know the strings are both non-empty. Compare the first chars
11127   // before we try to flatten the strings.
11128   if (this->Get(0) != other->Get(0)) return false;
11129 
11130   if (IsSeqOneByteString() && other->IsSeqOneByteString()) {
11131     const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars();
11132     const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars();
11133     return CompareRawStringContents(str1, str2, len);
11134   }
11135 
11136   StringComparator comparator;
11137   return comparator.Equals(this, other);
11138 }
11139 
11140 
SlowEquals(Handle<String> one,Handle<String> two)11141 bool String::SlowEquals(Handle<String> one, Handle<String> two) {
11142   // Fast check: negative check with lengths.
11143   int one_length = one->length();
11144   if (one_length != two->length()) return false;
11145   if (one_length == 0) return true;
11146 
11147   // Fast check: if hash code is computed for both strings
11148   // a fast negative check can be performed.
11149   if (one->HasHashCode() && two->HasHashCode()) {
11150 #ifdef ENABLE_SLOW_DCHECKS
11151     if (FLAG_enable_slow_asserts) {
11152       if (one->Hash() != two->Hash()) {
11153         bool found_difference = false;
11154         for (int i = 0; i < one_length; i++) {
11155           if (one->Get(i) != two->Get(i)) {
11156             found_difference = true;
11157             break;
11158           }
11159         }
11160         DCHECK(found_difference);
11161       }
11162     }
11163 #endif
11164     if (one->Hash() != two->Hash()) return false;
11165   }
11166 
11167   // We know the strings are both non-empty. Compare the first chars
11168   // before we try to flatten the strings.
11169   if (one->Get(0) != two->Get(0)) return false;
11170 
11171   one = String::Flatten(one);
11172   two = String::Flatten(two);
11173 
11174   DisallowHeapAllocation no_gc;
11175   String::FlatContent flat1 = one->GetFlatContent();
11176   String::FlatContent flat2 = two->GetFlatContent();
11177 
11178   if (flat1.IsOneByte() && flat2.IsOneByte()) {
11179       return CompareRawStringContents(flat1.ToOneByteVector().start(),
11180                                       flat2.ToOneByteVector().start(),
11181                                       one_length);
11182   } else {
11183     for (int i = 0; i < one_length; i++) {
11184       if (flat1.Get(i) != flat2.Get(i)) return false;
11185     }
11186     return true;
11187   }
11188 }
11189 
11190 
11191 // static
Compare(Handle<String> x,Handle<String> y)11192 ComparisonResult String::Compare(Handle<String> x, Handle<String> y) {
11193   // A few fast case tests before we flatten.
11194   if (x.is_identical_to(y)) {
11195     return ComparisonResult::kEqual;
11196   } else if (y->length() == 0) {
11197     return x->length() == 0 ? ComparisonResult::kEqual
11198                             : ComparisonResult::kGreaterThan;
11199   } else if (x->length() == 0) {
11200     return ComparisonResult::kLessThan;
11201   }
11202 
11203   int const d = x->Get(0) - y->Get(0);
11204   if (d < 0) {
11205     return ComparisonResult::kLessThan;
11206   } else if (d > 0) {
11207     return ComparisonResult::kGreaterThan;
11208   }
11209 
11210   // Slow case.
11211   x = String::Flatten(x);
11212   y = String::Flatten(y);
11213 
11214   DisallowHeapAllocation no_gc;
11215   ComparisonResult result = ComparisonResult::kEqual;
11216   int prefix_length = x->length();
11217   if (y->length() < prefix_length) {
11218     prefix_length = y->length();
11219     result = ComparisonResult::kGreaterThan;
11220   } else if (y->length() > prefix_length) {
11221     result = ComparisonResult::kLessThan;
11222   }
11223   int r;
11224   String::FlatContent x_content = x->GetFlatContent();
11225   String::FlatContent y_content = y->GetFlatContent();
11226   if (x_content.IsOneByte()) {
11227     Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
11228     if (y_content.IsOneByte()) {
11229       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
11230       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11231     } else {
11232       Vector<const uc16> y_chars = y_content.ToUC16Vector();
11233       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11234     }
11235   } else {
11236     Vector<const uc16> x_chars = x_content.ToUC16Vector();
11237     if (y_content.IsOneByte()) {
11238       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
11239       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11240     } else {
11241       Vector<const uc16> y_chars = y_content.ToUC16Vector();
11242       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11243     }
11244   }
11245   if (r < 0) {
11246     result = ComparisonResult::kLessThan;
11247   } else if (r > 0) {
11248     result = ComparisonResult::kGreaterThan;
11249   }
11250   return result;
11251 }
11252 
11253 
IsUtf8EqualTo(Vector<const char> str,bool allow_prefix_match)11254 bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) {
11255   int slen = length();
11256   // Can't check exact length equality, but we can check bounds.
11257   int str_len = str.length();
11258   if (!allow_prefix_match &&
11259       (str_len < slen ||
11260           str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) {
11261     return false;
11262   }
11263   int i;
11264   size_t remaining_in_str = static_cast<size_t>(str_len);
11265   const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start());
11266   for (i = 0; i < slen && remaining_in_str > 0; i++) {
11267     size_t cursor = 0;
11268     uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor);
11269     DCHECK(cursor > 0 && cursor <= remaining_in_str);
11270     if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
11271       if (i > slen - 1) return false;
11272       if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false;
11273       if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false;
11274     } else {
11275       if (Get(i) != r) return false;
11276     }
11277     utf8_data += cursor;
11278     remaining_in_str -= cursor;
11279   }
11280   return (allow_prefix_match || i == slen) && remaining_in_str == 0;
11281 }
11282 
11283 
IsOneByteEqualTo(Vector<const uint8_t> str)11284 bool String::IsOneByteEqualTo(Vector<const uint8_t> str) {
11285   int slen = length();
11286   if (str.length() != slen) return false;
11287   DisallowHeapAllocation no_gc;
11288   FlatContent content = GetFlatContent();
11289   if (content.IsOneByte()) {
11290     return CompareChars(content.ToOneByteVector().start(),
11291                         str.start(), slen) == 0;
11292   }
11293   for (int i = 0; i < slen; i++) {
11294     if (Get(i) != static_cast<uint16_t>(str[i])) return false;
11295   }
11296   return true;
11297 }
11298 
11299 
IsTwoByteEqualTo(Vector<const uc16> str)11300 bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
11301   int slen = length();
11302   if (str.length() != slen) return false;
11303   DisallowHeapAllocation no_gc;
11304   FlatContent content = GetFlatContent();
11305   if (content.IsTwoByte()) {
11306     return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0;
11307   }
11308   for (int i = 0; i < slen; i++) {
11309     if (Get(i) != str[i]) return false;
11310   }
11311   return true;
11312 }
11313 
11314 
ComputeAndSetHash()11315 uint32_t String::ComputeAndSetHash() {
11316   // Should only be called if hash code has not yet been computed.
11317   DCHECK(!HasHashCode());
11318 
11319   // Store the hash code in the object.
11320   uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
11321   set_hash_field(field);
11322 
11323   // Check the hash code is there.
11324   DCHECK(HasHashCode());
11325   uint32_t result = field >> kHashShift;
11326   DCHECK(result != 0);  // Ensure that the hash value of 0 is never computed.
11327   return result;
11328 }
11329 
11330 
ComputeArrayIndex(uint32_t * index)11331 bool String::ComputeArrayIndex(uint32_t* index) {
11332   int length = this->length();
11333   if (length == 0 || length > kMaxArrayIndexSize) return false;
11334   StringCharacterStream stream(this);
11335   return StringToArrayIndex(&stream, index);
11336 }
11337 
11338 
SlowAsArrayIndex(uint32_t * index)11339 bool String::SlowAsArrayIndex(uint32_t* index) {
11340   if (length() <= kMaxCachedArrayIndexLength) {
11341     Hash();  // force computation of hash code
11342     uint32_t field = hash_field();
11343     if ((field & kIsNotArrayIndexMask) != 0) return false;
11344     // Isolate the array index form the full hash field.
11345     *index = ArrayIndexValueBits::decode(field);
11346     return true;
11347   } else {
11348     return ComputeArrayIndex(index);
11349   }
11350 }
11351 
11352 
Truncate(Handle<SeqString> string,int new_length)11353 Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
11354   int new_size, old_size;
11355   int old_length = string->length();
11356   if (old_length <= new_length) return string;
11357 
11358   if (string->IsSeqOneByteString()) {
11359     old_size = SeqOneByteString::SizeFor(old_length);
11360     new_size = SeqOneByteString::SizeFor(new_length);
11361   } else {
11362     DCHECK(string->IsSeqTwoByteString());
11363     old_size = SeqTwoByteString::SizeFor(old_length);
11364     new_size = SeqTwoByteString::SizeFor(new_length);
11365   }
11366 
11367   int delta = old_size - new_size;
11368 
11369   Address start_of_string = string->address();
11370   DCHECK_OBJECT_ALIGNED(start_of_string);
11371   DCHECK_OBJECT_ALIGNED(start_of_string + new_size);
11372 
11373   Heap* heap = string->GetHeap();
11374   // Sizes are pointer size aligned, so that we can use filler objects
11375   // that are a multiple of pointer size.
11376   heap->CreateFillerObjectAt(start_of_string + new_size, delta,
11377                              ClearRecordedSlots::kNo);
11378   heap->AdjustLiveBytes(*string, -delta, Heap::CONCURRENT_TO_SWEEPER);
11379 
11380   // We are storing the new length using release store after creating a filler
11381   // for the left-over space to avoid races with the sweeper thread.
11382   string->synchronized_set_length(new_length);
11383 
11384   if (new_length == 0) return heap->isolate()->factory()->empty_string();
11385   return string;
11386 }
11387 
11388 
MakeArrayIndexHash(uint32_t value,int length)11389 uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
11390   // For array indexes mix the length into the hash as an array index could
11391   // be zero.
11392   DCHECK(length > 0);
11393   DCHECK(length <= String::kMaxArrayIndexSize);
11394   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
11395          (1 << String::kArrayIndexValueBits));
11396 
11397   value <<= String::ArrayIndexValueBits::kShift;
11398   value |= length << String::ArrayIndexLengthBits::kShift;
11399 
11400   DCHECK((value & String::kIsNotArrayIndexMask) == 0);
11401   DCHECK_EQ(length <= String::kMaxCachedArrayIndexLength,
11402             (value & String::kContainsCachedArrayIndexMask) == 0);
11403   return value;
11404 }
11405 
11406 
GetHashField()11407 uint32_t StringHasher::GetHashField() {
11408   if (length_ <= String::kMaxHashCalcLength) {
11409     if (is_array_index_) {
11410       return MakeArrayIndexHash(array_index_, length_);
11411     }
11412     return (GetHashCore(raw_running_hash_) << String::kHashShift) |
11413            String::kIsNotArrayIndexMask;
11414   } else {
11415     return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
11416   }
11417 }
11418 
11419 
ComputeUtf8Hash(Vector<const char> chars,uint32_t seed,int * utf16_length_out)11420 uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars,
11421                                        uint32_t seed,
11422                                        int* utf16_length_out) {
11423   int vector_length = chars.length();
11424   // Handle some edge cases
11425   if (vector_length <= 1) {
11426     DCHECK(vector_length == 0 ||
11427            static_cast<uint8_t>(chars.start()[0]) <=
11428                unibrow::Utf8::kMaxOneByteChar);
11429     *utf16_length_out = vector_length;
11430     return HashSequentialString(chars.start(), vector_length, seed);
11431   }
11432   // Start with a fake length which won't affect computation.
11433   // It will be updated later.
11434   StringHasher hasher(String::kMaxArrayIndexSize, seed);
11435   size_t remaining = static_cast<size_t>(vector_length);
11436   const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start());
11437   int utf16_length = 0;
11438   bool is_index = true;
11439   DCHECK(hasher.is_array_index_);
11440   while (remaining > 0) {
11441     size_t consumed = 0;
11442     uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed);
11443     DCHECK(consumed > 0 && consumed <= remaining);
11444     stream += consumed;
11445     remaining -= consumed;
11446     bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode;
11447     utf16_length += is_two_characters ? 2 : 1;
11448     // No need to keep hashing. But we do need to calculate utf16_length.
11449     if (utf16_length > String::kMaxHashCalcLength) continue;
11450     if (is_two_characters) {
11451       uint16_t c1 = unibrow::Utf16::LeadSurrogate(c);
11452       uint16_t c2 = unibrow::Utf16::TrailSurrogate(c);
11453       hasher.AddCharacter(c1);
11454       hasher.AddCharacter(c2);
11455       if (is_index) is_index = hasher.UpdateIndex(c1);
11456       if (is_index) is_index = hasher.UpdateIndex(c2);
11457     } else {
11458       hasher.AddCharacter(c);
11459       if (is_index) is_index = hasher.UpdateIndex(c);
11460     }
11461   }
11462   *utf16_length_out = static_cast<int>(utf16_length);
11463   // Must set length here so that hash computation is correct.
11464   hasher.length_ = utf16_length;
11465   return hasher.GetHashField();
11466 }
11467 
11468 
VisitConsString(ConsString * cons_string)11469 void IteratingStringHasher::VisitConsString(ConsString* cons_string) {
11470   // Run small ConsStrings through ConsStringIterator.
11471   if (cons_string->length() < 64) {
11472     ConsStringIterator iter(cons_string);
11473     int offset;
11474     String* string;
11475     while (nullptr != (string = iter.Next(&offset))) {
11476       DCHECK_EQ(0, offset);
11477       String::VisitFlat(this, string, 0);
11478     }
11479     return;
11480   }
11481   // Slow case.
11482   const int max_length = String::kMaxHashCalcLength;
11483   int length = std::min(cons_string->length(), max_length);
11484   if (cons_string->HasOnlyOneByteChars()) {
11485     uint8_t* buffer = new uint8_t[length];
11486     String::WriteToFlat(cons_string, buffer, 0, length);
11487     AddCharacters(buffer, length);
11488     delete[] buffer;
11489   } else {
11490     uint16_t* buffer = new uint16_t[length];
11491     String::WriteToFlat(cons_string, buffer, 0, length);
11492     AddCharacters(buffer, length);
11493     delete[] buffer;
11494   }
11495 }
11496 
11497 
PrintOn(FILE * file)11498 void String::PrintOn(FILE* file) {
11499   int length = this->length();
11500   for (int i = 0; i < length; i++) {
11501     PrintF(file, "%c", Get(i));
11502   }
11503 }
11504 
11505 
Hash()11506 int Map::Hash() {
11507   // For performance reasons we only hash the 3 most variable fields of a map:
11508   // constructor, prototype and bit_field2. For predictability reasons we
11509   // use objects' offsets in respective pages for hashing instead of raw
11510   // addresses.
11511 
11512   // Shift away the tag.
11513   int hash = ObjectAddressForHashing(GetConstructor()) >> 2;
11514 
11515   // XOR-ing the prototype and constructor directly yields too many zero bits
11516   // when the two pointers are close (which is fairly common).
11517   // To avoid this we shift the prototype bits relatively to the constructor.
11518   hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits);
11519 
11520   return hash ^ (hash >> 16) ^ bit_field2();
11521 }
11522 
11523 
11524 namespace {
11525 
CheckEquivalent(Map * first,Map * second)11526 bool CheckEquivalent(Map* first, Map* second) {
11527   return first->GetConstructor() == second->GetConstructor() &&
11528          first->prototype() == second->prototype() &&
11529          first->instance_type() == second->instance_type() &&
11530          first->bit_field() == second->bit_field() &&
11531          first->is_extensible() == second->is_extensible() &&
11532          first->new_target_is_base() == second->new_target_is_base() &&
11533          first->has_hidden_prototype() == second->has_hidden_prototype();
11534 }
11535 
11536 }  // namespace
11537 
11538 
EquivalentToForTransition(Map * other)11539 bool Map::EquivalentToForTransition(Map* other) {
11540   if (!CheckEquivalent(this, other)) return false;
11541   if (instance_type() == JS_FUNCTION_TYPE) {
11542     // JSFunctions require more checks to ensure that sloppy function is
11543     // not equvalent to strict function.
11544     int nof = Min(NumberOfOwnDescriptors(), other->NumberOfOwnDescriptors());
11545     return instance_descriptors()->IsEqualUpTo(other->instance_descriptors(),
11546                                                nof);
11547   }
11548   return true;
11549 }
11550 
11551 
EquivalentToForNormalization(Map * other,PropertyNormalizationMode mode)11552 bool Map::EquivalentToForNormalization(Map* other,
11553                                        PropertyNormalizationMode mode) {
11554   int properties =
11555       mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties();
11556   return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() &&
11557          GetInObjectProperties() == properties;
11558 }
11559 
11560 
Inlines(SharedFunctionInfo * candidate)11561 bool JSFunction::Inlines(SharedFunctionInfo* candidate) {
11562   DisallowHeapAllocation no_gc;
11563   if (shared() == candidate) return true;
11564   if (code()->kind() != Code::OPTIMIZED_FUNCTION) return false;
11565   DeoptimizationInputData* const data =
11566       DeoptimizationInputData::cast(code()->deoptimization_data());
11567   if (data->length() == 0) return false;
11568   FixedArray* const literals = data->LiteralArray();
11569   int const inlined_count = data->InlinedFunctionCount()->value();
11570   for (int i = 0; i < inlined_count; ++i) {
11571     if (SharedFunctionInfo::cast(literals->get(i)) == candidate) {
11572       return true;
11573     }
11574   }
11575   return false;
11576 }
11577 
MarkForBaseline()11578 void JSFunction::MarkForBaseline() {
11579   Isolate* isolate = GetIsolate();
11580   set_code_no_write_barrier(
11581       isolate->builtins()->builtin(Builtins::kCompileBaseline));
11582   // No write barrier required, since the builtin is part of the root set.
11583 }
11584 
MarkForOptimization()11585 void JSFunction::MarkForOptimization() {
11586   Isolate* isolate = GetIsolate();
11587   DCHECK(!IsOptimized());
11588   DCHECK(shared()->allows_lazy_compilation() ||
11589          !shared()->optimization_disabled());
11590   set_code_no_write_barrier(
11591       isolate->builtins()->builtin(Builtins::kCompileOptimized));
11592   // No write barrier required, since the builtin is part of the root set.
11593 }
11594 
11595 
AttemptConcurrentOptimization()11596 void JSFunction::AttemptConcurrentOptimization() {
11597   Isolate* isolate = GetIsolate();
11598   if (!isolate->concurrent_recompilation_enabled() ||
11599       isolate->bootstrapper()->IsActive()) {
11600     MarkForOptimization();
11601     return;
11602   }
11603   DCHECK(!IsInOptimizationQueue());
11604   DCHECK(!IsOptimized());
11605   DCHECK(shared()->allows_lazy_compilation() ||
11606          !shared()->optimization_disabled());
11607   DCHECK(isolate->concurrent_recompilation_enabled());
11608   if (FLAG_trace_concurrent_recompilation) {
11609     PrintF("  ** Marking ");
11610     ShortPrint();
11611     PrintF(" for concurrent recompilation.\n");
11612   }
11613   set_code_no_write_barrier(
11614       isolate->builtins()->builtin(Builtins::kCompileOptimizedConcurrent));
11615   // No write barrier required, since the builtin is part of the root set.
11616 }
11617 
11618 // static
FindOrCreateLiterals(Handle<SharedFunctionInfo> shared,Handle<Context> native_context)11619 Handle<LiteralsArray> SharedFunctionInfo::FindOrCreateLiterals(
11620     Handle<SharedFunctionInfo> shared, Handle<Context> native_context) {
11621   Isolate* isolate = shared->GetIsolate();
11622   CodeAndLiterals result =
11623       shared->SearchOptimizedCodeMap(*native_context, BailoutId::None());
11624   if (result.literals != nullptr) {
11625     DCHECK(shared->feedback_metadata()->is_empty() ||
11626            !result.literals->feedback_vector()->is_empty());
11627     return handle(result.literals, isolate);
11628   }
11629 
11630   Handle<TypeFeedbackVector> feedback_vector =
11631       TypeFeedbackVector::New(isolate, handle(shared->feedback_metadata()));
11632   Handle<LiteralsArray> literals = LiteralsArray::New(
11633       isolate, feedback_vector, shared->num_literals(), TENURED);
11634   Handle<Code> code;
11635   if (result.code != nullptr) {
11636     code = Handle<Code>(result.code, isolate);
11637   }
11638   AddToOptimizedCodeMap(shared, native_context, code, literals,
11639                         BailoutId::None());
11640   return literals;
11641 }
11642 
AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,Handle<Code> code)11643 void SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap(
11644     Handle<SharedFunctionInfo> shared, Handle<Code> code) {
11645   Isolate* isolate = shared->GetIsolate();
11646   if (isolate->serializer_enabled()) return;
11647   DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
11648   // Empty code maps are unsupported.
11649   if (!shared->OptimizedCodeMapIsCleared()) {
11650     Handle<WeakCell> cell = isolate->factory()->NewWeakCell(code);
11651     // A collection may have occured and cleared the optimized code map in the
11652     // allocation above.
11653     if (!shared->OptimizedCodeMapIsCleared()) {
11654       shared->optimized_code_map()->set(kSharedCodeIndex, *cell);
11655     }
11656   }
11657 }
11658 
11659 // static
AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,Handle<Context> native_context,MaybeHandle<Code> code,Handle<LiteralsArray> literals,BailoutId osr_ast_id)11660 void SharedFunctionInfo::AddToOptimizedCodeMap(
11661     Handle<SharedFunctionInfo> shared, Handle<Context> native_context,
11662     MaybeHandle<Code> code, Handle<LiteralsArray> literals,
11663     BailoutId osr_ast_id) {
11664   Isolate* isolate = shared->GetIsolate();
11665   if (isolate->serializer_enabled()) return;
11666   DCHECK(code.is_null() ||
11667          code.ToHandleChecked()->kind() == Code::OPTIMIZED_FUNCTION);
11668   DCHECK(native_context->IsNativeContext());
11669   STATIC_ASSERT(kEntryLength == 4);
11670   Handle<FixedArray> new_code_map;
11671   int entry;
11672 
11673   if (shared->OptimizedCodeMapIsCleared()) {
11674     new_code_map = isolate->factory()->NewFixedArray(kInitialLength, TENURED);
11675     new_code_map->set(kSharedCodeIndex, *isolate->factory()->empty_weak_cell(),
11676                       SKIP_WRITE_BARRIER);
11677     entry = kEntriesStart;
11678   } else {
11679     Handle<FixedArray> old_code_map(shared->optimized_code_map(), isolate);
11680     entry = shared->SearchOptimizedCodeMapEntry(*native_context, osr_ast_id);
11681     if (entry > kSharedCodeIndex) {
11682       // Just set the code and literals of the entry.
11683       if (!code.is_null()) {
11684         Handle<WeakCell> code_cell =
11685             isolate->factory()->NewWeakCell(code.ToHandleChecked());
11686         old_code_map->set(entry + kCachedCodeOffset, *code_cell);
11687       }
11688       if (literals->literals_count() == 0) {
11689         old_code_map->set(entry + kLiteralsOffset, *literals);
11690       } else {
11691         Handle<WeakCell> literals_cell =
11692             isolate->factory()->NewWeakCell(literals);
11693         old_code_map->set(entry + kLiteralsOffset, *literals_cell);
11694       }
11695       return;
11696     }
11697 
11698     // Can we reuse an entry?
11699     DCHECK(entry < kEntriesStart);
11700     int length = old_code_map->length();
11701     for (int i = kEntriesStart; i < length; i += kEntryLength) {
11702       if (WeakCell::cast(old_code_map->get(i + kContextOffset))->cleared()) {
11703         new_code_map = old_code_map;
11704         entry = i;
11705         break;
11706       }
11707     }
11708 
11709     if (entry < kEntriesStart) {
11710       // Copy old optimized code map and append one new entry.
11711       new_code_map = isolate->factory()->CopyFixedArrayAndGrow(
11712           old_code_map, kEntryLength, TENURED);
11713       // TODO(mstarzinger): Temporary workaround. The allocation above might
11714       // have flushed the optimized code map and the copy we created is full of
11715       // holes. For now we just give up on adding the entry and pretend it got
11716       // flushed.
11717       if (shared->OptimizedCodeMapIsCleared()) return;
11718       entry = old_code_map->length();
11719     }
11720   }
11721 
11722   Handle<WeakCell> code_cell =
11723       code.is_null() ? isolate->factory()->empty_weak_cell()
11724                      : isolate->factory()->NewWeakCell(code.ToHandleChecked());
11725   WeakCell* context_cell = native_context->self_weak_cell();
11726 
11727   new_code_map->set(entry + kContextOffset, context_cell);
11728   new_code_map->set(entry + kCachedCodeOffset, *code_cell);
11729 
11730   if (literals->literals_count() == 0) {
11731     new_code_map->set(entry + kLiteralsOffset, *literals);
11732   } else {
11733     Handle<WeakCell> literals_cell = isolate->factory()->NewWeakCell(literals);
11734     new_code_map->set(entry + kLiteralsOffset, *literals_cell);
11735   }
11736 
11737   new_code_map->set(entry + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt()));
11738 
11739 #ifdef DEBUG
11740   for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) {
11741     WeakCell* cell = WeakCell::cast(new_code_map->get(i + kContextOffset));
11742     DCHECK(cell->cleared() || cell->value()->IsNativeContext());
11743     cell = WeakCell::cast(new_code_map->get(i + kCachedCodeOffset));
11744     DCHECK(cell->cleared() ||
11745            (cell->value()->IsCode() &&
11746             Code::cast(cell->value())->kind() == Code::OPTIMIZED_FUNCTION));
11747     Object* lits = new_code_map->get(i + kLiteralsOffset);
11748     if (lits->IsWeakCell()) {
11749       cell = WeakCell::cast(lits);
11750       DCHECK(cell->cleared() ||
11751              (cell->value()->IsLiteralsArray() &&
11752               LiteralsArray::cast(cell->value())->literals_count() > 0));
11753     } else {
11754       DCHECK(lits->IsLiteralsArray() &&
11755              LiteralsArray::cast(lits)->literals_count() == 0);
11756     }
11757     DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi());
11758   }
11759 #endif
11760 
11761   FixedArray* old_code_map = shared->optimized_code_map();
11762   if (old_code_map != *new_code_map) {
11763     shared->set_optimized_code_map(*new_code_map);
11764   }
11765 }
11766 
11767 
ClearOptimizedCodeMap()11768 void SharedFunctionInfo::ClearOptimizedCodeMap() {
11769   FixedArray* cleared_map = GetHeap()->cleared_optimized_code_map();
11770   set_optimized_code_map(cleared_map, SKIP_WRITE_BARRIER);
11771 }
11772 
11773 
EvictFromOptimizedCodeMap(Code * optimized_code,const char * reason)11774 void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code,
11775                                                    const char* reason) {
11776   DisallowHeapAllocation no_gc;
11777   if (OptimizedCodeMapIsCleared()) return;
11778 
11779   Heap* heap = GetHeap();
11780   FixedArray* code_map = optimized_code_map();
11781   int dst = kEntriesStart;
11782   int length = code_map->length();
11783   for (int src = kEntriesStart; src < length; src += kEntryLength) {
11784     DCHECK(WeakCell::cast(code_map->get(src))->cleared() ||
11785            WeakCell::cast(code_map->get(src))->value()->IsNativeContext());
11786     if (WeakCell::cast(code_map->get(src + kCachedCodeOffset))->value() ==
11787         optimized_code) {
11788       BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value());
11789       if (FLAG_trace_opt) {
11790         PrintF("[evicting entry from optimizing code map (%s) for ", reason);
11791         ShortPrint();
11792         if (osr.IsNone()) {
11793           PrintF("]\n");
11794         } else {
11795           PrintF(" (osr ast id %d)]\n", osr.ToInt());
11796         }
11797       }
11798       if (!osr.IsNone()) {
11799         // Evict the src entry by not copying it to the dst entry.
11800         continue;
11801       }
11802       // In case of non-OSR entry just clear the code in order to proceed
11803       // sharing literals.
11804       code_map->set(src + kCachedCodeOffset, heap->empty_weak_cell(),
11805                     SKIP_WRITE_BARRIER);
11806     }
11807 
11808     // Keep the src entry by copying it to the dst entry.
11809     if (dst != src) {
11810       code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset));
11811       code_map->set(dst + kCachedCodeOffset,
11812                     code_map->get(src + kCachedCodeOffset));
11813       code_map->set(dst + kLiteralsOffset,
11814                     code_map->get(src + kLiteralsOffset));
11815       code_map->set(dst + kOsrAstIdOffset,
11816                     code_map->get(src + kOsrAstIdOffset));
11817     }
11818     dst += kEntryLength;
11819   }
11820   if (WeakCell::cast(code_map->get(kSharedCodeIndex))->value() ==
11821       optimized_code) {
11822     // Evict context-independent code as well.
11823     code_map->set(kSharedCodeIndex, heap->empty_weak_cell(),
11824                   SKIP_WRITE_BARRIER);
11825     if (FLAG_trace_opt) {
11826       PrintF("[evicting entry from optimizing code map (%s) for ", reason);
11827       ShortPrint();
11828       PrintF(" (context-independent code)]\n");
11829     }
11830   }
11831   if (dst != length) {
11832     // Always trim even when array is cleared because of heap verifier.
11833     heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(code_map,
11834                                                            length - dst);
11835     if (code_map->length() == kEntriesStart &&
11836         WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
11837       ClearOptimizedCodeMap();
11838     }
11839   }
11840 }
11841 
11842 
TrimOptimizedCodeMap(int shrink_by)11843 void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) {
11844   FixedArray* code_map = optimized_code_map();
11845   DCHECK(shrink_by % kEntryLength == 0);
11846   DCHECK(shrink_by <= code_map->length() - kEntriesStart);
11847   // Always trim even when array is cleared because of heap verifier.
11848   GetHeap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(code_map,
11849                                                               shrink_by);
11850   if (code_map->length() == kEntriesStart &&
11851       WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
11852     ClearOptimizedCodeMap();
11853   }
11854 }
11855 
11856 // static
EnsureLiterals(Handle<JSFunction> function)11857 void JSFunction::EnsureLiterals(Handle<JSFunction> function) {
11858   Handle<SharedFunctionInfo> shared(function->shared());
11859   Handle<Context> native_context(function->context()->native_context());
11860   if (function->literals() ==
11861       function->GetIsolate()->heap()->empty_literals_array()) {
11862     Handle<LiteralsArray> literals =
11863         SharedFunctionInfo::FindOrCreateLiterals(shared, native_context);
11864     function->set_literals(*literals);
11865   }
11866 }
11867 
GetMinInobjectSlack(Map * map,void * data)11868 static void GetMinInobjectSlack(Map* map, void* data) {
11869   int slack = map->unused_property_fields();
11870   if (*reinterpret_cast<int*>(data) > slack) {
11871     *reinterpret_cast<int*>(data) = slack;
11872   }
11873 }
11874 
11875 
ShrinkInstanceSize(Map * map,void * data)11876 static void ShrinkInstanceSize(Map* map, void* data) {
11877   int slack = *reinterpret_cast<int*>(data);
11878   map->SetInObjectProperties(map->GetInObjectProperties() - slack);
11879   map->set_unused_property_fields(map->unused_property_fields() - slack);
11880   map->set_instance_size(map->instance_size() - slack * kPointerSize);
11881   map->set_construction_counter(Map::kNoSlackTracking);
11882 
11883   // Visitor id might depend on the instance size, recalculate it.
11884   map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map));
11885 }
11886 
StopSlackTracking(Map * map,void * data)11887 static void StopSlackTracking(Map* map, void* data) {
11888   map->set_construction_counter(Map::kNoSlackTracking);
11889 }
11890 
CompleteInobjectSlackTracking()11891 void Map::CompleteInobjectSlackTracking() {
11892   // Has to be an initial map.
11893   DCHECK(GetBackPointer()->IsUndefined(GetIsolate()));
11894 
11895   int slack = unused_property_fields();
11896   TransitionArray::TraverseTransitionTree(this, &GetMinInobjectSlack, &slack);
11897   if (slack != 0) {
11898     // Resize the initial map and all maps in its transition tree.
11899     TransitionArray::TraverseTransitionTree(this, &ShrinkInstanceSize, &slack);
11900   } else {
11901     TransitionArray::TraverseTransitionTree(this, &StopSlackTracking, nullptr);
11902   }
11903 }
11904 
11905 
PrototypeBenefitsFromNormalization(Handle<JSObject> object)11906 static bool PrototypeBenefitsFromNormalization(Handle<JSObject> object) {
11907   DisallowHeapAllocation no_gc;
11908   if (!object->HasFastProperties()) return false;
11909   Map* map = object->map();
11910   if (map->is_prototype_map()) return false;
11911   DescriptorArray* descriptors = map->instance_descriptors();
11912   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
11913     PropertyDetails details = descriptors->GetDetails(i);
11914     if (details.location() == kDescriptor) continue;
11915     if (details.representation().IsHeapObject() ||
11916         details.representation().IsTagged()) {
11917       FieldIndex index = FieldIndex::ForDescriptor(map, i);
11918       if (object->RawFastPropertyAt(index)->IsJSFunction()) return true;
11919     }
11920   }
11921   return false;
11922 }
11923 
11924 // static
MakePrototypesFast(Handle<Object> receiver,WhereToStart where_to_start,Isolate * isolate)11925 void JSObject::MakePrototypesFast(Handle<Object> receiver,
11926                                   WhereToStart where_to_start,
11927                                   Isolate* isolate) {
11928   if (!receiver->IsJSReceiver()) return;
11929   for (PrototypeIterator iter(isolate, Handle<JSReceiver>::cast(receiver),
11930                               where_to_start);
11931        !iter.IsAtEnd(); iter.Advance()) {
11932     Handle<Object> current = PrototypeIterator::GetCurrent(iter);
11933     if (!current->IsJSObject()) return;
11934     Handle<JSObject> current_obj = Handle<JSObject>::cast(current);
11935     Map* current_map = current_obj->map();
11936     if (current_map->is_prototype_map() &&
11937         !current_map->should_be_fast_prototype_map()) {
11938       Handle<Map> map(current_map);
11939       Map::SetShouldBeFastPrototypeMap(map, true, isolate);
11940       JSObject::OptimizeAsPrototype(current_obj, FAST_PROTOTYPE);
11941     }
11942   }
11943 }
11944 
11945 // static
OptimizeAsPrototype(Handle<JSObject> object,PrototypeOptimizationMode mode)11946 void JSObject::OptimizeAsPrototype(Handle<JSObject> object,
11947                                    PrototypeOptimizationMode mode) {
11948   if (object->IsJSGlobalObject()) return;
11949   if (mode == FAST_PROTOTYPE && PrototypeBenefitsFromNormalization(object)) {
11950     // First normalize to ensure all JSFunctions are DATA_CONSTANT.
11951     JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0,
11952                                   "NormalizeAsPrototype");
11953   }
11954   Handle<Map> previous_map(object->map());
11955   if (object->map()->is_prototype_map()) {
11956     if (object->map()->should_be_fast_prototype_map() &&
11957         !object->HasFastProperties()) {
11958       JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype");
11959     }
11960   } else {
11961     if (object->map() == *previous_map) {
11962       Handle<Map> new_map = Map::Copy(handle(object->map()), "CopyAsPrototype");
11963       JSObject::MigrateToMap(object, new_map);
11964     }
11965     object->map()->set_is_prototype_map(true);
11966 
11967     // Replace the pointer to the exact constructor with the Object function
11968     // from the same context if undetectable from JS. This is to avoid keeping
11969     // memory alive unnecessarily.
11970     Object* maybe_constructor = object->map()->GetConstructor();
11971     if (maybe_constructor->IsJSFunction()) {
11972       JSFunction* constructor = JSFunction::cast(maybe_constructor);
11973       Isolate* isolate = object->GetIsolate();
11974       if (!constructor->shared()->IsApiFunction() &&
11975           object->class_name() == isolate->heap()->Object_string()) {
11976         Context* context = constructor->context()->native_context();
11977         JSFunction* object_function = context->object_function();
11978         object->map()->SetConstructor(object_function);
11979       }
11980     }
11981   }
11982 }
11983 
11984 
11985 // static
ReoptimizeIfPrototype(Handle<JSObject> object)11986 void JSObject::ReoptimizeIfPrototype(Handle<JSObject> object) {
11987   if (!object->map()->is_prototype_map()) return;
11988   if (!object->map()->should_be_fast_prototype_map()) return;
11989   OptimizeAsPrototype(object, FAST_PROTOTYPE);
11990 }
11991 
11992 
11993 // static
LazyRegisterPrototypeUser(Handle<Map> user,Isolate * isolate)11994 void JSObject::LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
11995   // Contract: In line with InvalidatePrototypeChains()'s requirements,
11996   // leaf maps don't need to register as users, only prototypes do.
11997   DCHECK(user->is_prototype_map());
11998 
11999   Handle<Map> current_user = user;
12000   Handle<PrototypeInfo> current_user_info =
12001       Map::GetOrCreatePrototypeInfo(user, isolate);
12002   for (PrototypeIterator iter(user); !iter.IsAtEnd(); iter.Advance()) {
12003     // Walk up the prototype chain as far as links haven't been registered yet.
12004     if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) {
12005       break;
12006     }
12007     Handle<Object> maybe_proto = PrototypeIterator::GetCurrent(iter);
12008     // Proxies on the prototype chain are not supported. They make it
12009     // impossible to make any assumptions about the prototype chain anyway.
12010     if (maybe_proto->IsJSProxy()) return;
12011     Handle<JSObject> proto = Handle<JSObject>::cast(maybe_proto);
12012     Handle<PrototypeInfo> proto_info =
12013         Map::GetOrCreatePrototypeInfo(proto, isolate);
12014     Handle<Object> maybe_registry(proto_info->prototype_users(), isolate);
12015     int slot = 0;
12016     Handle<WeakFixedArray> new_array =
12017         WeakFixedArray::Add(maybe_registry, current_user, &slot);
12018     current_user_info->set_registry_slot(slot);
12019     if (!maybe_registry.is_identical_to(new_array)) {
12020       proto_info->set_prototype_users(*new_array);
12021     }
12022     if (FLAG_trace_prototype_users) {
12023       PrintF("Registering %p as a user of prototype %p (map=%p).\n",
12024              reinterpret_cast<void*>(*current_user),
12025              reinterpret_cast<void*>(*proto),
12026              reinterpret_cast<void*>(proto->map()));
12027     }
12028 
12029     current_user = handle(proto->map(), isolate);
12030     current_user_info = proto_info;
12031   }
12032 }
12033 
12034 
12035 // Can be called regardless of whether |user| was actually registered with
12036 // |prototype|. Returns true when there was a registration.
12037 // static
UnregisterPrototypeUser(Handle<Map> user,Isolate * isolate)12038 bool JSObject::UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
12039   DCHECK(user->is_prototype_map());
12040   // If it doesn't have a PrototypeInfo, it was never registered.
12041   if (!user->prototype_info()->IsPrototypeInfo()) return false;
12042   // If it had no prototype before, see if it had users that might expect
12043   // registration.
12044   if (!user->prototype()->IsJSObject()) {
12045     Object* users =
12046         PrototypeInfo::cast(user->prototype_info())->prototype_users();
12047     return users->IsWeakFixedArray();
12048   }
12049   Handle<JSObject> prototype(JSObject::cast(user->prototype()), isolate);
12050   Handle<PrototypeInfo> user_info =
12051       Map::GetOrCreatePrototypeInfo(user, isolate);
12052   int slot = user_info->registry_slot();
12053   if (slot == PrototypeInfo::UNREGISTERED) return false;
12054   DCHECK(prototype->map()->is_prototype_map());
12055   Object* maybe_proto_info = prototype->map()->prototype_info();
12056   // User knows its registry slot, prototype info and user registry must exist.
12057   DCHECK(maybe_proto_info->IsPrototypeInfo());
12058   Handle<PrototypeInfo> proto_info(PrototypeInfo::cast(maybe_proto_info),
12059                                    isolate);
12060   Object* maybe_registry = proto_info->prototype_users();
12061   DCHECK(maybe_registry->IsWeakFixedArray());
12062   DCHECK(WeakFixedArray::cast(maybe_registry)->Get(slot) == *user);
12063   WeakFixedArray::cast(maybe_registry)->Clear(slot);
12064   if (FLAG_trace_prototype_users) {
12065     PrintF("Unregistering %p as a user of prototype %p.\n",
12066            reinterpret_cast<void*>(*user), reinterpret_cast<void*>(*prototype));
12067   }
12068   return true;
12069 }
12070 
12071 
InvalidatePrototypeChainsInternal(Map * map)12072 static void InvalidatePrototypeChainsInternal(Map* map) {
12073   if (!map->is_prototype_map()) return;
12074   if (FLAG_trace_prototype_users) {
12075     PrintF("Invalidating prototype map %p 's cell\n",
12076            reinterpret_cast<void*>(map));
12077   }
12078   Object* maybe_proto_info = map->prototype_info();
12079   if (!maybe_proto_info->IsPrototypeInfo()) return;
12080   PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info);
12081   Object* maybe_cell = proto_info->validity_cell();
12082   if (maybe_cell->IsCell()) {
12083     // Just set the value; the cell will be replaced lazily.
12084     Cell* cell = Cell::cast(maybe_cell);
12085     cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid));
12086   }
12087 
12088   WeakFixedArray::Iterator iterator(proto_info->prototype_users());
12089   // For now, only maps register themselves as users.
12090   Map* user;
12091   while ((user = iterator.Next<Map>())) {
12092     // Walk the prototype chain (backwards, towards leaf objects) if necessary.
12093     InvalidatePrototypeChainsInternal(user);
12094   }
12095 }
12096 
12097 
12098 // static
InvalidatePrototypeChains(Map * map)12099 void JSObject::InvalidatePrototypeChains(Map* map) {
12100   DisallowHeapAllocation no_gc;
12101   InvalidatePrototypeChainsInternal(map);
12102 }
12103 
12104 
12105 // static
GetOrCreatePrototypeInfo(Handle<JSObject> prototype,Isolate * isolate)12106 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<JSObject> prototype,
12107                                                     Isolate* isolate) {
12108   Object* maybe_proto_info = prototype->map()->prototype_info();
12109   if (maybe_proto_info->IsPrototypeInfo()) {
12110     return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
12111   }
12112   Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
12113   prototype->map()->set_prototype_info(*proto_info);
12114   return proto_info;
12115 }
12116 
12117 
12118 // static
GetOrCreatePrototypeInfo(Handle<Map> prototype_map,Isolate * isolate)12119 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<Map> prototype_map,
12120                                                     Isolate* isolate) {
12121   Object* maybe_proto_info = prototype_map->prototype_info();
12122   if (maybe_proto_info->IsPrototypeInfo()) {
12123     return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
12124   }
12125   Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
12126   prototype_map->set_prototype_info(*proto_info);
12127   return proto_info;
12128 }
12129 
12130 // static
SetShouldBeFastPrototypeMap(Handle<Map> map,bool value,Isolate * isolate)12131 void Map::SetShouldBeFastPrototypeMap(Handle<Map> map, bool value,
12132                                       Isolate* isolate) {
12133   if (value == false && !map->prototype_info()->IsPrototypeInfo()) {
12134     // "False" is the implicit default value, so there's nothing to do.
12135     return;
12136   }
12137   GetOrCreatePrototypeInfo(map, isolate)->set_should_be_fast_map(value);
12138 }
12139 
12140 // static
GetOrCreatePrototypeChainValidityCell(Handle<Map> map,Isolate * isolate)12141 Handle<Cell> Map::GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
12142                                                         Isolate* isolate) {
12143   Handle<Object> maybe_prototype(map->prototype(), isolate);
12144   if (!maybe_prototype->IsJSObject()) return Handle<Cell>::null();
12145   Handle<JSObject> prototype = Handle<JSObject>::cast(maybe_prototype);
12146   // Ensure the prototype is registered with its own prototypes so its cell
12147   // will be invalidated when necessary.
12148   JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate),
12149                                       isolate);
12150   Handle<PrototypeInfo> proto_info =
12151       GetOrCreatePrototypeInfo(prototype, isolate);
12152   Object* maybe_cell = proto_info->validity_cell();
12153   // Return existing cell if it's still valid.
12154   if (maybe_cell->IsCell()) {
12155     Handle<Cell> cell(Cell::cast(maybe_cell), isolate);
12156     if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) {
12157       return cell;
12158     }
12159   }
12160   // Otherwise create a new cell.
12161   Handle<Cell> cell = isolate->factory()->NewCell(
12162       handle(Smi::FromInt(Map::kPrototypeChainValid), isolate));
12163   proto_info->set_validity_cell(*cell);
12164   return cell;
12165 }
12166 
12167 
12168 // static
SetPrototype(Handle<Map> map,Handle<Object> prototype,PrototypeOptimizationMode proto_mode)12169 void Map::SetPrototype(Handle<Map> map, Handle<Object> prototype,
12170                        PrototypeOptimizationMode proto_mode) {
12171   RuntimeCallTimerScope stats_scope(*map, &RuntimeCallStats::Map_SetPrototype);
12172 
12173   bool is_hidden = false;
12174   if (prototype->IsJSObject()) {
12175     Handle<JSObject> prototype_jsobj = Handle<JSObject>::cast(prototype);
12176     JSObject::OptimizeAsPrototype(prototype_jsobj, proto_mode);
12177 
12178     Object* maybe_constructor = prototype_jsobj->map()->GetConstructor();
12179     if (maybe_constructor->IsJSFunction()) {
12180       JSFunction* constructor = JSFunction::cast(maybe_constructor);
12181       Object* data = constructor->shared()->function_data();
12182       is_hidden = (data->IsFunctionTemplateInfo() &&
12183                    FunctionTemplateInfo::cast(data)->hidden_prototype()) ||
12184                   prototype->IsJSGlobalObject();
12185     }
12186   }
12187   map->set_has_hidden_prototype(is_hidden);
12188 
12189   WriteBarrierMode wb_mode = prototype->IsNull(map->GetIsolate())
12190                                  ? SKIP_WRITE_BARRIER
12191                                  : UPDATE_WRITE_BARRIER;
12192   map->set_prototype(*prototype, wb_mode);
12193 }
12194 
12195 
CacheInitialJSArrayMaps(Handle<Context> native_context,Handle<Map> initial_map)12196 Handle<Object> CacheInitialJSArrayMaps(
12197     Handle<Context> native_context, Handle<Map> initial_map) {
12198   // Replace all of the cached initial array maps in the native context with
12199   // the appropriate transitioned elements kind maps.
12200   Handle<Map> current_map = initial_map;
12201   ElementsKind kind = current_map->elements_kind();
12202   DCHECK_EQ(GetInitialFastElementsKind(), kind);
12203   native_context->set(Context::ArrayMapIndex(kind), *current_map);
12204   for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
12205        i < kFastElementsKindCount; ++i) {
12206     Handle<Map> new_map;
12207     ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
12208     if (Map* maybe_elements_transition = current_map->ElementsTransitionMap()) {
12209       new_map = handle(maybe_elements_transition);
12210     } else {
12211       new_map = Map::CopyAsElementsKind(
12212           current_map, next_kind, INSERT_TRANSITION);
12213     }
12214     DCHECK_EQ(next_kind, new_map->elements_kind());
12215     native_context->set(Context::ArrayMapIndex(next_kind), *new_map);
12216     current_map = new_map;
12217   }
12218   return initial_map;
12219 }
12220 
12221 
SetInstancePrototype(Handle<JSFunction> function,Handle<Object> value)12222 void JSFunction::SetInstancePrototype(Handle<JSFunction> function,
12223                                       Handle<Object> value) {
12224   Isolate* isolate = function->GetIsolate();
12225 
12226   DCHECK(value->IsJSReceiver());
12227 
12228   // Now some logic for the maps of the objects that are created by using this
12229   // function as a constructor.
12230   if (function->has_initial_map()) {
12231     // If the function has allocated the initial map replace it with a
12232     // copy containing the new prototype.  Also complete any in-object
12233     // slack tracking that is in progress at this point because it is
12234     // still tracking the old copy.
12235     function->CompleteInobjectSlackTrackingIfActive();
12236 
12237     Handle<Map> initial_map(function->initial_map(), isolate);
12238 
12239     if (!initial_map->GetIsolate()->bootstrapper()->IsActive() &&
12240         initial_map->instance_type() == JS_OBJECT_TYPE) {
12241       // Put the value in the initial map field until an initial map is needed.
12242       // At that point, a new initial map is created and the prototype is put
12243       // into the initial map where it belongs.
12244       function->set_prototype_or_initial_map(*value);
12245     } else {
12246       Handle<Map> new_map = Map::Copy(initial_map, "SetInstancePrototype");
12247       JSFunction::SetInitialMap(function, new_map, value);
12248 
12249       // If the function is used as the global Array function, cache the
12250       // updated initial maps (and transitioned versions) in the native context.
12251       Handle<Context> native_context(function->context()->native_context(),
12252                                      isolate);
12253       Handle<Object> array_function(
12254           native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate);
12255       if (array_function->IsJSFunction() &&
12256           *function == JSFunction::cast(*array_function)) {
12257         CacheInitialJSArrayMaps(native_context, new_map);
12258       }
12259     }
12260 
12261     // Deoptimize all code that embeds the previous initial map.
12262     initial_map->dependent_code()->DeoptimizeDependentCodeGroup(
12263         isolate, DependentCode::kInitialMapChangedGroup);
12264   } else {
12265     // Put the value in the initial map field until an initial map is
12266     // needed.  At that point, a new initial map is created and the
12267     // prototype is put into the initial map where it belongs.
12268     function->set_prototype_or_initial_map(*value);
12269     if (value->IsJSObject()) {
12270       // Optimize as prototype to detach it from its transition tree.
12271       JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value),
12272                                     FAST_PROTOTYPE);
12273     }
12274   }
12275   isolate->heap()->ClearInstanceofCache();
12276 }
12277 
12278 
SetPrototype(Handle<JSFunction> function,Handle<Object> value)12279 void JSFunction::SetPrototype(Handle<JSFunction> function,
12280                               Handle<Object> value) {
12281   DCHECK(function->IsConstructor() ||
12282          IsGeneratorFunction(function->shared()->kind()));
12283   Handle<Object> construct_prototype = value;
12284 
12285   // If the value is not a JSReceiver, store the value in the map's
12286   // constructor field so it can be accessed.  Also, set the prototype
12287   // used for constructing objects to the original object prototype.
12288   // See ECMA-262 13.2.2.
12289   if (!value->IsJSReceiver()) {
12290     // Copy the map so this does not affect unrelated functions.
12291     // Remove map transitions because they point to maps with a
12292     // different prototype.
12293     Handle<Map> new_map = Map::Copy(handle(function->map()), "SetPrototype");
12294 
12295     JSObject::MigrateToMap(function, new_map);
12296     new_map->SetConstructor(*value);
12297     new_map->set_non_instance_prototype(true);
12298     Isolate* isolate = new_map->GetIsolate();
12299 
12300     construct_prototype = handle(
12301         IsGeneratorFunction(function->shared()->kind())
12302             ? function->context()
12303                   ->native_context()
12304                   ->initial_generator_prototype()
12305             : function->context()->native_context()->initial_object_prototype(),
12306         isolate);
12307   } else {
12308     function->map()->set_non_instance_prototype(false);
12309   }
12310 
12311   return SetInstancePrototype(function, construct_prototype);
12312 }
12313 
12314 
RemovePrototype()12315 bool JSFunction::RemovePrototype() {
12316   Context* native_context = context()->native_context();
12317   Map* no_prototype_map =
12318       is_strict(shared()->language_mode())
12319           ? native_context->strict_function_without_prototype_map()
12320           : native_context->sloppy_function_without_prototype_map();
12321 
12322   if (map() == no_prototype_map) return true;
12323 
12324 #ifdef DEBUG
12325   if (map() != (is_strict(shared()->language_mode())
12326                     ? native_context->strict_function_map()
12327                     : native_context->sloppy_function_map())) {
12328     return false;
12329   }
12330 #endif
12331 
12332   set_map(no_prototype_map);
12333   set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value());
12334   return true;
12335 }
12336 
12337 
SetInitialMap(Handle<JSFunction> function,Handle<Map> map,Handle<Object> prototype)12338 void JSFunction::SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
12339                                Handle<Object> prototype) {
12340   if (map->prototype() != *prototype) {
12341     Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
12342   }
12343   function->set_prototype_or_initial_map(*map);
12344   map->SetConstructor(*function);
12345 #if TRACE_MAPS
12346   if (FLAG_trace_maps) {
12347     PrintF("[TraceMaps: InitialMap map= %p SFI= %d_%s ]\n",
12348            reinterpret_cast<void*>(*map), function->shared()->unique_id(),
12349            function->shared()->DebugName()->ToCString().get());
12350   }
12351 #endif
12352 }
12353 
12354 
12355 #ifdef DEBUG
12356 namespace {
12357 
CanSubclassHaveInobjectProperties(InstanceType instance_type)12358 bool CanSubclassHaveInobjectProperties(InstanceType instance_type) {
12359   switch (instance_type) {
12360     case JS_API_OBJECT_TYPE:
12361     case JS_ARRAY_BUFFER_TYPE:
12362     case JS_ARRAY_TYPE:
12363     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
12364     case JS_DATA_VIEW_TYPE:
12365     case JS_DATE_TYPE:
12366     case JS_FUNCTION_TYPE:
12367     case JS_GENERATOR_OBJECT_TYPE:
12368     case JS_MAP_ITERATOR_TYPE:
12369     case JS_MAP_TYPE:
12370     case JS_MESSAGE_OBJECT_TYPE:
12371     case JS_MODULE_TYPE:
12372     case JS_OBJECT_TYPE:
12373     case JS_ERROR_TYPE:
12374     case JS_ARGUMENTS_TYPE:
12375     case JS_PROMISE_TYPE:
12376     case JS_REGEXP_TYPE:
12377     case JS_SET_ITERATOR_TYPE:
12378     case JS_SET_TYPE:
12379     case JS_SPECIAL_API_OBJECT_TYPE:
12380     case JS_TYPED_ARRAY_TYPE:
12381     case JS_VALUE_TYPE:
12382     case JS_WEAK_MAP_TYPE:
12383     case JS_WEAK_SET_TYPE:
12384       return true;
12385 
12386     case BYTECODE_ARRAY_TYPE:
12387     case BYTE_ARRAY_TYPE:
12388     case CELL_TYPE:
12389     case CODE_TYPE:
12390     case FILLER_TYPE:
12391     case FIXED_ARRAY_TYPE:
12392     case FIXED_DOUBLE_ARRAY_TYPE:
12393     case FOREIGN_TYPE:
12394     case FREE_SPACE_TYPE:
12395     case HEAP_NUMBER_TYPE:
12396     case JS_BOUND_FUNCTION_TYPE:
12397     case JS_GLOBAL_OBJECT_TYPE:
12398     case JS_GLOBAL_PROXY_TYPE:
12399     case JS_PROXY_TYPE:
12400     case MAP_TYPE:
12401     case MUTABLE_HEAP_NUMBER_TYPE:
12402     case ODDBALL_TYPE:
12403     case PROPERTY_CELL_TYPE:
12404     case SHARED_FUNCTION_INFO_TYPE:
12405     case SIMD128_VALUE_TYPE:
12406     case SYMBOL_TYPE:
12407     case WEAK_CELL_TYPE:
12408 
12409 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
12410   case FIXED_##TYPE##_ARRAY_TYPE:
12411 #undef TYPED_ARRAY_CASE
12412 
12413 #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE:
12414       STRUCT_LIST(MAKE_STRUCT_CASE)
12415 #undef MAKE_STRUCT_CASE
12416       // We must not end up here for these instance types at all.
12417       UNREACHABLE();
12418     // Fall through.
12419     default:
12420       return false;
12421   }
12422 }
12423 
12424 }  // namespace
12425 #endif
12426 
12427 
EnsureHasInitialMap(Handle<JSFunction> function)12428 void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) {
12429   DCHECK(function->IsConstructor() || function->shared()->is_resumable());
12430   if (function->has_initial_map()) return;
12431   Isolate* isolate = function->GetIsolate();
12432 
12433   // The constructor should be compiled for the optimization hints to be
12434   // available.
12435   Compiler::Compile(function, Compiler::CLEAR_EXCEPTION);
12436 
12437   // First create a new map with the size and number of in-object properties
12438   // suggested by the function.
12439   InstanceType instance_type;
12440   if (function->shared()->is_resumable()) {
12441     instance_type = JS_GENERATOR_OBJECT_TYPE;
12442   } else {
12443     instance_type = JS_OBJECT_TYPE;
12444   }
12445   int instance_size;
12446   int in_object_properties;
12447   function->CalculateInstanceSize(instance_type, 0, &instance_size,
12448                                   &in_object_properties);
12449 
12450   Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size);
12451 
12452   // Fetch or allocate prototype.
12453   Handle<Object> prototype;
12454   if (function->has_instance_prototype()) {
12455     prototype = handle(function->instance_prototype(), isolate);
12456   } else {
12457     prototype = isolate->factory()->NewFunctionPrototype(function);
12458   }
12459   map->SetInObjectProperties(in_object_properties);
12460   map->set_unused_property_fields(in_object_properties);
12461   DCHECK(map->has_fast_object_elements());
12462 
12463   // Finally link initial map and constructor function.
12464   DCHECK(prototype->IsJSReceiver());
12465   JSFunction::SetInitialMap(function, map, prototype);
12466   map->StartInobjectSlackTracking();
12467 }
12468 
12469 
12470 // static
GetDerivedMap(Isolate * isolate,Handle<JSFunction> constructor,Handle<JSReceiver> new_target)12471 MaybeHandle<Map> JSFunction::GetDerivedMap(Isolate* isolate,
12472                                            Handle<JSFunction> constructor,
12473                                            Handle<JSReceiver> new_target) {
12474   EnsureHasInitialMap(constructor);
12475 
12476   Handle<Map> constructor_initial_map(constructor->initial_map(), isolate);
12477   if (*new_target == *constructor) return constructor_initial_map;
12478 
12479   // Fast case, new.target is a subclass of constructor. The map is cacheable
12480   // (and may already have been cached). new.target.prototype is guaranteed to
12481   // be a JSReceiver.
12482   if (new_target->IsJSFunction()) {
12483     Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
12484 
12485     // Check that |function|'s initial map still in sync with the |constructor|,
12486     // otherwise we must create a new initial map for |function|.
12487     if (function->has_initial_map() &&
12488         function->initial_map()->GetConstructor() == *constructor) {
12489       return handle(function->initial_map(), isolate);
12490     }
12491 
12492     // Create a new map with the size and number of in-object properties
12493     // suggested by |function|.
12494 
12495     // Link initial map and constructor function if the new.target is actually a
12496     // subclass constructor.
12497     if (IsSubclassConstructor(function->shared()->kind())) {
12498       Handle<Object> prototype(function->instance_prototype(), isolate);
12499       InstanceType instance_type = constructor_initial_map->instance_type();
12500       DCHECK(CanSubclassHaveInobjectProperties(instance_type));
12501       int internal_fields =
12502           JSObject::GetInternalFieldCount(*constructor_initial_map);
12503       int pre_allocated = constructor_initial_map->GetInObjectProperties() -
12504                           constructor_initial_map->unused_property_fields();
12505       int instance_size;
12506       int in_object_properties;
12507       function->CalculateInstanceSizeForDerivedClass(
12508           instance_type, internal_fields, &instance_size,
12509           &in_object_properties);
12510 
12511       int unused_property_fields = in_object_properties - pre_allocated;
12512       Handle<Map> map =
12513           Map::CopyInitialMap(constructor_initial_map, instance_size,
12514                               in_object_properties, unused_property_fields);
12515       map->set_new_target_is_base(false);
12516 
12517       JSFunction::SetInitialMap(function, map, prototype);
12518       map->SetConstructor(*constructor);
12519       map->set_construction_counter(Map::kNoSlackTracking);
12520       map->StartInobjectSlackTracking();
12521       return map;
12522     }
12523   }
12524 
12525   // Slow path, new.target is either a proxy or can't cache the map.
12526   // new.target.prototype is not guaranteed to be a JSReceiver, and may need to
12527   // fall back to the intrinsicDefaultProto.
12528   Handle<Object> prototype;
12529   if (new_target->IsJSFunction()) {
12530     Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
12531     // Make sure the new.target.prototype is cached.
12532     EnsureHasInitialMap(function);
12533     prototype = handle(function->prototype(), isolate);
12534   } else {
12535     Handle<String> prototype_string = isolate->factory()->prototype_string();
12536     ASSIGN_RETURN_ON_EXCEPTION(
12537         isolate, prototype,
12538         JSReceiver::GetProperty(new_target, prototype_string), Map);
12539     // The above prototype lookup might change the constructor and its
12540     // prototype, hence we have to reload the initial map.
12541     EnsureHasInitialMap(constructor);
12542     constructor_initial_map = handle(constructor->initial_map(), isolate);
12543   }
12544 
12545   // If prototype is not a JSReceiver, fetch the intrinsicDefaultProto from the
12546   // correct realm. Rather than directly fetching the .prototype, we fetch the
12547   // constructor that points to the .prototype. This relies on
12548   // constructor.prototype being FROZEN for those constructors.
12549   if (!prototype->IsJSReceiver()) {
12550     Handle<Context> context;
12551     ASSIGN_RETURN_ON_EXCEPTION(isolate, context,
12552                                JSReceiver::GetFunctionRealm(new_target), Map);
12553     DCHECK(context->IsNativeContext());
12554     Handle<Object> maybe_index = JSReceiver::GetDataProperty(
12555         constructor, isolate->factory()->native_context_index_symbol());
12556     int index = maybe_index->IsSmi() ? Smi::cast(*maybe_index)->value()
12557                                      : Context::OBJECT_FUNCTION_INDEX;
12558     Handle<JSFunction> realm_constructor(JSFunction::cast(context->get(index)));
12559     prototype = handle(realm_constructor->prototype(), isolate);
12560   }
12561 
12562   Handle<Map> map = Map::CopyInitialMap(constructor_initial_map);
12563   map->set_new_target_is_base(false);
12564   DCHECK(prototype->IsJSReceiver());
12565   if (map->prototype() != *prototype) {
12566     Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
12567   }
12568   map->SetConstructor(*constructor);
12569   return map;
12570 }
12571 
12572 
PrintName(FILE * out)12573 void JSFunction::PrintName(FILE* out) {
12574   base::SmartArrayPointer<char> name = shared()->DebugName()->ToCString();
12575   PrintF(out, "%s", name.get());
12576 }
12577 
12578 
GetName(Handle<JSFunction> function)12579 Handle<String> JSFunction::GetName(Handle<JSFunction> function) {
12580   Isolate* isolate = function->GetIsolate();
12581   Handle<Object> name =
12582       JSReceiver::GetDataProperty(function, isolate->factory()->name_string());
12583   if (name->IsString()) return Handle<String>::cast(name);
12584   return handle(function->shared()->DebugName(), isolate);
12585 }
12586 
12587 
GetDebugName(Handle<JSFunction> function)12588 Handle<String> JSFunction::GetDebugName(Handle<JSFunction> function) {
12589   Isolate* isolate = function->GetIsolate();
12590   Handle<Object> name = JSReceiver::GetDataProperty(
12591       function, isolate->factory()->display_name_string());
12592   if (name->IsString()) return Handle<String>::cast(name);
12593   return JSFunction::GetName(function);
12594 }
12595 
SetName(Handle<JSFunction> function,Handle<Name> name,Handle<String> prefix)12596 void JSFunction::SetName(Handle<JSFunction> function, Handle<Name> name,
12597                          Handle<String> prefix) {
12598   Isolate* isolate = function->GetIsolate();
12599   Handle<String> function_name = Name::ToFunctionName(name).ToHandleChecked();
12600   if (prefix->length() > 0) {
12601     IncrementalStringBuilder builder(isolate);
12602     builder.AppendString(prefix);
12603     builder.AppendCharacter(' ');
12604     builder.AppendString(function_name);
12605     function_name = builder.Finish().ToHandleChecked();
12606   }
12607   JSObject::DefinePropertyOrElementIgnoreAttributes(
12608       function, isolate->factory()->name_string(), function_name,
12609       static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY))
12610       .ToHandleChecked();
12611 }
12612 
12613 namespace {
12614 
12615 char const kNativeCodeSource[] = "function () { [native code] }";
12616 
12617 
NativeCodeFunctionSourceString(Handle<SharedFunctionInfo> shared_info)12618 Handle<String> NativeCodeFunctionSourceString(
12619     Handle<SharedFunctionInfo> shared_info) {
12620   Isolate* const isolate = shared_info->GetIsolate();
12621   if (shared_info->name()->IsString()) {
12622     IncrementalStringBuilder builder(isolate);
12623     builder.AppendCString("function ");
12624     builder.AppendString(handle(String::cast(shared_info->name()), isolate));
12625     builder.AppendCString("() { [native code] }");
12626     return builder.Finish().ToHandleChecked();
12627   }
12628   return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
12629 }
12630 
12631 }  // namespace
12632 
12633 
12634 // static
ToString(Handle<JSBoundFunction> function)12635 Handle<String> JSBoundFunction::ToString(Handle<JSBoundFunction> function) {
12636   Isolate* const isolate = function->GetIsolate();
12637   return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
12638 }
12639 
12640 
12641 // static
ToString(Handle<JSFunction> function)12642 Handle<String> JSFunction::ToString(Handle<JSFunction> function) {
12643   Isolate* const isolate = function->GetIsolate();
12644   Handle<SharedFunctionInfo> shared_info(function->shared(), isolate);
12645 
12646   // Check if {function} should hide its source code.
12647   if (!shared_info->script()->IsScript() ||
12648       Script::cast(shared_info->script())->hide_source()) {
12649     return NativeCodeFunctionSourceString(shared_info);
12650   }
12651 
12652   // Check if we should print {function} as a class.
12653   Handle<Object> class_start_position = JSReceiver::GetDataProperty(
12654       function, isolate->factory()->class_start_position_symbol());
12655   if (class_start_position->IsSmi()) {
12656     Handle<Object> class_end_position = JSReceiver::GetDataProperty(
12657         function, isolate->factory()->class_end_position_symbol());
12658     Handle<String> script_source(
12659         String::cast(Script::cast(shared_info->script())->source()), isolate);
12660     return isolate->factory()->NewSubString(
12661         script_source, Handle<Smi>::cast(class_start_position)->value(),
12662         Handle<Smi>::cast(class_end_position)->value());
12663   }
12664 
12665   // Check if we have source code for the {function}.
12666   if (!shared_info->HasSourceCode()) {
12667     return NativeCodeFunctionSourceString(shared_info);
12668   }
12669 
12670   IncrementalStringBuilder builder(isolate);
12671   if (!shared_info->is_arrow()) {
12672     if (shared_info->is_concise_method()) {
12673       if (shared_info->is_generator()) {
12674         builder.AppendCharacter('*');
12675       } else if (shared_info->is_async()) {
12676         builder.AppendCString("async ");
12677       }
12678     } else {
12679       if (shared_info->is_generator()) {
12680         builder.AppendCString("function* ");
12681       } else if (shared_info->is_async()) {
12682         builder.AppendCString("async function ");
12683       } else {
12684         builder.AppendCString("function ");
12685       }
12686     }
12687     if (shared_info->name_should_print_as_anonymous()) {
12688       builder.AppendCString("anonymous");
12689     } else if (!shared_info->is_anonymous_expression()) {
12690       builder.AppendString(handle(String::cast(shared_info->name()), isolate));
12691     }
12692   }
12693   builder.AppendString(Handle<String>::cast(shared_info->GetSourceCode()));
12694   return builder.Finish().ToHandleChecked();
12695 }
12696 
Initialize(Isolate * isolate,Handle<Oddball> oddball,const char * to_string,Handle<Object> to_number,bool to_boolean,const char * type_of,byte kind)12697 void Oddball::Initialize(Isolate* isolate, Handle<Oddball> oddball,
12698                          const char* to_string, Handle<Object> to_number,
12699                          bool to_boolean, const char* type_of, byte kind) {
12700   Handle<String> internalized_to_string =
12701       isolate->factory()->InternalizeUtf8String(to_string);
12702   Handle<String> internalized_type_of =
12703       isolate->factory()->InternalizeUtf8String(type_of);
12704   oddball->set_to_number_raw(to_number->Number());
12705   oddball->set_to_boolean(isolate->heap()->ToBoolean(to_boolean));
12706   oddball->set_to_number(*to_number);
12707   oddball->set_to_string(*internalized_to_string);
12708   oddball->set_type_of(*internalized_type_of);
12709   oddball->set_kind(kind);
12710 }
12711 
SetEvalOrigin(Handle<Script> script,Handle<SharedFunctionInfo> outer_info,int eval_position)12712 void Script::SetEvalOrigin(Handle<Script> script,
12713                            Handle<SharedFunctionInfo> outer_info,
12714                            int eval_position) {
12715   if (eval_position == RelocInfo::kNoPosition) {
12716     // If the position is missing, attempt to get the code offset from the
12717     // current activation.  Do not translate the code offset into source
12718     // position, but store it as negative value for lazy translation.
12719     StackTraceFrameIterator it(script->GetIsolate());
12720     if (!it.done() && it.is_javascript()) {
12721       FrameSummary summary = FrameSummary::GetFirst(it.javascript_frame());
12722       script->set_eval_from_shared(summary.function()->shared());
12723       script->set_eval_from_position(-summary.code_offset());
12724       return;
12725     }
12726     eval_position = 0;
12727   }
12728   script->set_eval_from_shared(*outer_info);
12729   script->set_eval_from_position(eval_position);
12730 }
12731 
GetEvalPosition()12732 int Script::GetEvalPosition() {
12733   DisallowHeapAllocation no_gc;
12734   DCHECK(compilation_type() == Script::COMPILATION_TYPE_EVAL);
12735   int position = eval_from_position();
12736   if (position < 0) {
12737     // Due to laziness, the position may not have been translated from code
12738     // offset yet, which would be encoded as negative integer. In that case,
12739     // translate and set the position.
12740     if (eval_from_shared()->IsUndefined(GetIsolate())) {
12741       position = 0;
12742     } else {
12743       SharedFunctionInfo* shared = SharedFunctionInfo::cast(eval_from_shared());
12744       position = shared->abstract_code()->SourcePosition(-position);
12745     }
12746     DCHECK(position >= 0);
12747     set_eval_from_position(position);
12748   }
12749   return position;
12750 }
12751 
InitLineEnds(Handle<Script> script)12752 void Script::InitLineEnds(Handle<Script> script) {
12753   Isolate* isolate = script->GetIsolate();
12754   if (!script->line_ends()->IsUndefined(isolate)) return;
12755 
12756   if (!script->source()->IsString()) {
12757     DCHECK(script->source()->IsUndefined(isolate));
12758     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
12759     script->set_line_ends(*empty);
12760     DCHECK(script->line_ends()->IsFixedArray());
12761     return;
12762   }
12763 
12764   Handle<String> src(String::cast(script->source()), isolate);
12765 
12766   Handle<FixedArray> array = String::CalculateLineEnds(src, true);
12767 
12768   if (*array != isolate->heap()->empty_fixed_array()) {
12769     array->set_map(isolate->heap()->fixed_cow_array_map());
12770   }
12771 
12772   script->set_line_ends(*array);
12773   DCHECK(script->line_ends()->IsFixedArray());
12774 }
12775 
12776 #define SMI_VALUE(x) (Smi::cast(x)->value())
GetPositionInfo(int position,PositionInfo * info,OffsetFlag offset_flag)12777 bool Script::GetPositionInfo(int position, PositionInfo* info,
12778                              OffsetFlag offset_flag) {
12779   Handle<Script> script(this);
12780   InitLineEnds(script);
12781 
12782   DisallowHeapAllocation no_allocation;
12783 
12784   DCHECK(script->line_ends()->IsFixedArray());
12785   FixedArray* ends = FixedArray::cast(script->line_ends());
12786 
12787   const int ends_len = ends->length();
12788   if (ends_len == 0) return false;
12789 
12790   // Return early on invalid positions. Negative positions behave as if 0 was
12791   // passed, and positions beyond the end of the script return as failure.
12792   if (position < 0) {
12793     position = 0;
12794   } else if (position > SMI_VALUE(ends->get(ends_len - 1))) {
12795     return false;
12796   }
12797 
12798   // Determine line number by doing a binary search on the line ends array.
12799   if (SMI_VALUE(ends->get(0)) >= position) {
12800     info->line = 0;
12801     info->line_start = 0;
12802     info->column = position;
12803   } else {
12804     int left = 0;
12805     int right = ends_len - 1;
12806 
12807     while (right > 0) {
12808       DCHECK_LE(left, right);
12809       const int mid = (left + right) / 2;
12810       if (position > SMI_VALUE(ends->get(mid))) {
12811         left = mid + 1;
12812       } else if (position <= SMI_VALUE(ends->get(mid - 1))) {
12813         right = mid - 1;
12814       } else {
12815         info->line = mid;
12816         break;
12817       }
12818     }
12819     DCHECK(SMI_VALUE(ends->get(info->line)) >= position &&
12820            SMI_VALUE(ends->get(info->line - 1)) < position);
12821     info->line_start = SMI_VALUE(ends->get(info->line - 1)) + 1;
12822     info->column = position - info->line_start;
12823   }
12824 
12825   // Line end is position of the linebreak character.
12826   info->line_end = SMI_VALUE(ends->get(info->line));
12827   if (info->line_end > 0) {
12828     DCHECK(script->source()->IsString());
12829     Handle<String> src(String::cast(script->source()));
12830     if (src->Get(info->line_end - 1) == '\r') {
12831       info->line_end--;
12832     }
12833   }
12834 
12835   // Add offsets if requested.
12836   if (offset_flag == WITH_OFFSET) {
12837     if (info->line == 0) {
12838       info->column += script->column_offset();
12839     }
12840     info->line += script->line_offset();
12841   }
12842 
12843   return true;
12844 }
12845 #undef SMI_VALUE
12846 
GetColumnNumber(Handle<Script> script,int code_pos)12847 int Script::GetColumnNumber(Handle<Script> script, int code_pos) {
12848   PositionInfo info;
12849   if (!script->GetPositionInfo(code_pos, &info, WITH_OFFSET)) {
12850     return -1;
12851   }
12852 
12853   return info.column;
12854 }
12855 
GetLineNumberWithArray(int code_pos)12856 int Script::GetLineNumberWithArray(int code_pos) {
12857   PositionInfo info;
12858   if (!GetPositionInfo(code_pos, &info, WITH_OFFSET)) {
12859     return -1;
12860   }
12861 
12862   return info.line;
12863 }
12864 
12865 
GetLineNumber(Handle<Script> script,int code_pos)12866 int Script::GetLineNumber(Handle<Script> script, int code_pos) {
12867   InitLineEnds(script);
12868   return script->GetLineNumberWithArray(code_pos);
12869 }
12870 
12871 
GetLineNumber(int code_pos)12872 int Script::GetLineNumber(int code_pos) {
12873   DisallowHeapAllocation no_allocation;
12874   if (!line_ends()->IsUndefined(GetIsolate())) {
12875     return GetLineNumberWithArray(code_pos);
12876   }
12877 
12878   // Slow mode: we do not have line_ends. We have to iterate through source.
12879   if (!source()->IsString()) return -1;
12880 
12881   String* source_string = String::cast(source());
12882   int line = 0;
12883   int len = source_string->length();
12884   for (int pos = 0; pos < len; pos++) {
12885     if (pos == code_pos) break;
12886     if (source_string->Get(pos) == '\n') line++;
12887   }
12888   return line;
12889 }
12890 
12891 
GetNameOrSourceURL(Handle<Script> script)12892 Handle<Object> Script::GetNameOrSourceURL(Handle<Script> script) {
12893   Isolate* isolate = script->GetIsolate();
12894   Handle<String> name_or_source_url_key =
12895       isolate->factory()->InternalizeOneByteString(
12896           STATIC_CHAR_VECTOR("nameOrSourceURL"));
12897   Handle<JSObject> script_wrapper = Script::GetWrapper(script);
12898   Handle<Object> property =
12899       JSReceiver::GetProperty(script_wrapper, name_or_source_url_key)
12900           .ToHandleChecked();
12901   DCHECK(property->IsJSFunction());
12902   Handle<Object> result;
12903   // Do not check against pending exception, since this function may be called
12904   // when an exception has already been pending.
12905   if (!Execution::TryCall(isolate, property, script_wrapper, 0, NULL)
12906            .ToHandle(&result)) {
12907     return isolate->factory()->undefined_value();
12908   }
12909   return result;
12910 }
12911 
12912 
GetWrapper(Handle<Script> script)12913 Handle<JSObject> Script::GetWrapper(Handle<Script> script) {
12914   Isolate* isolate = script->GetIsolate();
12915   if (!script->wrapper()->IsUndefined(isolate)) {
12916     DCHECK(script->wrapper()->IsWeakCell());
12917     Handle<WeakCell> cell(WeakCell::cast(script->wrapper()));
12918     if (!cell->cleared()) {
12919       // Return a handle for the existing script wrapper from the cache.
12920       return handle(JSObject::cast(cell->value()));
12921     }
12922     // If we found an empty WeakCell, that means the script wrapper was
12923     // GCed.  We are not notified directly of that, so we decrement here
12924     // so that we at least don't count double for any given script.
12925     isolate->counters()->script_wrappers()->Decrement();
12926   }
12927   // Construct a new script wrapper.
12928   isolate->counters()->script_wrappers()->Increment();
12929   Handle<JSFunction> constructor = isolate->script_function();
12930   Handle<JSValue> result =
12931       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
12932   result->set_value(*script);
12933   Handle<WeakCell> cell = isolate->factory()->NewWeakCell(result);
12934   script->set_wrapper(*cell);
12935   return result;
12936 }
12937 
12938 
FindSharedFunctionInfo(FunctionLiteral * fun)12939 MaybeHandle<SharedFunctionInfo> Script::FindSharedFunctionInfo(
12940     FunctionLiteral* fun) {
12941   WeakFixedArray::Iterator iterator(shared_function_infos());
12942   SharedFunctionInfo* shared;
12943   while ((shared = iterator.Next<SharedFunctionInfo>())) {
12944     if (fun->function_token_position() == shared->function_token_position() &&
12945         fun->start_position() == shared->start_position() &&
12946         fun->end_position() == shared->end_position()) {
12947       return Handle<SharedFunctionInfo>(shared);
12948     }
12949   }
12950   return MaybeHandle<SharedFunctionInfo>();
12951 }
12952 
12953 
Iterator(Isolate * isolate)12954 Script::Iterator::Iterator(Isolate* isolate)
12955     : iterator_(isolate->heap()->script_list()) {}
12956 
12957 
Next()12958 Script* Script::Iterator::Next() { return iterator_.Next<Script>(); }
12959 
12960 
Iterator(Isolate * isolate)12961 SharedFunctionInfo::Iterator::Iterator(Isolate* isolate)
12962     : script_iterator_(isolate),
12963       sfi_iterator_(isolate->heap()->noscript_shared_function_infos()) {}
12964 
12965 
NextScript()12966 bool SharedFunctionInfo::Iterator::NextScript() {
12967   Script* script = script_iterator_.Next();
12968   if (script == NULL) return false;
12969   sfi_iterator_.Reset(script->shared_function_infos());
12970   return true;
12971 }
12972 
12973 
Next()12974 SharedFunctionInfo* SharedFunctionInfo::Iterator::Next() {
12975   do {
12976     SharedFunctionInfo* next = sfi_iterator_.Next<SharedFunctionInfo>();
12977     if (next != NULL) return next;
12978   } while (NextScript());
12979   return NULL;
12980 }
12981 
12982 
SetScript(Handle<SharedFunctionInfo> shared,Handle<Object> script_object)12983 void SharedFunctionInfo::SetScript(Handle<SharedFunctionInfo> shared,
12984                                    Handle<Object> script_object) {
12985   if (shared->script() == *script_object) return;
12986   Isolate* isolate = shared->GetIsolate();
12987 
12988   // Add shared function info to new script's list. If a collection occurs,
12989   // the shared function info may be temporarily in two lists.
12990   // This is okay because the gc-time processing of these lists can tolerate
12991   // duplicates.
12992   Handle<Object> list;
12993   if (script_object->IsScript()) {
12994     Handle<Script> script = Handle<Script>::cast(script_object);
12995     list = handle(script->shared_function_infos(), isolate);
12996   } else {
12997     list = isolate->factory()->noscript_shared_function_infos();
12998   }
12999 
13000 #ifdef DEBUG
13001   if (FLAG_enable_slow_asserts) {
13002     WeakFixedArray::Iterator iterator(*list);
13003     SharedFunctionInfo* next;
13004     while ((next = iterator.Next<SharedFunctionInfo>())) {
13005       DCHECK_NE(next, *shared);
13006     }
13007   }
13008 #endif  // DEBUG
13009   list = WeakFixedArray::Add(list, shared);
13010 
13011   if (script_object->IsScript()) {
13012     Handle<Script> script = Handle<Script>::cast(script_object);
13013     script->set_shared_function_infos(*list);
13014   } else {
13015     isolate->heap()->SetRootNoScriptSharedFunctionInfos(*list);
13016   }
13017 
13018   // Remove shared function info from old script's list.
13019   if (shared->script()->IsScript()) {
13020     Script* old_script = Script::cast(shared->script());
13021     if (old_script->shared_function_infos()->IsWeakFixedArray()) {
13022       WeakFixedArray* list =
13023           WeakFixedArray::cast(old_script->shared_function_infos());
13024       list->Remove(shared);
13025     }
13026   } else {
13027     // Remove shared function info from root array.
13028     Object* list = isolate->heap()->noscript_shared_function_infos();
13029     CHECK(WeakFixedArray::cast(list)->Remove(shared));
13030   }
13031 
13032   // Finally set new script.
13033   shared->set_script(*script_object);
13034 }
13035 
13036 
DebugName()13037 String* SharedFunctionInfo::DebugName() {
13038   Object* n = name();
13039   if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
13040   return String::cast(n);
13041 }
13042 
13043 // The filter is a pattern that matches function names in this way:
13044 //   "*"      all; the default
13045 //   "-"      all but the top-level function
13046 //   "-name"  all but the function "name"
13047 //   ""       only the top-level function
13048 //   "name"   only the function "name"
13049 //   "name*"  only functions starting with "name"
13050 //   "~"      none; the tilde is not an identifier
PassesFilter(const char * raw_filter)13051 bool SharedFunctionInfo::PassesFilter(const char* raw_filter) {
13052   if (*raw_filter == '*') return true;
13053   String* name = DebugName();
13054   Vector<const char> filter = CStrVector(raw_filter);
13055   if (filter.length() == 0) return name->length() == 0;
13056   if (filter[0] == '-') {
13057     // Negative filter.
13058     if (filter.length() == 1) {
13059       return (name->length() != 0);
13060     } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) {
13061       return false;
13062     }
13063     if (filter[filter.length() - 1] == '*' &&
13064         name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) {
13065       return false;
13066     }
13067     return true;
13068 
13069   } else if (name->IsUtf8EqualTo(filter)) {
13070     return true;
13071   }
13072   if (filter[filter.length() - 1] == '*' &&
13073       name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) {
13074     return true;
13075   }
13076   return false;
13077 }
13078 
HasSourceCode() const13079 bool SharedFunctionInfo::HasSourceCode() const {
13080   Isolate* isolate = GetIsolate();
13081   return !script()->IsUndefined(isolate) &&
13082          !reinterpret_cast<Script*>(script())->source()->IsUndefined(isolate);
13083 }
13084 
13085 
GetSourceCode()13086 Handle<Object> SharedFunctionInfo::GetSourceCode() {
13087   if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value();
13088   Handle<String> source(String::cast(Script::cast(script())->source()));
13089   return GetIsolate()->factory()->NewSubString(
13090       source, start_position(), end_position());
13091 }
13092 
13093 
IsInlineable()13094 bool SharedFunctionInfo::IsInlineable() {
13095   // Check that the function has a script associated with it.
13096   if (!script()->IsScript()) return false;
13097   return !optimization_disabled();
13098 }
13099 
13100 
SourceSize()13101 int SharedFunctionInfo::SourceSize() {
13102   return end_position() - start_position();
13103 }
13104 
CalculateInstanceSizeHelper(InstanceType instance_type,int requested_internal_fields,int requested_in_object_properties,int * instance_size,int * in_object_properties)13105 void JSFunction::CalculateInstanceSizeHelper(InstanceType instance_type,
13106                                              int requested_internal_fields,
13107                                              int requested_in_object_properties,
13108                                              int* instance_size,
13109                                              int* in_object_properties) {
13110   int header_size = JSObject::GetHeaderSize(instance_type);
13111   DCHECK_LE(requested_internal_fields,
13112             (JSObject::kMaxInstanceSize - header_size) >> kPointerSizeLog2);
13113   *instance_size =
13114       Min(header_size +
13115               ((requested_internal_fields + requested_in_object_properties)
13116                << kPointerSizeLog2),
13117           JSObject::kMaxInstanceSize);
13118   *in_object_properties = ((*instance_size - header_size) >> kPointerSizeLog2) -
13119                           requested_internal_fields;
13120 }
13121 
13122 
CalculateInstanceSize(InstanceType instance_type,int requested_internal_fields,int * instance_size,int * in_object_properties)13123 void JSFunction::CalculateInstanceSize(InstanceType instance_type,
13124                                        int requested_internal_fields,
13125                                        int* instance_size,
13126                                        int* in_object_properties) {
13127   CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
13128                               shared()->expected_nof_properties(),
13129                               instance_size, in_object_properties);
13130 }
13131 
13132 
CalculateInstanceSizeForDerivedClass(InstanceType instance_type,int requested_internal_fields,int * instance_size,int * in_object_properties)13133 void JSFunction::CalculateInstanceSizeForDerivedClass(
13134     InstanceType instance_type, int requested_internal_fields,
13135     int* instance_size, int* in_object_properties) {
13136   Isolate* isolate = GetIsolate();
13137   int expected_nof_properties = 0;
13138   for (PrototypeIterator iter(isolate, this, kStartAtReceiver); !iter.IsAtEnd();
13139        iter.Advance()) {
13140     JSReceiver* current = iter.GetCurrent<JSReceiver>();
13141     if (!current->IsJSFunction()) break;
13142     JSFunction* func = JSFunction::cast(current);
13143     SharedFunctionInfo* shared = func->shared();
13144     expected_nof_properties += shared->expected_nof_properties();
13145     if (!IsSubclassConstructor(shared->kind())) {
13146       break;
13147     }
13148   }
13149   CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
13150                               expected_nof_properties, instance_size,
13151                               in_object_properties);
13152 }
13153 
13154 
13155 // Output the source code without any allocation in the heap.
operator <<(std::ostream & os,const SourceCodeOf & v)13156 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) {
13157   const SharedFunctionInfo* s = v.value;
13158   // For some native functions there is no source.
13159   if (!s->HasSourceCode()) return os << "<No Source>";
13160 
13161   // Get the source for the script which this function came from.
13162   // Don't use String::cast because we don't want more assertion errors while
13163   // we are already creating a stack dump.
13164   String* script_source =
13165       reinterpret_cast<String*>(Script::cast(s->script())->source());
13166 
13167   if (!script_source->LooksValid()) return os << "<Invalid Source>";
13168 
13169   if (!s->is_toplevel()) {
13170     os << "function ";
13171     Object* name = s->name();
13172     if (name->IsString() && String::cast(name)->length() > 0) {
13173       String::cast(name)->PrintUC16(os);
13174     }
13175   }
13176 
13177   int len = s->end_position() - s->start_position();
13178   if (len <= v.max_length || v.max_length < 0) {
13179     script_source->PrintUC16(os, s->start_position(), s->end_position());
13180     return os;
13181   } else {
13182     script_source->PrintUC16(os, s->start_position(),
13183                              s->start_position() + v.max_length);
13184     return os << "...\n";
13185   }
13186 }
13187 
13188 
IsCodeEquivalent(Code * code,Code * recompiled)13189 static bool IsCodeEquivalent(Code* code, Code* recompiled) {
13190   if (code->instruction_size() != recompiled->instruction_size()) return false;
13191   ByteArray* code_relocation = code->relocation_info();
13192   ByteArray* recompiled_relocation = recompiled->relocation_info();
13193   int length = code_relocation->length();
13194   if (length != recompiled_relocation->length()) return false;
13195   int compare = memcmp(code_relocation->GetDataStartAddress(),
13196                        recompiled_relocation->GetDataStartAddress(),
13197                        length);
13198   return compare == 0;
13199 }
13200 
13201 
EnableDeoptimizationSupport(Code * recompiled)13202 void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
13203   DCHECK(!has_deoptimization_support());
13204   DisallowHeapAllocation no_allocation;
13205   Code* code = this->code();
13206   if (IsCodeEquivalent(code, recompiled)) {
13207     // Copy the deoptimization data from the recompiled code.
13208     code->set_deoptimization_data(recompiled->deoptimization_data());
13209     code->set_has_deoptimization_support(true);
13210   } else {
13211     // TODO(3025757): In case the recompiled isn't equivalent to the
13212     // old code, we have to replace it. We should try to avoid this
13213     // altogether because it flushes valuable type feedback by
13214     // effectively resetting all IC state.
13215     ReplaceCode(recompiled);
13216   }
13217   DCHECK(has_deoptimization_support());
13218 }
13219 
13220 
DisableOptimization(BailoutReason reason)13221 void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
13222   // Disable optimization for the shared function info and mark the
13223   // code as non-optimizable. The marker on the shared function info
13224   // is there because we flush non-optimized code thereby loosing the
13225   // non-optimizable information for the code. When the code is
13226   // regenerated and set on the shared function info it is marked as
13227   // non-optimizable if optimization is disabled for the shared
13228   // function info.
13229   DCHECK(reason != kNoReason);
13230   set_optimization_disabled(true);
13231   set_disable_optimization_reason(reason);
13232   // Code should be the lazy compilation stub or else unoptimized.
13233   DCHECK(abstract_code()->kind() == AbstractCode::FUNCTION ||
13234          abstract_code()->kind() == AbstractCode::INTERPRETED_FUNCTION ||
13235          abstract_code()->kind() == AbstractCode::BUILTIN);
13236   PROFILE(GetIsolate(), CodeDisableOptEvent(abstract_code(), this));
13237   if (FLAG_trace_opt) {
13238     PrintF("[disabled optimization for ");
13239     ShortPrint();
13240     PrintF(", reason: %s]\n", GetBailoutReason(reason));
13241   }
13242 }
13243 
13244 namespace {
13245 
13246 // Sets the expected number of properties based on estimate from parser.
SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,FunctionLiteral * literal)13247 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
13248                                           FunctionLiteral* literal) {
13249   int estimate = literal->expected_property_count();
13250 
13251   // If no properties are added in the constructor, they are more likely
13252   // to be added later.
13253   if (estimate == 0) estimate = 2;
13254 
13255   // TODO(yangguo): check whether those heuristics are still up-to-date.
13256   // We do not shrink objects that go into a snapshot (yet), so we adjust
13257   // the estimate conservatively.
13258   if (shared->GetIsolate()->serializer_enabled()) {
13259     estimate += 2;
13260   } else {
13261     // Inobject slack tracking will reclaim redundant inobject space later,
13262     // so we can afford to adjust the estimate generously.
13263     estimate += 8;
13264   }
13265 
13266   shared->set_expected_nof_properties(estimate);
13267 }
13268 
13269 }  // namespace
13270 
InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,FunctionLiteral * lit)13271 void SharedFunctionInfo::InitFromFunctionLiteral(
13272     Handle<SharedFunctionInfo> shared_info, FunctionLiteral* lit) {
13273   shared_info->set_length(lit->scope()->default_function_length());
13274   shared_info->set_internal_formal_parameter_count(lit->parameter_count());
13275   shared_info->set_function_token_position(lit->function_token_position());
13276   shared_info->set_start_position(lit->start_position());
13277   shared_info->set_end_position(lit->end_position());
13278   shared_info->set_is_declaration(lit->is_declaration());
13279   shared_info->set_is_named_expression(lit->is_named_expression());
13280   shared_info->set_is_anonymous_expression(lit->is_anonymous_expression());
13281   shared_info->set_inferred_name(*lit->inferred_name());
13282   shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
13283   shared_info->set_allows_lazy_compilation_without_context(
13284       lit->AllowsLazyCompilationWithoutContext());
13285   shared_info->set_language_mode(lit->language_mode());
13286   shared_info->set_uses_arguments(lit->scope()->arguments() != NULL);
13287   shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
13288   shared_info->set_is_function(lit->is_function());
13289   shared_info->set_never_compiled(true);
13290   shared_info->set_kind(lit->kind());
13291   if (!IsConstructable(lit->kind(), lit->language_mode())) {
13292     shared_info->set_construct_stub(
13293         *shared_info->GetIsolate()->builtins()->ConstructedNonConstructable());
13294   }
13295   shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject());
13296   shared_info->set_asm_function(lit->scope()->asm_function());
13297   SetExpectedNofPropertiesFromEstimate(shared_info, lit);
13298 }
13299 
13300 
VerifyBailoutId(BailoutId id)13301 bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) {
13302   DCHECK(!id.IsNone());
13303   Code* unoptimized = code();
13304   DeoptimizationOutputData* data =
13305       DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
13306   unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
13307   USE(ignore);
13308   return true;  // Return true if there was no DCHECK.
13309 }
13310 
13311 
StartInobjectSlackTracking()13312 void Map::StartInobjectSlackTracking() {
13313   DCHECK(!IsInobjectSlackTrackingInProgress());
13314 
13315   // No tracking during the snapshot construction phase.
13316   Isolate* isolate = GetIsolate();
13317   if (isolate->serializer_enabled()) return;
13318 
13319   if (unused_property_fields() == 0) return;
13320 
13321   set_construction_counter(Map::kSlackTrackingCounterStart);
13322 }
13323 
13324 
ResetForNewContext(int new_ic_age)13325 void SharedFunctionInfo::ResetForNewContext(int new_ic_age) {
13326   code()->ClearInlineCaches();
13327   set_ic_age(new_ic_age);
13328   if (code()->kind() == Code::FUNCTION) {
13329     code()->set_profiler_ticks(0);
13330     if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) {
13331       // Re-enable optimizations if they were disabled due to opt_count limit.
13332       set_optimization_disabled(false);
13333     }
13334     set_opt_count(0);
13335     set_deopt_count(0);
13336   } else if (code()->is_interpreter_trampoline_builtin()) {
13337     set_profiler_ticks(0);
13338     if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) {
13339       // Re-enable optimizations if they were disabled due to opt_count limit.
13340       set_optimization_disabled(false);
13341     }
13342     set_opt_count(0);
13343     set_deopt_count(0);
13344   }
13345 }
13346 
13347 
SearchOptimizedCodeMapEntry(Context * native_context,BailoutId osr_ast_id)13348 int SharedFunctionInfo::SearchOptimizedCodeMapEntry(Context* native_context,
13349                                                     BailoutId osr_ast_id) {
13350   DisallowHeapAllocation no_gc;
13351   DCHECK(native_context->IsNativeContext());
13352   if (!OptimizedCodeMapIsCleared()) {
13353     FixedArray* optimized_code_map = this->optimized_code_map();
13354     int length = optimized_code_map->length();
13355     Smi* osr_ast_id_smi = Smi::FromInt(osr_ast_id.ToInt());
13356     for (int i = kEntriesStart; i < length; i += kEntryLength) {
13357       if (WeakCell::cast(optimized_code_map->get(i + kContextOffset))
13358                   ->value() == native_context &&
13359           optimized_code_map->get(i + kOsrAstIdOffset) == osr_ast_id_smi) {
13360         return i;
13361       }
13362     }
13363     Object* shared_code =
13364         WeakCell::cast(optimized_code_map->get(kSharedCodeIndex))->value();
13365     if (shared_code->IsCode() && osr_ast_id.IsNone()) {
13366       return kSharedCodeIndex;
13367     }
13368   }
13369   return -1;
13370 }
13371 
ClearCodeFromOptimizedCodeMap()13372 void SharedFunctionInfo::ClearCodeFromOptimizedCodeMap() {
13373   if (!OptimizedCodeMapIsCleared()) {
13374     FixedArray* optimized_code_map = this->optimized_code_map();
13375     int length = optimized_code_map->length();
13376     WeakCell* empty_weak_cell = GetHeap()->empty_weak_cell();
13377     for (int i = kEntriesStart; i < length; i += kEntryLength) {
13378       optimized_code_map->set(i + kCachedCodeOffset, empty_weak_cell,
13379                               SKIP_WRITE_BARRIER);
13380     }
13381     optimized_code_map->set(kSharedCodeIndex, empty_weak_cell,
13382                             SKIP_WRITE_BARRIER);
13383   }
13384 }
13385 
SearchOptimizedCodeMap(Context * native_context,BailoutId osr_ast_id)13386 CodeAndLiterals SharedFunctionInfo::SearchOptimizedCodeMap(
13387     Context* native_context, BailoutId osr_ast_id) {
13388   CodeAndLiterals result = {nullptr, nullptr};
13389   int entry = SearchOptimizedCodeMapEntry(native_context, osr_ast_id);
13390   if (entry != kNotFound) {
13391     FixedArray* code_map = optimized_code_map();
13392     if (entry == kSharedCodeIndex) {
13393       // We know the weak cell isn't cleared because we made sure of it in
13394       // SearchOptimizedCodeMapEntry and performed no allocations since that
13395       // call.
13396       result = {
13397           Code::cast(WeakCell::cast(code_map->get(kSharedCodeIndex))->value()),
13398           nullptr};
13399     } else {
13400       DCHECK_LE(entry + kEntryLength, code_map->length());
13401       WeakCell* cell = WeakCell::cast(code_map->get(entry + kCachedCodeOffset));
13402       Object* lits = code_map->get(entry + kLiteralsOffset);
13403       LiteralsArray* literals = nullptr;
13404       if (lits->IsWeakCell()) {
13405         WeakCell* literal_cell = WeakCell::cast(lits);
13406         if (!literal_cell->cleared()) {
13407           literals = LiteralsArray::cast(literal_cell->value());
13408         }
13409       } else {
13410         literals = LiteralsArray::cast(lits);
13411       }
13412       result = {cell->cleared() ? nullptr : Code::cast(cell->value()),
13413                 literals};
13414     }
13415   }
13416   return result;
13417 }
13418 
13419 
13420 #define DECLARE_TAG(ignore1, name, ignore2) name,
13421 const char* const VisitorSynchronization::kTags[
13422     VisitorSynchronization::kNumberOfSyncTags] = {
13423   VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
13424 };
13425 #undef DECLARE_TAG
13426 
13427 
13428 #define DECLARE_TAG(ignore1, ignore2, name) name,
13429 const char* const VisitorSynchronization::kTagNames[
13430     VisitorSynchronization::kNumberOfSyncTags] = {
13431   VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
13432 };
13433 #undef DECLARE_TAG
13434 
13435 
VisitCodeTarget(RelocInfo * rinfo)13436 void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
13437   DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
13438   Object* old_pointer = Code::GetCodeFromTargetAddress(rinfo->target_address());
13439   Object* new_pointer = old_pointer;
13440   VisitPointer(&new_pointer);
13441   DCHECK_EQ(old_pointer, new_pointer);
13442 }
13443 
13444 
VisitCodeAgeSequence(RelocInfo * rinfo)13445 void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) {
13446   DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
13447   Object* old_pointer = rinfo->code_age_stub();
13448   Object* new_pointer = old_pointer;
13449   if (old_pointer != nullptr) {
13450     VisitPointer(&new_pointer);
13451     DCHECK_EQ(old_pointer, new_pointer);
13452   }
13453 }
13454 
13455 
VisitCodeEntry(Address entry_address)13456 void ObjectVisitor::VisitCodeEntry(Address entry_address) {
13457   Object* old_pointer = Code::GetObjectFromEntryAddress(entry_address);
13458   Object* new_pointer = old_pointer;
13459   VisitPointer(&new_pointer);
13460   DCHECK_EQ(old_pointer, new_pointer);
13461 }
13462 
13463 
VisitCell(RelocInfo * rinfo)13464 void ObjectVisitor::VisitCell(RelocInfo* rinfo) {
13465   DCHECK(rinfo->rmode() == RelocInfo::CELL);
13466   Object* old_pointer = rinfo->target_cell();
13467   Object* new_pointer = old_pointer;
13468   VisitPointer(&new_pointer);
13469   DCHECK_EQ(old_pointer, new_pointer);
13470 }
13471 
13472 
VisitDebugTarget(RelocInfo * rinfo)13473 void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
13474   DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
13475          rinfo->IsPatchedDebugBreakSlotSequence());
13476   Object* old_pointer =
13477       Code::GetCodeFromTargetAddress(rinfo->debug_call_address());
13478   Object* new_pointer = old_pointer;
13479   VisitPointer(&new_pointer);
13480   DCHECK_EQ(old_pointer, new_pointer);
13481 }
13482 
13483 
VisitEmbeddedPointer(RelocInfo * rinfo)13484 void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
13485   DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
13486   Object* old_pointer = rinfo->target_object();
13487   Object* new_pointer = old_pointer;
13488   VisitPointer(&new_pointer);
13489   DCHECK_EQ(old_pointer, new_pointer);
13490 }
13491 
13492 
VisitExternalReference(RelocInfo * rinfo)13493 void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) {
13494   Address old_reference = rinfo->target_external_reference();
13495   Address new_reference = old_reference;
13496   VisitExternalReference(&new_reference);
13497   DCHECK_EQ(old_reference, new_reference);
13498 }
13499 
13500 
InvalidateRelocation()13501 void Code::InvalidateRelocation() {
13502   InvalidateEmbeddedObjects();
13503   set_relocation_info(GetHeap()->empty_byte_array());
13504 }
13505 
13506 
InvalidateEmbeddedObjects()13507 void Code::InvalidateEmbeddedObjects() {
13508   Object* undefined = GetHeap()->undefined_value();
13509   Cell* undefined_cell = GetHeap()->undefined_cell();
13510   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
13511                   RelocInfo::ModeMask(RelocInfo::CELL);
13512   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
13513     RelocInfo::Mode mode = it.rinfo()->rmode();
13514     if (mode == RelocInfo::EMBEDDED_OBJECT) {
13515       it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
13516     } else if (mode == RelocInfo::CELL) {
13517       it.rinfo()->set_target_cell(undefined_cell, SKIP_WRITE_BARRIER);
13518     }
13519   }
13520 }
13521 
13522 
Relocate(intptr_t delta)13523 void Code::Relocate(intptr_t delta) {
13524   for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
13525     it.rinfo()->apply(delta);
13526   }
13527   Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
13528 }
13529 
13530 
CopyFrom(const CodeDesc & desc)13531 void Code::CopyFrom(const CodeDesc& desc) {
13532   // copy code
13533   CopyBytes(instruction_start(), desc.buffer,
13534             static_cast<size_t>(desc.instr_size));
13535 
13536   // copy unwinding info, if any
13537   if (desc.unwinding_info) {
13538     DCHECK_GT(desc.unwinding_info_size, 0);
13539     set_unwinding_info_size(desc.unwinding_info_size);
13540     CopyBytes(unwinding_info_start(), desc.unwinding_info,
13541               static_cast<size_t>(desc.unwinding_info_size));
13542   }
13543 
13544   // copy reloc info
13545   CopyBytes(relocation_start(),
13546             desc.buffer + desc.buffer_size - desc.reloc_size,
13547             static_cast<size_t>(desc.reloc_size));
13548 
13549   // unbox handles and relocate
13550   intptr_t delta = instruction_start() - desc.buffer;
13551   int mode_mask = RelocInfo::kCodeTargetMask |
13552                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
13553                   RelocInfo::ModeMask(RelocInfo::CELL) |
13554                   RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
13555                   RelocInfo::kApplyMask;
13556   // Needed to find target_object and runtime_entry on X64
13557   Assembler* origin = desc.origin;
13558   AllowDeferredHandleDereference embedding_raw_address;
13559   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
13560     RelocInfo::Mode mode = it.rinfo()->rmode();
13561     if (mode == RelocInfo::EMBEDDED_OBJECT) {
13562       Handle<Object> p = it.rinfo()->target_object_handle(origin);
13563       it.rinfo()->set_target_object(*p, UPDATE_WRITE_BARRIER,
13564                                     SKIP_ICACHE_FLUSH);
13565     } else if (mode == RelocInfo::CELL) {
13566       Handle<Cell> cell  = it.rinfo()->target_cell_handle();
13567       it.rinfo()->set_target_cell(*cell, UPDATE_WRITE_BARRIER,
13568                                   SKIP_ICACHE_FLUSH);
13569     } else if (RelocInfo::IsCodeTarget(mode)) {
13570       // rewrite code handles in inline cache targets to direct
13571       // pointers to the first instruction in the code object
13572       Handle<Object> p = it.rinfo()->target_object_handle(origin);
13573       Code* code = Code::cast(*p);
13574       it.rinfo()->set_target_address(code->instruction_start(),
13575                                      UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
13576     } else if (RelocInfo::IsRuntimeEntry(mode)) {
13577       Address p = it.rinfo()->target_runtime_entry(origin);
13578       it.rinfo()->set_target_runtime_entry(p, UPDATE_WRITE_BARRIER,
13579                                            SKIP_ICACHE_FLUSH);
13580     } else if (mode == RelocInfo::CODE_AGE_SEQUENCE) {
13581       Handle<Object> p = it.rinfo()->code_age_stub_handle(origin);
13582       Code* code = Code::cast(*p);
13583       it.rinfo()->set_code_age_stub(code, SKIP_ICACHE_FLUSH);
13584     } else {
13585       it.rinfo()->apply(delta);
13586     }
13587   }
13588   Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
13589 }
13590 
13591 // Locate the source position which is closest to the code offset. This is
13592 // using the source position information embedded in the relocation info.
13593 // The position returned is relative to the beginning of the script where the
13594 // source for this function is found.
SourcePosition(int code_offset)13595 int Code::SourcePosition(int code_offset) {
13596   // Subtract one because the current PC is one instruction after the call site.
13597   Address pc = instruction_start() + code_offset - 1;
13598   int position = RelocInfo::kNoPosition;  // Initially no position found.
13599   // Find the closest position attached to a pc lower or equal to the current.
13600   // Note that the pc of reloc infos grow monotonically.
13601   for (RelocIterator it(this, RelocInfo::kPositionMask);
13602        !it.done() && it.rinfo()->pc() <= pc; it.next()) {
13603     position = static_cast<int>(it.rinfo()->data());
13604   }
13605   DCHECK(kind() == FUNCTION || (is_optimized_code() && is_turbofanned()) ||
13606          is_wasm_code() || position == RelocInfo::kNoPosition);
13607   return position;
13608 }
13609 
13610 
13611 // Same as Code::SourcePosition above except it only looks for statement
13612 // positions.
SourceStatementPosition(int code_offset)13613 int Code::SourceStatementPosition(int code_offset) {
13614   // First find the closest position.
13615   int position = SourcePosition(code_offset);
13616   // Now find the closest statement position before the position.
13617   int statement_position = 0;
13618   for (RelocIterator it(this, RelocInfo::kPositionMask); !it.done();
13619        it.next()) {
13620     if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
13621       int p = static_cast<int>(it.rinfo()->data());
13622       if (statement_position < p && p <= position) {
13623         statement_position = p;
13624       }
13625     }
13626   }
13627   return statement_position;
13628 }
13629 
13630 
GetSafepointEntry(Address pc)13631 SafepointEntry Code::GetSafepointEntry(Address pc) {
13632   SafepointTable table(this);
13633   return table.FindEntry(pc);
13634 }
13635 
13636 
FindNthObject(int n,Map * match_map)13637 Object* Code::FindNthObject(int n, Map* match_map) {
13638   DCHECK(is_inline_cache_stub());
13639   DisallowHeapAllocation no_allocation;
13640   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
13641   for (RelocIterator it(this, mask); !it.done(); it.next()) {
13642     RelocInfo* info = it.rinfo();
13643     Object* object = info->target_object();
13644     if (object->IsWeakCell()) object = WeakCell::cast(object)->value();
13645     if (object->IsHeapObject()) {
13646       if (HeapObject::cast(object)->map() == match_map) {
13647         if (--n == 0) return object;
13648       }
13649     }
13650   }
13651   return NULL;
13652 }
13653 
13654 
FindFirstAllocationSite()13655 AllocationSite* Code::FindFirstAllocationSite() {
13656   Object* result = FindNthObject(1, GetHeap()->allocation_site_map());
13657   return (result != NULL) ? AllocationSite::cast(result) : NULL;
13658 }
13659 
13660 
FindFirstMap()13661 Map* Code::FindFirstMap() {
13662   Object* result = FindNthObject(1, GetHeap()->meta_map());
13663   return (result != NULL) ? Map::cast(result) : NULL;
13664 }
13665 
13666 
FindAndReplace(const FindAndReplacePattern & pattern)13667 void Code::FindAndReplace(const FindAndReplacePattern& pattern) {
13668   DCHECK(is_inline_cache_stub() || is_handler());
13669   DisallowHeapAllocation no_allocation;
13670   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
13671   STATIC_ASSERT(FindAndReplacePattern::kMaxCount < 32);
13672   int current_pattern = 0;
13673   for (RelocIterator it(this, mask); !it.done(); it.next()) {
13674     RelocInfo* info = it.rinfo();
13675     Object* object = info->target_object();
13676     if (object->IsHeapObject()) {
13677       if (object->IsWeakCell()) {
13678         object = HeapObject::cast(WeakCell::cast(object)->value());
13679       }
13680       Map* map = HeapObject::cast(object)->map();
13681       if (map == *pattern.find_[current_pattern]) {
13682         info->set_target_object(*pattern.replace_[current_pattern]);
13683         if (++current_pattern == pattern.count_) return;
13684       }
13685     }
13686   }
13687   UNREACHABLE();
13688 }
13689 
13690 
ClearInlineCaches()13691 void Code::ClearInlineCaches() {
13692   int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
13693              RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
13694   for (RelocIterator it(this, mask); !it.done(); it.next()) {
13695     RelocInfo* info = it.rinfo();
13696     Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
13697     if (target->is_inline_cache_stub()) {
13698       IC::Clear(this->GetIsolate(), info->pc(), info->host()->constant_pool());
13699     }
13700   }
13701 }
13702 
SourcePosition(int offset)13703 int AbstractCode::SourcePosition(int offset) {
13704   return IsBytecodeArray() ? GetBytecodeArray()->SourcePosition(offset)
13705                            : GetCode()->SourcePosition(offset);
13706 }
13707 
SourceStatementPosition(int offset)13708 int AbstractCode::SourceStatementPosition(int offset) {
13709   return IsBytecodeArray() ? GetBytecodeArray()->SourceStatementPosition(offset)
13710                            : GetCode()->SourceStatementPosition(offset);
13711 }
13712 
ClearTypeFeedbackInfo()13713 void JSFunction::ClearTypeFeedbackInfo() {
13714   feedback_vector()->ClearSlots(shared());
13715 }
13716 
ClearTypeFeedbackInfoAtGCTime()13717 void JSFunction::ClearTypeFeedbackInfoAtGCTime() {
13718   feedback_vector()->ClearSlotsAtGCTime(shared());
13719 }
13720 
TranslatePcOffsetToAstId(uint32_t pc_offset)13721 BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) {
13722   DisallowHeapAllocation no_gc;
13723   DCHECK(kind() == FUNCTION);
13724   BackEdgeTable back_edges(this, &no_gc);
13725   for (uint32_t i = 0; i < back_edges.length(); i++) {
13726     if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i);
13727   }
13728   return BailoutId::None();
13729 }
13730 
13731 
TranslateAstIdToPcOffset(BailoutId ast_id)13732 uint32_t Code::TranslateAstIdToPcOffset(BailoutId ast_id) {
13733   DisallowHeapAllocation no_gc;
13734   DCHECK(kind() == FUNCTION);
13735   BackEdgeTable back_edges(this, &no_gc);
13736   for (uint32_t i = 0; i < back_edges.length(); i++) {
13737     if (back_edges.ast_id(i) == ast_id) return back_edges.pc_offset(i);
13738   }
13739   UNREACHABLE();  // We expect to find the back edge.
13740   return 0;
13741 }
13742 
13743 
MakeCodeAgeSequenceYoung(byte * sequence,Isolate * isolate)13744 void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) {
13745   PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY);
13746 }
13747 
13748 
MarkCodeAsExecuted(byte * sequence,Isolate * isolate)13749 void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) {
13750   PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge,
13751       NO_MARKING_PARITY);
13752 }
13753 
13754 
13755 // NextAge defines the Code::Age state transitions during a GC cycle.
NextAge(Code::Age age)13756 static Code::Age NextAge(Code::Age age) {
13757   switch (age) {
13758     case Code::kNotExecutedCodeAge:  // Keep, until we've been executed.
13759     case Code::kToBeExecutedOnceCodeAge:  // Keep, until we've been executed.
13760     case Code::kLastCodeAge:  // Clamp at last Code::Age value.
13761       return age;
13762     case Code::kExecutedOnceCodeAge:
13763       // Pre-age code that has only been executed once.
13764       return static_cast<Code::Age>(Code::kPreAgedCodeAge + 1);
13765     default:
13766       return static_cast<Code::Age>(age + 1);  // Default case: Increase age.
13767   }
13768 }
13769 
13770 
13771 // IsOldAge defines the collection criteria for a Code object.
IsOldAge(Code::Age age)13772 static bool IsOldAge(Code::Age age) {
13773   return age >= Code::kIsOldCodeAge || age == Code::kNotExecutedCodeAge;
13774 }
13775 
13776 
MakeYoung(Isolate * isolate)13777 void Code::MakeYoung(Isolate* isolate) {
13778   byte* sequence = FindCodeAgeSequence();
13779   if (sequence != NULL) MakeCodeAgeSequenceYoung(sequence, isolate);
13780 }
13781 
PreAge(Isolate * isolate)13782 void Code::PreAge(Isolate* isolate) {
13783   byte* sequence = FindCodeAgeSequence();
13784   if (sequence != NULL) {
13785     PatchPlatformCodeAge(isolate, sequence, kPreAgedCodeAge, NO_MARKING_PARITY);
13786   }
13787 }
13788 
MarkToBeExecutedOnce(Isolate * isolate)13789 void Code::MarkToBeExecutedOnce(Isolate* isolate) {
13790   byte* sequence = FindCodeAgeSequence();
13791   if (sequence != NULL) {
13792     PatchPlatformCodeAge(isolate, sequence, kToBeExecutedOnceCodeAge,
13793                          NO_MARKING_PARITY);
13794   }
13795 }
13796 
MakeOlder(MarkingParity current_parity)13797 void Code::MakeOlder(MarkingParity current_parity) {
13798   byte* sequence = FindCodeAgeSequence();
13799   if (sequence != NULL) {
13800     Age age;
13801     MarkingParity code_parity;
13802     Isolate* isolate = GetIsolate();
13803     GetCodeAgeAndParity(isolate, sequence, &age, &code_parity);
13804     Age next_age = NextAge(age);
13805     if (age != next_age && code_parity != current_parity) {
13806       PatchPlatformCodeAge(isolate, sequence, next_age, current_parity);
13807     }
13808   }
13809 }
13810 
13811 
IsOld()13812 bool Code::IsOld() {
13813   return IsOldAge(GetAge());
13814 }
13815 
13816 
FindCodeAgeSequence()13817 byte* Code::FindCodeAgeSequence() {
13818   return FLAG_age_code &&
13819       prologue_offset() != Code::kPrologueOffsetNotSet &&
13820       (kind() == OPTIMIZED_FUNCTION ||
13821        (kind() == FUNCTION && !has_debug_break_slots()))
13822       ? instruction_start() + prologue_offset()
13823       : NULL;
13824 }
13825 
13826 
GetAge()13827 Code::Age Code::GetAge() {
13828   byte* sequence = FindCodeAgeSequence();
13829   if (sequence == NULL) {
13830     return kNoAgeCodeAge;
13831   }
13832   Age age;
13833   MarkingParity parity;
13834   GetCodeAgeAndParity(GetIsolate(), sequence, &age, &parity);
13835   return age;
13836 }
13837 
13838 
GetCodeAgeAndParity(Code * code,Age * age,MarkingParity * parity)13839 void Code::GetCodeAgeAndParity(Code* code, Age* age,
13840                                MarkingParity* parity) {
13841   Isolate* isolate = code->GetIsolate();
13842   Builtins* builtins = isolate->builtins();
13843   Code* stub = NULL;
13844 #define HANDLE_CODE_AGE(AGE)                                            \
13845   stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking();             \
13846   if (code == stub) {                                                   \
13847     *age = k##AGE##CodeAge;                                             \
13848     *parity = EVEN_MARKING_PARITY;                                      \
13849     return;                                                             \
13850   }                                                                     \
13851   stub = *builtins->Make##AGE##CodeYoungAgainOddMarking();              \
13852   if (code == stub) {                                                   \
13853     *age = k##AGE##CodeAge;                                             \
13854     *parity = ODD_MARKING_PARITY;                                       \
13855     return;                                                             \
13856   }
13857   CODE_AGE_LIST(HANDLE_CODE_AGE)
13858 #undef HANDLE_CODE_AGE
13859   stub = *builtins->MarkCodeAsExecutedOnce();
13860   if (code == stub) {
13861     *age = kNotExecutedCodeAge;
13862     *parity = NO_MARKING_PARITY;
13863     return;
13864   }
13865   stub = *builtins->MarkCodeAsExecutedTwice();
13866   if (code == stub) {
13867     *age = kExecutedOnceCodeAge;
13868     *parity = NO_MARKING_PARITY;
13869     return;
13870   }
13871   stub = *builtins->MarkCodeAsToBeExecutedOnce();
13872   if (code == stub) {
13873     *age = kToBeExecutedOnceCodeAge;
13874     *parity = NO_MARKING_PARITY;
13875     return;
13876   }
13877   UNREACHABLE();
13878 }
13879 
13880 
GetCodeAgeStub(Isolate * isolate,Age age,MarkingParity parity)13881 Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) {
13882   Builtins* builtins = isolate->builtins();
13883   switch (age) {
13884 #define HANDLE_CODE_AGE(AGE)                                            \
13885     case k##AGE##CodeAge: {                                             \
13886       Code* stub = parity == EVEN_MARKING_PARITY                        \
13887           ? *builtins->Make##AGE##CodeYoungAgainEvenMarking()           \
13888           : *builtins->Make##AGE##CodeYoungAgainOddMarking();           \
13889       return stub;                                                      \
13890     }
13891     CODE_AGE_LIST(HANDLE_CODE_AGE)
13892 #undef HANDLE_CODE_AGE
13893     case kNotExecutedCodeAge: {
13894       DCHECK(parity == NO_MARKING_PARITY);
13895       return *builtins->MarkCodeAsExecutedOnce();
13896     }
13897     case kExecutedOnceCodeAge: {
13898       DCHECK(parity == NO_MARKING_PARITY);
13899       return *builtins->MarkCodeAsExecutedTwice();
13900     }
13901     case kToBeExecutedOnceCodeAge: {
13902       DCHECK(parity == NO_MARKING_PARITY);
13903       return *builtins->MarkCodeAsToBeExecutedOnce();
13904     }
13905     default:
13906       UNREACHABLE();
13907       break;
13908   }
13909   return NULL;
13910 }
13911 
13912 
PrintDeoptLocation(FILE * out,Address pc)13913 void Code::PrintDeoptLocation(FILE* out, Address pc) {
13914   Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(this, pc);
13915   class SourcePosition pos = info.position;
13916   if (info.deopt_reason != Deoptimizer::kNoReason || !pos.IsUnknown()) {
13917     if (FLAG_hydrogen_track_positions) {
13918       PrintF(out, "            ;;; deoptimize at %d_%d: %s\n",
13919              pos.inlining_id(), pos.position(),
13920              Deoptimizer::GetDeoptReason(info.deopt_reason));
13921     } else {
13922       PrintF(out, "            ;;; deoptimize at %d: %s\n", pos.raw(),
13923              Deoptimizer::GetDeoptReason(info.deopt_reason));
13924     }
13925   }
13926 }
13927 
13928 
CanDeoptAt(Address pc)13929 bool Code::CanDeoptAt(Address pc) {
13930   DeoptimizationInputData* deopt_data =
13931       DeoptimizationInputData::cast(deoptimization_data());
13932   Address code_start_address = instruction_start();
13933   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
13934     if (deopt_data->Pc(i)->value() == -1) continue;
13935     Address address = code_start_address + deopt_data->Pc(i)->value();
13936     if (address == pc && deopt_data->AstId(i) != BailoutId::None()) {
13937       return true;
13938     }
13939   }
13940   return false;
13941 }
13942 
13943 
13944 // Identify kind of code.
Kind2String(Kind kind)13945 const char* Code::Kind2String(Kind kind) {
13946   switch (kind) {
13947 #define CASE(name) case name: return #name;
13948     CODE_KIND_LIST(CASE)
13949 #undef CASE
13950     case NUMBER_OF_KINDS: break;
13951   }
13952   UNREACHABLE();
13953   return NULL;
13954 }
13955 
13956 // Identify kind of code.
Kind2String(Kind kind)13957 const char* AbstractCode::Kind2String(Kind kind) {
13958   if (kind < AbstractCode::INTERPRETED_FUNCTION)
13959     return Code::Kind2String((Code::Kind)kind);
13960   if (kind == AbstractCode::INTERPRETED_FUNCTION) return "INTERPRETED_FUNCTION";
13961   UNREACHABLE();
13962   return NULL;
13963 }
13964 
WeakCellFor(Handle<Code> code)13965 Handle<WeakCell> Code::WeakCellFor(Handle<Code> code) {
13966   DCHECK(code->kind() == OPTIMIZED_FUNCTION);
13967   WeakCell* raw_cell = code->CachedWeakCell();
13968   if (raw_cell != NULL) return Handle<WeakCell>(raw_cell);
13969   Handle<WeakCell> cell = code->GetIsolate()->factory()->NewWeakCell(code);
13970   DeoptimizationInputData::cast(code->deoptimization_data())
13971       ->SetWeakCellCache(*cell);
13972   return cell;
13973 }
13974 
13975 
CachedWeakCell()13976 WeakCell* Code::CachedWeakCell() {
13977   DCHECK(kind() == OPTIMIZED_FUNCTION);
13978   Object* weak_cell_cache =
13979       DeoptimizationInputData::cast(deoptimization_data())->WeakCellCache();
13980   if (weak_cell_cache->IsWeakCell()) {
13981     DCHECK(this == WeakCell::cast(weak_cell_cache)->value());
13982     return WeakCell::cast(weak_cell_cache);
13983   }
13984   return NULL;
13985 }
13986 
13987 #ifdef ENABLE_DISASSEMBLER
13988 
DeoptimizationInputDataPrint(std::ostream & os)13989 void DeoptimizationInputData::DeoptimizationInputDataPrint(
13990     std::ostream& os) {  // NOLINT
13991   disasm::NameConverter converter;
13992   int const inlined_function_count = InlinedFunctionCount()->value();
13993   os << "Inlined functions (count = " << inlined_function_count << ")\n";
13994   for (int id = 0; id < inlined_function_count; ++id) {
13995     Object* info = LiteralArray()->get(id);
13996     os << " " << Brief(SharedFunctionInfo::cast(info)) << "\n";
13997   }
13998   os << "\n";
13999   int deopt_count = DeoptCount();
14000   os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n";
14001   if (0 != deopt_count) {
14002     os << " index  ast id    argc     pc";
14003     if (FLAG_print_code_verbose) os << "  commands";
14004     os << "\n";
14005   }
14006   for (int i = 0; i < deopt_count; i++) {
14007     os << std::setw(6) << i << "  " << std::setw(6) << AstId(i).ToInt() << "  "
14008        << std::setw(6) << ArgumentsStackHeight(i)->value() << " "
14009        << std::setw(6) << Pc(i)->value();
14010 
14011     if (!FLAG_print_code_verbose) {
14012       os << "\n";
14013       continue;
14014     }
14015     // Print details of the frame translation.
14016     int translation_index = TranslationIndex(i)->value();
14017     TranslationIterator iterator(TranslationByteArray(), translation_index);
14018     Translation::Opcode opcode =
14019         static_cast<Translation::Opcode>(iterator.Next());
14020     DCHECK(Translation::BEGIN == opcode);
14021     int frame_count = iterator.Next();
14022     int jsframe_count = iterator.Next();
14023     os << "  " << Translation::StringFor(opcode)
14024        << " {frame count=" << frame_count
14025        << ", js frame count=" << jsframe_count << "}\n";
14026 
14027     while (iterator.HasNext() &&
14028            Translation::BEGIN !=
14029            (opcode = static_cast<Translation::Opcode>(iterator.Next()))) {
14030       os << std::setw(31) << "    " << Translation::StringFor(opcode) << " ";
14031 
14032       switch (opcode) {
14033         case Translation::BEGIN:
14034           UNREACHABLE();
14035           break;
14036 
14037         case Translation::JS_FRAME: {
14038           int ast_id = iterator.Next();
14039           int shared_info_id = iterator.Next();
14040           unsigned height = iterator.Next();
14041           Object* shared_info = LiteralArray()->get(shared_info_id);
14042           os << "{ast_id=" << ast_id << ", function="
14043              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14044              << ", height=" << height << "}";
14045           break;
14046         }
14047 
14048         case Translation::INTERPRETED_FRAME: {
14049           int bytecode_offset = iterator.Next();
14050           int shared_info_id = iterator.Next();
14051           unsigned height = iterator.Next();
14052           Object* shared_info = LiteralArray()->get(shared_info_id);
14053           os << "{bytecode_offset=" << bytecode_offset << ", function="
14054              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14055              << ", height=" << height << "}";
14056           break;
14057         }
14058 
14059         case Translation::COMPILED_STUB_FRAME: {
14060           Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next());
14061           os << "{kind=" << stub_kind << "}";
14062           break;
14063         }
14064 
14065         case Translation::ARGUMENTS_ADAPTOR_FRAME:
14066         case Translation::CONSTRUCT_STUB_FRAME: {
14067           int shared_info_id = iterator.Next();
14068           Object* shared_info = LiteralArray()->get(shared_info_id);
14069           unsigned height = iterator.Next();
14070           os << "{function="
14071              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14072              << ", height=" << height << "}";
14073           break;
14074         }
14075 
14076         case Translation::TAIL_CALLER_FRAME: {
14077           int shared_info_id = iterator.Next();
14078           Object* shared_info = LiteralArray()->get(shared_info_id);
14079           os << "{function="
14080              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14081              << "}";
14082           break;
14083         }
14084 
14085         case Translation::GETTER_STUB_FRAME:
14086         case Translation::SETTER_STUB_FRAME: {
14087           int shared_info_id = iterator.Next();
14088           Object* shared_info = LiteralArray()->get(shared_info_id);
14089           os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info)
14090                                           ->DebugName()) << "}";
14091           break;
14092         }
14093 
14094         case Translation::REGISTER: {
14095           int reg_code = iterator.Next();
14096           os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
14097           break;
14098         }
14099 
14100         case Translation::INT32_REGISTER: {
14101           int reg_code = iterator.Next();
14102           os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
14103           break;
14104         }
14105 
14106         case Translation::UINT32_REGISTER: {
14107           int reg_code = iterator.Next();
14108           os << "{input=" << converter.NameOfCPURegister(reg_code)
14109              << " (unsigned)}";
14110           break;
14111         }
14112 
14113         case Translation::BOOL_REGISTER: {
14114           int reg_code = iterator.Next();
14115           os << "{input=" << converter.NameOfCPURegister(reg_code)
14116              << " (bool)}";
14117           break;
14118         }
14119 
14120         case Translation::FLOAT_REGISTER: {
14121           int reg_code = iterator.Next();
14122           os << "{input="
14123              << RegisterConfiguration::Crankshaft()->GetFloatRegisterName(
14124                     reg_code)
14125              << "}";
14126           break;
14127         }
14128 
14129         case Translation::DOUBLE_REGISTER: {
14130           int reg_code = iterator.Next();
14131           os << "{input="
14132              << RegisterConfiguration::Crankshaft()->GetDoubleRegisterName(
14133                     reg_code)
14134              << "}";
14135           break;
14136         }
14137 
14138         case Translation::STACK_SLOT: {
14139           int input_slot_index = iterator.Next();
14140           os << "{input=" << input_slot_index << "}";
14141           break;
14142         }
14143 
14144         case Translation::INT32_STACK_SLOT: {
14145           int input_slot_index = iterator.Next();
14146           os << "{input=" << input_slot_index << "}";
14147           break;
14148         }
14149 
14150         case Translation::UINT32_STACK_SLOT: {
14151           int input_slot_index = iterator.Next();
14152           os << "{input=" << input_slot_index << " (unsigned)}";
14153           break;
14154         }
14155 
14156         case Translation::BOOL_STACK_SLOT: {
14157           int input_slot_index = iterator.Next();
14158           os << "{input=" << input_slot_index << " (bool)}";
14159           break;
14160         }
14161 
14162         case Translation::FLOAT_STACK_SLOT:
14163         case Translation::DOUBLE_STACK_SLOT: {
14164           int input_slot_index = iterator.Next();
14165           os << "{input=" << input_slot_index << "}";
14166           break;
14167         }
14168 
14169         case Translation::LITERAL: {
14170           int literal_index = iterator.Next();
14171           Object* literal_value = LiteralArray()->get(literal_index);
14172           os << "{literal_id=" << literal_index << " (" << Brief(literal_value)
14173              << ")}";
14174           break;
14175         }
14176 
14177         case Translation::DUPLICATED_OBJECT: {
14178           int object_index = iterator.Next();
14179           os << "{object_index=" << object_index << "}";
14180           break;
14181         }
14182 
14183         case Translation::ARGUMENTS_OBJECT:
14184         case Translation::CAPTURED_OBJECT: {
14185           int args_length = iterator.Next();
14186           os << "{length=" << args_length << "}";
14187           break;
14188         }
14189       }
14190       os << "\n";
14191     }
14192   }
14193 }
14194 
14195 
DeoptimizationOutputDataPrint(std::ostream & os)14196 void DeoptimizationOutputData::DeoptimizationOutputDataPrint(
14197     std::ostream& os) {  // NOLINT
14198   os << "Deoptimization Output Data (deopt points = " << this->DeoptPoints()
14199      << ")\n";
14200   if (this->DeoptPoints() == 0) return;
14201 
14202   os << "ast id        pc  state\n";
14203   for (int i = 0; i < this->DeoptPoints(); i++) {
14204     int pc_and_state = this->PcAndState(i)->value();
14205     os << std::setw(6) << this->AstId(i).ToInt() << "  " << std::setw(8)
14206        << FullCodeGenerator::PcField::decode(pc_and_state) << "  "
14207        << Deoptimizer::BailoutStateToString(
14208               FullCodeGenerator::BailoutStateField::decode(pc_and_state))
14209        << "\n";
14210   }
14211 }
14212 
14213 
HandlerTableRangePrint(std::ostream & os)14214 void HandlerTable::HandlerTableRangePrint(std::ostream& os) {
14215   os << "   from   to       hdlr\n";
14216   for (int i = 0; i < length(); i += kRangeEntrySize) {
14217     int pc_start = Smi::cast(get(i + kRangeStartIndex))->value();
14218     int pc_end = Smi::cast(get(i + kRangeEndIndex))->value();
14219     int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
14220     int handler_offset = HandlerOffsetField::decode(handler_field);
14221     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
14222     int data = Smi::cast(get(i + kRangeDataIndex))->value();
14223     os << "  (" << std::setw(4) << pc_start << "," << std::setw(4) << pc_end
14224        << ")  ->  " << std::setw(4) << handler_offset
14225        << " (prediction=" << prediction << ", data=" << data << ")\n";
14226   }
14227 }
14228 
14229 
HandlerTableReturnPrint(std::ostream & os)14230 void HandlerTable::HandlerTableReturnPrint(std::ostream& os) {
14231   os << "   off      hdlr (c)\n";
14232   for (int i = 0; i < length(); i += kReturnEntrySize) {
14233     int pc_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
14234     int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
14235     int handler_offset = HandlerOffsetField::decode(handler_field);
14236     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
14237     os << "  " << std::setw(4) << pc_offset << "  ->  " << std::setw(4)
14238        << handler_offset << " (prediction=" << prediction << ")\n";
14239   }
14240 }
14241 
14242 
ICState2String(InlineCacheState state)14243 const char* Code::ICState2String(InlineCacheState state) {
14244   switch (state) {
14245     case UNINITIALIZED: return "UNINITIALIZED";
14246     case PREMONOMORPHIC: return "PREMONOMORPHIC";
14247     case MONOMORPHIC: return "MONOMORPHIC";
14248     case RECOMPUTE_HANDLER:
14249       return "RECOMPUTE_HANDLER";
14250     case POLYMORPHIC: return "POLYMORPHIC";
14251     case MEGAMORPHIC: return "MEGAMORPHIC";
14252     case GENERIC: return "GENERIC";
14253   }
14254   UNREACHABLE();
14255   return NULL;
14256 }
14257 
14258 
PrintExtraICState(std::ostream & os,Kind kind,ExtraICState extra)14259 void Code::PrintExtraICState(std::ostream& os,  // NOLINT
14260                              Kind kind, ExtraICState extra) {
14261   os << "extra_ic_state = ";
14262   if ((kind == STORE_IC || kind == KEYED_STORE_IC) &&
14263       is_strict(static_cast<LanguageMode>(extra))) {
14264     os << "STRICT\n";
14265   } else {
14266     os << extra << "\n";
14267   }
14268 }
14269 
14270 
Disassemble(const char * name,std::ostream & os)14271 void Code::Disassemble(const char* name, std::ostream& os) {  // NOLINT
14272   os << "kind = " << Kind2String(kind()) << "\n";
14273   if (IsCodeStubOrIC()) {
14274     const char* n = CodeStub::MajorName(CodeStub::GetMajorKey(this));
14275     os << "major_key = " << (n == NULL ? "null" : n) << "\n";
14276   }
14277   if (is_inline_cache_stub()) {
14278     if (!IC::ICUseVector(kind())) {
14279       InlineCacheState ic_state = IC::StateFromCode(this);
14280       os << "ic_state = " << ICState2String(ic_state) << "\n";
14281     }
14282     PrintExtraICState(os, kind(), extra_ic_state());
14283     if (is_compare_ic_stub()) {
14284       DCHECK(CodeStub::GetMajorKey(this) == CodeStub::CompareIC);
14285       CompareICStub stub(stub_key(), GetIsolate());
14286       os << "compare_state = " << CompareICState::GetStateName(stub.left())
14287          << "*" << CompareICState::GetStateName(stub.right()) << " -> "
14288          << CompareICState::GetStateName(stub.state()) << "\n";
14289       os << "compare_operation = " << Token::Name(stub.op()) << "\n";
14290     }
14291   }
14292   if ((name != nullptr) && (name[0] != '\0')) {
14293     os << "name = " << name << "\n";
14294   } else if (kind() == BUILTIN) {
14295     name = GetIsolate()->builtins()->Lookup(instruction_start());
14296     if (name != nullptr) {
14297       os << "name = " << name << "\n";
14298     }
14299   } else if (kind() == BYTECODE_HANDLER) {
14300     name = GetIsolate()->interpreter()->LookupNameOfBytecodeHandler(this);
14301     if (name != nullptr) {
14302       os << "name = " << name << "\n";
14303     }
14304   }
14305   if (kind() == OPTIMIZED_FUNCTION) {
14306     os << "stack_slots = " << stack_slots() << "\n";
14307   }
14308   os << "compiler = " << (is_turbofanned()
14309                               ? "turbofan"
14310                               : is_crankshafted() ? "crankshaft"
14311                                                   : kind() == Code::FUNCTION
14312                                                         ? "full-codegen"
14313                                                         : "unknown") << "\n";
14314 
14315   os << "Instructions (size = " << instruction_size() << ")\n";
14316   {
14317     Isolate* isolate = GetIsolate();
14318     int size = instruction_size();
14319     int safepoint_offset =
14320         is_crankshafted() ? static_cast<int>(safepoint_table_offset()) : size;
14321     int back_edge_offset = (kind() == Code::FUNCTION)
14322                                ? static_cast<int>(back_edge_table_offset())
14323                                : size;
14324     int constant_pool_offset = FLAG_enable_embedded_constant_pool
14325                                    ? this->constant_pool_offset()
14326                                    : size;
14327 
14328     // Stop before reaching any embedded tables
14329     int code_size = Min(safepoint_offset, back_edge_offset);
14330     code_size = Min(code_size, constant_pool_offset);
14331     byte* begin = instruction_start();
14332     byte* end = begin + code_size;
14333     Disassembler::Decode(isolate, &os, begin, end, this);
14334 
14335     if (constant_pool_offset < size) {
14336       int constant_pool_size = size - constant_pool_offset;
14337       DCHECK((constant_pool_size & kPointerAlignmentMask) == 0);
14338       os << "\nConstant Pool (size = " << constant_pool_size << ")\n";
14339       Vector<char> buf = Vector<char>::New(50);
14340       intptr_t* ptr = reinterpret_cast<intptr_t*>(begin + constant_pool_offset);
14341       for (int i = 0; i < constant_pool_size; i += kPointerSize, ptr++) {
14342         SNPrintF(buf, "%4d %08" V8PRIxPTR, i, *ptr);
14343         os << static_cast<const void*>(ptr) << "  " << buf.start() << "\n";
14344       }
14345     }
14346   }
14347   os << "\n";
14348 
14349   if (kind() == FUNCTION) {
14350     DeoptimizationOutputData* data =
14351         DeoptimizationOutputData::cast(this->deoptimization_data());
14352     data->DeoptimizationOutputDataPrint(os);
14353   } else if (kind() == OPTIMIZED_FUNCTION) {
14354     DeoptimizationInputData* data =
14355         DeoptimizationInputData::cast(this->deoptimization_data());
14356     data->DeoptimizationInputDataPrint(os);
14357   }
14358   os << "\n";
14359 
14360   if (is_crankshafted()) {
14361     SafepointTable table(this);
14362     os << "Safepoints (size = " << table.size() << ")\n";
14363     for (unsigned i = 0; i < table.length(); i++) {
14364       unsigned pc_offset = table.GetPcOffset(i);
14365       os << static_cast<const void*>(instruction_start() + pc_offset) << "  ";
14366       os << std::setw(4) << pc_offset << "  ";
14367       table.PrintEntry(i, os);
14368       os << " (sp -> fp)  ";
14369       SafepointEntry entry = table.GetEntry(i);
14370       if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
14371         os << std::setw(6) << entry.deoptimization_index();
14372       } else {
14373         os << "<none>";
14374       }
14375       if (entry.argument_count() > 0) {
14376         os << " argc: " << entry.argument_count();
14377       }
14378       os << "\n";
14379     }
14380     os << "\n";
14381   } else if (kind() == FUNCTION) {
14382     unsigned offset = back_edge_table_offset();
14383     // If there is no back edge table, the "table start" will be at or after
14384     // (due to alignment) the end of the instruction stream.
14385     if (static_cast<int>(offset) < instruction_size()) {
14386       DisallowHeapAllocation no_gc;
14387       BackEdgeTable back_edges(this, &no_gc);
14388 
14389       os << "Back edges (size = " << back_edges.length() << ")\n";
14390       os << "ast_id  pc_offset  loop_depth\n";
14391 
14392       for (uint32_t i = 0; i < back_edges.length(); i++) {
14393         os << std::setw(6) << back_edges.ast_id(i).ToInt() << "  "
14394            << std::setw(9) << back_edges.pc_offset(i) << "  " << std::setw(10)
14395            << back_edges.loop_depth(i) << "\n";
14396       }
14397 
14398       os << "\n";
14399     }
14400 #ifdef OBJECT_PRINT
14401     if (!type_feedback_info()->IsUndefined(GetIsolate())) {
14402       TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(os);
14403       os << "\n";
14404     }
14405 #endif
14406   }
14407 
14408   if (handler_table()->length() > 0) {
14409     os << "Handler Table (size = " << handler_table()->Size() << ")\n";
14410     if (kind() == FUNCTION) {
14411       HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
14412     } else if (kind() == OPTIMIZED_FUNCTION) {
14413       HandlerTable::cast(handler_table())->HandlerTableReturnPrint(os);
14414     }
14415     os << "\n";
14416   }
14417 
14418   os << "RelocInfo (size = " << relocation_size() << ")\n";
14419   for (RelocIterator it(this); !it.done(); it.next()) {
14420     it.rinfo()->Print(GetIsolate(), os);
14421   }
14422   os << "\n";
14423 }
14424 #endif  // ENABLE_DISASSEMBLER
14425 
SourcePosition(int offset)14426 int BytecodeArray::SourcePosition(int offset) {
14427   int last_position = 0;
14428   for (interpreter::SourcePositionTableIterator iterator(
14429            source_position_table());
14430        !iterator.done() && iterator.bytecode_offset() <= offset;
14431        iterator.Advance()) {
14432     last_position = iterator.source_position();
14433   }
14434   return last_position;
14435 }
14436 
SourceStatementPosition(int offset)14437 int BytecodeArray::SourceStatementPosition(int offset) {
14438   // First find the closest position.
14439   int position = SourcePosition(offset);
14440   // Now find the closest statement position before the position.
14441   int statement_position = 0;
14442   for (interpreter::SourcePositionTableIterator it(source_position_table());
14443        !it.done(); it.Advance()) {
14444     if (it.is_statement()) {
14445       int p = it.source_position();
14446       if (statement_position < p && p <= position) {
14447         statement_position = p;
14448       }
14449     }
14450   }
14451   return statement_position;
14452 }
14453 
Disassemble(std::ostream & os)14454 void BytecodeArray::Disassemble(std::ostream& os) {
14455   os << "Parameter count " << parameter_count() << "\n";
14456   os << "Frame size " << frame_size() << "\n";
14457 
14458   const uint8_t* base_address = GetFirstBytecodeAddress();
14459   interpreter::SourcePositionTableIterator source_positions(
14460       source_position_table());
14461 
14462   interpreter::BytecodeArrayIterator iterator(handle(this));
14463   while (!iterator.done()) {
14464     if (!source_positions.done() &&
14465         iterator.current_offset() == source_positions.bytecode_offset()) {
14466       os << std::setw(5) << source_positions.source_position();
14467       os << (source_positions.is_statement() ? " S> " : " E> ");
14468       source_positions.Advance();
14469     } else {
14470       os << "         ";
14471     }
14472     const uint8_t* current_address = base_address + iterator.current_offset();
14473     os << reinterpret_cast<const void*>(current_address) << " @ "
14474        << std::setw(4) << iterator.current_offset() << " : ";
14475     interpreter::Bytecodes::Decode(os, current_address, parameter_count());
14476     if (interpreter::Bytecodes::IsJump(iterator.current_bytecode())) {
14477       const void* jump_target = base_address + iterator.GetJumpTargetOffset();
14478       os << " (" << jump_target << " @ " << iterator.GetJumpTargetOffset()
14479          << ")";
14480     }
14481     os << std::endl;
14482     iterator.Advance();
14483   }
14484 
14485   if (constant_pool()->length() > 0) {
14486     os << "Constant pool (size = " << constant_pool()->length() << ")\n";
14487     constant_pool()->Print();
14488   }
14489 
14490 #ifdef ENABLE_DISASSEMBLER
14491   if (handler_table()->length() > 0) {
14492     os << "Handler Table (size = " << handler_table()->Size() << ")\n";
14493     HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
14494   }
14495 #endif
14496 }
14497 
CopyBytecodesTo(BytecodeArray * to)14498 void BytecodeArray::CopyBytecodesTo(BytecodeArray* to) {
14499   BytecodeArray* from = this;
14500   DCHECK_EQ(from->length(), to->length());
14501   CopyBytes(to->GetFirstBytecodeAddress(), from->GetFirstBytecodeAddress(),
14502             from->length());
14503 }
14504 
14505 // static
Initialize(Handle<JSArray> array,int capacity,int length)14506 void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) {
14507   DCHECK(capacity >= 0);
14508   array->GetIsolate()->factory()->NewJSArrayStorage(
14509       array, length, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
14510 }
14511 
SetLength(Handle<JSArray> array,uint32_t new_length)14512 void JSArray::SetLength(Handle<JSArray> array, uint32_t new_length) {
14513   // We should never end in here with a pixel or external array.
14514   DCHECK(array->AllowsSetLength());
14515   if (array->SetLengthWouldNormalize(new_length)) {
14516     JSObject::NormalizeElements(array);
14517   }
14518   array->GetElementsAccessor()->SetLength(array, new_length);
14519 }
14520 
14521 
14522 // static
AddDependentCode(Handle<Map> map,DependentCode::DependencyGroup group,Handle<Code> code)14523 void Map::AddDependentCode(Handle<Map> map,
14524                            DependentCode::DependencyGroup group,
14525                            Handle<Code> code) {
14526   Handle<WeakCell> cell = Code::WeakCellFor(code);
14527   Handle<DependentCode> codes = DependentCode::InsertWeakCode(
14528       Handle<DependentCode>(map->dependent_code()), group, cell);
14529   if (*codes != map->dependent_code()) map->set_dependent_code(*codes);
14530 }
14531 
14532 
InsertCompilationDependencies(Handle<DependentCode> entries,DependencyGroup group,Handle<Foreign> info)14533 Handle<DependentCode> DependentCode::InsertCompilationDependencies(
14534     Handle<DependentCode> entries, DependencyGroup group,
14535     Handle<Foreign> info) {
14536   return Insert(entries, group, info);
14537 }
14538 
14539 
InsertWeakCode(Handle<DependentCode> entries,DependencyGroup group,Handle<WeakCell> code_cell)14540 Handle<DependentCode> DependentCode::InsertWeakCode(
14541     Handle<DependentCode> entries, DependencyGroup group,
14542     Handle<WeakCell> code_cell) {
14543   return Insert(entries, group, code_cell);
14544 }
14545 
14546 
Insert(Handle<DependentCode> entries,DependencyGroup group,Handle<Object> object)14547 Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries,
14548                                             DependencyGroup group,
14549                                             Handle<Object> object) {
14550   if (entries->length() == 0 || entries->group() > group) {
14551     // There is no such group.
14552     return DependentCode::New(group, object, entries);
14553   }
14554   if (entries->group() < group) {
14555     // The group comes later in the list.
14556     Handle<DependentCode> old_next(entries->next_link());
14557     Handle<DependentCode> new_next = Insert(old_next, group, object);
14558     if (!old_next.is_identical_to(new_next)) {
14559       entries->set_next_link(*new_next);
14560     }
14561     return entries;
14562   }
14563   DCHECK_EQ(group, entries->group());
14564   int count = entries->count();
14565   // Check for existing entry to avoid duplicates.
14566   for (int i = 0; i < count; i++) {
14567     if (entries->object_at(i) == *object) return entries;
14568   }
14569   if (entries->length() < kCodesStartIndex + count + 1) {
14570     entries = EnsureSpace(entries);
14571     // Count could have changed, reload it.
14572     count = entries->count();
14573   }
14574   entries->set_object_at(count, *object);
14575   entries->set_count(count + 1);
14576   return entries;
14577 }
14578 
14579 
New(DependencyGroup group,Handle<Object> object,Handle<DependentCode> next)14580 Handle<DependentCode> DependentCode::New(DependencyGroup group,
14581                                          Handle<Object> object,
14582                                          Handle<DependentCode> next) {
14583   Isolate* isolate = next->GetIsolate();
14584   Handle<DependentCode> result = Handle<DependentCode>::cast(
14585       isolate->factory()->NewFixedArray(kCodesStartIndex + 1, TENURED));
14586   result->set_next_link(*next);
14587   result->set_flags(GroupField::encode(group) | CountField::encode(1));
14588   result->set_object_at(0, *object);
14589   return result;
14590 }
14591 
14592 
EnsureSpace(Handle<DependentCode> entries)14593 Handle<DependentCode> DependentCode::EnsureSpace(
14594     Handle<DependentCode> entries) {
14595   if (entries->Compact()) return entries;
14596   Isolate* isolate = entries->GetIsolate();
14597   int capacity = kCodesStartIndex + DependentCode::Grow(entries->count());
14598   int grow_by = capacity - entries->length();
14599   return Handle<DependentCode>::cast(
14600       isolate->factory()->CopyFixedArrayAndGrow(entries, grow_by, TENURED));
14601 }
14602 
14603 
Compact()14604 bool DependentCode::Compact() {
14605   int old_count = count();
14606   int new_count = 0;
14607   for (int i = 0; i < old_count; i++) {
14608     Object* obj = object_at(i);
14609     if (!obj->IsWeakCell() || !WeakCell::cast(obj)->cleared()) {
14610       if (i != new_count) {
14611         copy(i, new_count);
14612       }
14613       new_count++;
14614     }
14615   }
14616   set_count(new_count);
14617   for (int i = new_count; i < old_count; i++) {
14618     clear_at(i);
14619   }
14620   return new_count < old_count;
14621 }
14622 
14623 
UpdateToFinishedCode(DependencyGroup group,Foreign * info,WeakCell * code_cell)14624 void DependentCode::UpdateToFinishedCode(DependencyGroup group, Foreign* info,
14625                                          WeakCell* code_cell) {
14626   if (this->length() == 0 || this->group() > group) {
14627     // There is no such group.
14628     return;
14629   }
14630   if (this->group() < group) {
14631     // The group comes later in the list.
14632     next_link()->UpdateToFinishedCode(group, info, code_cell);
14633     return;
14634   }
14635   DCHECK_EQ(group, this->group());
14636   DisallowHeapAllocation no_gc;
14637   int count = this->count();
14638   for (int i = 0; i < count; i++) {
14639     if (object_at(i) == info) {
14640       set_object_at(i, code_cell);
14641       break;
14642     }
14643   }
14644 #ifdef DEBUG
14645   for (int i = 0; i < count; i++) {
14646     DCHECK(object_at(i) != info);
14647   }
14648 #endif
14649 }
14650 
14651 
RemoveCompilationDependencies(DependentCode::DependencyGroup group,Foreign * info)14652 void DependentCode::RemoveCompilationDependencies(
14653     DependentCode::DependencyGroup group, Foreign* info) {
14654   if (this->length() == 0 || this->group() > group) {
14655     // There is no such group.
14656     return;
14657   }
14658   if (this->group() < group) {
14659     // The group comes later in the list.
14660     next_link()->RemoveCompilationDependencies(group, info);
14661     return;
14662   }
14663   DCHECK_EQ(group, this->group());
14664   DisallowHeapAllocation no_allocation;
14665   int old_count = count();
14666   // Find compilation info wrapper.
14667   int info_pos = -1;
14668   for (int i = 0; i < old_count; i++) {
14669     if (object_at(i) == info) {
14670       info_pos = i;
14671       break;
14672     }
14673   }
14674   if (info_pos == -1) return;  // Not found.
14675   // Use the last code to fill the gap.
14676   if (info_pos < old_count - 1) {
14677     copy(old_count - 1, info_pos);
14678   }
14679   clear_at(old_count - 1);
14680   set_count(old_count - 1);
14681 
14682 #ifdef DEBUG
14683   for (int i = 0; i < old_count - 1; i++) {
14684     DCHECK(object_at(i) != info);
14685   }
14686 #endif
14687 }
14688 
14689 
Contains(DependencyGroup group,WeakCell * code_cell)14690 bool DependentCode::Contains(DependencyGroup group, WeakCell* code_cell) {
14691   if (this->length() == 0 || this->group() > group) {
14692     // There is no such group.
14693     return false;
14694   }
14695   if (this->group() < group) {
14696     // The group comes later in the list.
14697     return next_link()->Contains(group, code_cell);
14698   }
14699   DCHECK_EQ(group, this->group());
14700   int count = this->count();
14701   for (int i = 0; i < count; i++) {
14702     if (object_at(i) == code_cell) return true;
14703   }
14704   return false;
14705 }
14706 
14707 
IsEmpty(DependencyGroup group)14708 bool DependentCode::IsEmpty(DependencyGroup group) {
14709   if (this->length() == 0 || this->group() > group) {
14710     // There is no such group.
14711     return true;
14712   }
14713   if (this->group() < group) {
14714     // The group comes later in the list.
14715     return next_link()->IsEmpty(group);
14716   }
14717   DCHECK_EQ(group, this->group());
14718   return count() == 0;
14719 }
14720 
14721 
MarkCodeForDeoptimization(Isolate * isolate,DependentCode::DependencyGroup group)14722 bool DependentCode::MarkCodeForDeoptimization(
14723     Isolate* isolate,
14724     DependentCode::DependencyGroup group) {
14725   if (this->length() == 0 || this->group() > group) {
14726     // There is no such group.
14727     return false;
14728   }
14729   if (this->group() < group) {
14730     // The group comes later in the list.
14731     return next_link()->MarkCodeForDeoptimization(isolate, group);
14732   }
14733   DCHECK_EQ(group, this->group());
14734   DisallowHeapAllocation no_allocation_scope;
14735   // Mark all the code that needs to be deoptimized.
14736   bool marked = false;
14737   bool invalidate_embedded_objects = group == kWeakCodeGroup;
14738   int count = this->count();
14739   for (int i = 0; i < count; i++) {
14740     Object* obj = object_at(i);
14741     if (obj->IsWeakCell()) {
14742       WeakCell* cell = WeakCell::cast(obj);
14743       if (cell->cleared()) continue;
14744       Code* code = Code::cast(cell->value());
14745       if (!code->marked_for_deoptimization()) {
14746         SetMarkedForDeoptimization(code, group);
14747         if (invalidate_embedded_objects) {
14748           code->InvalidateEmbeddedObjects();
14749         }
14750         marked = true;
14751       }
14752     } else {
14753       DCHECK(obj->IsForeign());
14754       CompilationDependencies* info =
14755           reinterpret_cast<CompilationDependencies*>(
14756               Foreign::cast(obj)->foreign_address());
14757       info->Abort();
14758     }
14759   }
14760   for (int i = 0; i < count; i++) {
14761     clear_at(i);
14762   }
14763   set_count(0);
14764   return marked;
14765 }
14766 
14767 
DeoptimizeDependentCodeGroup(Isolate * isolate,DependentCode::DependencyGroup group)14768 void DependentCode::DeoptimizeDependentCodeGroup(
14769     Isolate* isolate,
14770     DependentCode::DependencyGroup group) {
14771   DCHECK(AllowCodeDependencyChange::IsAllowed());
14772   DisallowHeapAllocation no_allocation_scope;
14773   bool marked = MarkCodeForDeoptimization(isolate, group);
14774   if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate);
14775 }
14776 
14777 
SetMarkedForDeoptimization(Code * code,DependencyGroup group)14778 void DependentCode::SetMarkedForDeoptimization(Code* code,
14779                                                DependencyGroup group) {
14780   code->set_marked_for_deoptimization(true);
14781   if (FLAG_trace_deopt &&
14782       (code->deoptimization_data() != code->GetHeap()->empty_fixed_array())) {
14783     DeoptimizationInputData* deopt_data =
14784         DeoptimizationInputData::cast(code->deoptimization_data());
14785     CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
14786     PrintF(scope.file(), "[marking dependent code 0x%08" V8PRIxPTR
14787                          " (opt #%d) for deoptimization, reason: %s]\n",
14788            reinterpret_cast<intptr_t>(code),
14789            deopt_data->OptimizationId()->value(), DependencyGroupName(group));
14790   }
14791 }
14792 
14793 
DependencyGroupName(DependencyGroup group)14794 const char* DependentCode::DependencyGroupName(DependencyGroup group) {
14795   switch (group) {
14796     case kWeakCodeGroup:
14797       return "weak-code";
14798     case kTransitionGroup:
14799       return "transition";
14800     case kPrototypeCheckGroup:
14801       return "prototype-check";
14802     case kPropertyCellChangedGroup:
14803       return "property-cell-changed";
14804     case kFieldTypeGroup:
14805       return "field-type";
14806     case kInitialMapChangedGroup:
14807       return "initial-map-changed";
14808     case kAllocationSiteTenuringChangedGroup:
14809       return "allocation-site-tenuring-changed";
14810     case kAllocationSiteTransitionChangedGroup:
14811       return "allocation-site-transition-changed";
14812   }
14813   UNREACHABLE();
14814   return "?";
14815 }
14816 
14817 
TransitionToPrototype(Handle<Map> map,Handle<Object> prototype,PrototypeOptimizationMode mode)14818 Handle<Map> Map::TransitionToPrototype(Handle<Map> map,
14819                                        Handle<Object> prototype,
14820                                        PrototypeOptimizationMode mode) {
14821   Handle<Map> new_map = TransitionArray::GetPrototypeTransition(map, prototype);
14822   if (new_map.is_null()) {
14823     new_map = Copy(map, "TransitionToPrototype");
14824     TransitionArray::PutPrototypeTransition(map, prototype, new_map);
14825     Map::SetPrototype(new_map, prototype, mode);
14826   }
14827   return new_map;
14828 }
14829 
14830 
SetPrototype(Handle<JSReceiver> object,Handle<Object> value,bool from_javascript,ShouldThrow should_throw)14831 Maybe<bool> JSReceiver::SetPrototype(Handle<JSReceiver> object,
14832                                      Handle<Object> value, bool from_javascript,
14833                                      ShouldThrow should_throw) {
14834   if (object->IsJSProxy()) {
14835     return JSProxy::SetPrototype(Handle<JSProxy>::cast(object), value,
14836                                  from_javascript, should_throw);
14837   }
14838   return JSObject::SetPrototype(Handle<JSObject>::cast(object), value,
14839                                 from_javascript, should_throw);
14840 }
14841 
14842 
14843 // ES6: 9.5.2 [[SetPrototypeOf]] (V)
14844 // static
SetPrototype(Handle<JSProxy> proxy,Handle<Object> value,bool from_javascript,ShouldThrow should_throw)14845 Maybe<bool> JSProxy::SetPrototype(Handle<JSProxy> proxy, Handle<Object> value,
14846                                   bool from_javascript,
14847                                   ShouldThrow should_throw) {
14848   Isolate* isolate = proxy->GetIsolate();
14849   STACK_CHECK(isolate, Nothing<bool>());
14850   Handle<Name> trap_name = isolate->factory()->setPrototypeOf_string();
14851   // 1. Assert: Either Type(V) is Object or Type(V) is Null.
14852   DCHECK(value->IsJSReceiver() || value->IsNull(isolate));
14853   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
14854   Handle<Object> handler(proxy->handler(), isolate);
14855   // 3. If handler is null, throw a TypeError exception.
14856   // 4. Assert: Type(handler) is Object.
14857   if (proxy->IsRevoked()) {
14858     isolate->Throw(*isolate->factory()->NewTypeError(
14859         MessageTemplate::kProxyRevoked, trap_name));
14860     return Nothing<bool>();
14861   }
14862   // 5. Let target be the value of the [[ProxyTarget]] internal slot.
14863   Handle<JSReceiver> target(proxy->target(), isolate);
14864   // 6. Let trap be ? GetMethod(handler, "getPrototypeOf").
14865   Handle<Object> trap;
14866   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
14867       isolate, trap,
14868       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
14869       Nothing<bool>());
14870   // 7. If trap is undefined, then return target.[[SetPrototypeOf]]().
14871   if (trap->IsUndefined(isolate)) {
14872     return JSReceiver::SetPrototype(target, value, from_javascript,
14873                                     should_throw);
14874   }
14875   // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, V»)).
14876   Handle<Object> argv[] = {target, value};
14877   Handle<Object> trap_result;
14878   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
14879       isolate, trap_result,
14880       Execution::Call(isolate, trap, handler, arraysize(argv), argv),
14881       Nothing<bool>());
14882   bool bool_trap_result = trap_result->BooleanValue();
14883   // 9. If booleanTrapResult is false, return false.
14884   if (!bool_trap_result) {
14885     RETURN_FAILURE(
14886         isolate, should_throw,
14887         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
14888   }
14889   // 10. Let extensibleTarget be ? IsExtensible(target).
14890   Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
14891   if (is_extensible.IsNothing()) return Nothing<bool>();
14892   // 11. If extensibleTarget is true, return true.
14893   if (is_extensible.FromJust()) {
14894     if (bool_trap_result) return Just(true);
14895     RETURN_FAILURE(
14896         isolate, should_throw,
14897         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
14898   }
14899   // 12. Let targetProto be ? target.[[GetPrototypeOf]]().
14900   Handle<Object> target_proto;
14901   ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_proto,
14902                                    JSReceiver::GetPrototype(isolate, target),
14903                                    Nothing<bool>());
14904   // 13. If SameValue(V, targetProto) is false, throw a TypeError exception.
14905   if (bool_trap_result && !value->SameValue(*target_proto)) {
14906     isolate->Throw(*isolate->factory()->NewTypeError(
14907         MessageTemplate::kProxySetPrototypeOfNonExtensible));
14908     return Nothing<bool>();
14909   }
14910   // 14. Return true.
14911   return Just(true);
14912 }
14913 
14914 
SetPrototype(Handle<JSObject> object,Handle<Object> value,bool from_javascript,ShouldThrow should_throw)14915 Maybe<bool> JSObject::SetPrototype(Handle<JSObject> object,
14916                                    Handle<Object> value, bool from_javascript,
14917                                    ShouldThrow should_throw) {
14918   Isolate* isolate = object->GetIsolate();
14919 
14920 #ifdef DEBUG
14921   int size = object->Size();
14922 #endif
14923 
14924   if (from_javascript) {
14925     if (object->IsAccessCheckNeeded() &&
14926         !isolate->MayAccess(handle(isolate->context()), object)) {
14927       isolate->ReportFailedAccessCheck(object);
14928       RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
14929       RETURN_FAILURE(isolate, should_throw,
14930                      NewTypeError(MessageTemplate::kNoAccess));
14931     }
14932   } else {
14933     DCHECK(!object->IsAccessCheckNeeded());
14934   }
14935 
14936   Heap* heap = isolate->heap();
14937   // Silently ignore the change if value is not a JSObject or null.
14938   // SpiderMonkey behaves this way.
14939   if (!value->IsJSReceiver() && !value->IsNull(isolate)) return Just(true);
14940 
14941   bool dictionary_elements_in_chain =
14942       object->map()->DictionaryElementsInPrototypeChainOnly();
14943 
14944   bool all_extensible = object->map()->is_extensible();
14945   Handle<JSObject> real_receiver = object;
14946   if (from_javascript) {
14947     // Find the first object in the chain whose prototype object is not
14948     // hidden.
14949     PrototypeIterator iter(isolate, real_receiver, kStartAtPrototype,
14950                            PrototypeIterator::END_AT_NON_HIDDEN);
14951     while (!iter.IsAtEnd()) {
14952       // Casting to JSObject is fine because hidden prototypes are never
14953       // JSProxies.
14954       real_receiver = PrototypeIterator::GetCurrent<JSObject>(iter);
14955       iter.Advance();
14956       all_extensible = all_extensible && real_receiver->map()->is_extensible();
14957     }
14958   }
14959   Handle<Map> map(real_receiver->map());
14960 
14961   // Nothing to do if prototype is already set.
14962   if (map->prototype() == *value) return Just(true);
14963 
14964   // From 8.6.2 Object Internal Methods
14965   // ...
14966   // In addition, if [[Extensible]] is false the value of the [[Class]] and
14967   // [[Prototype]] internal properties of the object may not be modified.
14968   // ...
14969   // Implementation specific extensions that modify [[Class]], [[Prototype]]
14970   // or [[Extensible]] must not violate the invariants defined in the preceding
14971   // paragraph.
14972   if (!all_extensible) {
14973     RETURN_FAILURE(isolate, should_throw,
14974                    NewTypeError(MessageTemplate::kNonExtensibleProto, object));
14975   }
14976 
14977   // Before we can set the prototype we need to be sure prototype cycles are
14978   // prevented.  It is sufficient to validate that the receiver is not in the
14979   // new prototype chain.
14980   if (value->IsJSReceiver()) {
14981     for (PrototypeIterator iter(isolate, JSReceiver::cast(*value),
14982                                 kStartAtReceiver);
14983          !iter.IsAtEnd(); iter.Advance()) {
14984       if (iter.GetCurrent<JSReceiver>() == *object) {
14985         // Cycle detected.
14986         RETURN_FAILURE(isolate, should_throw,
14987                        NewTypeError(MessageTemplate::kCyclicProto));
14988       }
14989     }
14990   }
14991 
14992   // Set the new prototype of the object.
14993 
14994   isolate->UpdateArrayProtectorOnSetPrototype(real_receiver);
14995 
14996   PrototypeOptimizationMode mode =
14997       from_javascript ? REGULAR_PROTOTYPE : FAST_PROTOTYPE;
14998   Handle<Map> new_map = Map::TransitionToPrototype(map, value, mode);
14999   DCHECK(new_map->prototype() == *value);
15000   JSObject::MigrateToMap(real_receiver, new_map);
15001 
15002   if (from_javascript && !dictionary_elements_in_chain &&
15003       new_map->DictionaryElementsInPrototypeChainOnly()) {
15004     // If the prototype chain didn't previously have element callbacks, then
15005     // KeyedStoreICs need to be cleared to ensure any that involve this
15006     // map go generic.
15007     TypeFeedbackVector::ClearAllKeyedStoreICs(isolate);
15008   }
15009 
15010   heap->ClearInstanceofCache();
15011   DCHECK(size == object->Size());
15012   return Just(true);
15013 }
15014 
15015 
EnsureCanContainElements(Handle<JSObject> object,Arguments * args,uint32_t first_arg,uint32_t arg_count,EnsureElementsMode mode)15016 void JSObject::EnsureCanContainElements(Handle<JSObject> object,
15017                                         Arguments* args,
15018                                         uint32_t first_arg,
15019                                         uint32_t arg_count,
15020                                         EnsureElementsMode mode) {
15021   // Elements in |Arguments| are ordered backwards (because they're on the
15022   // stack), but the method that's called here iterates over them in forward
15023   // direction.
15024   return EnsureCanContainElements(
15025       object, args->arguments() - first_arg - (arg_count - 1), arg_count, mode);
15026 }
15027 
15028 
GetElementsAccessor()15029 ElementsAccessor* JSObject::GetElementsAccessor() {
15030   return ElementsAccessor::ForKind(GetElementsKind());
15031 }
15032 
15033 
ValidateElements(Handle<JSObject> object)15034 void JSObject::ValidateElements(Handle<JSObject> object) {
15035 #ifdef ENABLE_SLOW_DCHECKS
15036   if (FLAG_enable_slow_asserts) {
15037     ElementsAccessor* accessor = object->GetElementsAccessor();
15038     accessor->Validate(object);
15039   }
15040 #endif
15041 }
15042 
15043 
ShouldConvertToSlowElements(JSObject * object,uint32_t capacity,uint32_t index,uint32_t * new_capacity)15044 static bool ShouldConvertToSlowElements(JSObject* object, uint32_t capacity,
15045                                         uint32_t index,
15046                                         uint32_t* new_capacity) {
15047   STATIC_ASSERT(JSObject::kMaxUncheckedOldFastElementsLength <=
15048                 JSObject::kMaxUncheckedFastElementsLength);
15049   if (index < capacity) {
15050     *new_capacity = capacity;
15051     return false;
15052   }
15053   if (index - capacity >= JSObject::kMaxGap) return true;
15054   *new_capacity = JSObject::NewElementsCapacity(index + 1);
15055   DCHECK_LT(index, *new_capacity);
15056   if (*new_capacity <= JSObject::kMaxUncheckedOldFastElementsLength ||
15057       (*new_capacity <= JSObject::kMaxUncheckedFastElementsLength &&
15058        object->GetHeap()->InNewSpace(object))) {
15059     return false;
15060   }
15061   // If the fast-case backing storage takes up roughly three times as
15062   // much space (in machine words) as a dictionary backing storage
15063   // would, the object should have slow elements.
15064   int used_elements = object->GetFastElementsUsage();
15065   int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) *
15066                         SeededNumberDictionary::kEntrySize;
15067   return 3 * static_cast<uint32_t>(dictionary_size) <= *new_capacity;
15068 }
15069 
15070 
WouldConvertToSlowElements(uint32_t index)15071 bool JSObject::WouldConvertToSlowElements(uint32_t index) {
15072   if (HasFastElements()) {
15073     Handle<FixedArrayBase> backing_store(FixedArrayBase::cast(elements()));
15074     uint32_t capacity = static_cast<uint32_t>(backing_store->length());
15075     uint32_t new_capacity;
15076     return ShouldConvertToSlowElements(this, capacity, index, &new_capacity);
15077   }
15078   return false;
15079 }
15080 
15081 
BestFittingFastElementsKind(JSObject * object)15082 static ElementsKind BestFittingFastElementsKind(JSObject* object) {
15083   if (object->HasSloppyArgumentsElements()) {
15084     return FAST_SLOPPY_ARGUMENTS_ELEMENTS;
15085   }
15086   if (object->HasStringWrapperElements()) {
15087     return FAST_STRING_WRAPPER_ELEMENTS;
15088   }
15089   DCHECK(object->HasDictionaryElements());
15090   SeededNumberDictionary* dictionary = object->element_dictionary();
15091   ElementsKind kind = FAST_HOLEY_SMI_ELEMENTS;
15092   for (int i = 0; i < dictionary->Capacity(); i++) {
15093     Object* key = dictionary->KeyAt(i);
15094     if (key->IsNumber()) {
15095       Object* value = dictionary->ValueAt(i);
15096       if (!value->IsNumber()) return FAST_HOLEY_ELEMENTS;
15097       if (!value->IsSmi()) {
15098         if (!FLAG_unbox_double_arrays) return FAST_HOLEY_ELEMENTS;
15099         kind = FAST_HOLEY_DOUBLE_ELEMENTS;
15100       }
15101     }
15102   }
15103   return kind;
15104 }
15105 
15106 
ShouldConvertToFastElements(JSObject * object,SeededNumberDictionary * dictionary,uint32_t index,uint32_t * new_capacity)15107 static bool ShouldConvertToFastElements(JSObject* object,
15108                                         SeededNumberDictionary* dictionary,
15109                                         uint32_t index,
15110                                         uint32_t* new_capacity) {
15111   // If properties with non-standard attributes or accessors were added, we
15112   // cannot go back to fast elements.
15113   if (dictionary->requires_slow_elements()) return false;
15114 
15115   // Adding a property with this index will require slow elements.
15116   if (index >= static_cast<uint32_t>(Smi::kMaxValue)) return false;
15117 
15118   if (object->IsJSArray()) {
15119     Object* length = JSArray::cast(object)->length();
15120     if (!length->IsSmi()) return false;
15121     *new_capacity = static_cast<uint32_t>(Smi::cast(length)->value());
15122   } else {
15123     *new_capacity = dictionary->max_number_key() + 1;
15124   }
15125   *new_capacity = Max(index + 1, *new_capacity);
15126 
15127   uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) *
15128                              SeededNumberDictionary::kEntrySize;
15129 
15130   // Turn fast if the dictionary only saves 50% space.
15131   return 2 * dictionary_size >= *new_capacity;
15132 }
15133 
15134 
15135 // static
AddDataElement(Handle<JSObject> object,uint32_t index,Handle<Object> value,PropertyAttributes attributes)15136 MaybeHandle<Object> JSObject::AddDataElement(Handle<JSObject> object,
15137                                              uint32_t index,
15138                                              Handle<Object> value,
15139                                              PropertyAttributes attributes) {
15140   MAYBE_RETURN_NULL(
15141       AddDataElement(object, index, value, attributes, THROW_ON_ERROR));
15142   return value;
15143 }
15144 
15145 
15146 // static
AddDataElement(Handle<JSObject> object,uint32_t index,Handle<Object> value,PropertyAttributes attributes,ShouldThrow should_throw)15147 Maybe<bool> JSObject::AddDataElement(Handle<JSObject> object, uint32_t index,
15148                                      Handle<Object> value,
15149                                      PropertyAttributes attributes,
15150                                      ShouldThrow should_throw) {
15151   DCHECK(object->map()->is_extensible());
15152 
15153   Isolate* isolate = object->GetIsolate();
15154 
15155   uint32_t old_length = 0;
15156   uint32_t new_capacity = 0;
15157 
15158   if (object->IsJSArray()) {
15159     CHECK(JSArray::cast(*object)->length()->ToArrayLength(&old_length));
15160   }
15161 
15162   ElementsKind kind = object->GetElementsKind();
15163   FixedArrayBase* elements = object->elements();
15164   ElementsKind dictionary_kind = DICTIONARY_ELEMENTS;
15165   if (IsSloppyArgumentsElements(kind)) {
15166     elements = FixedArrayBase::cast(FixedArray::cast(elements)->get(1));
15167     dictionary_kind = SLOW_SLOPPY_ARGUMENTS_ELEMENTS;
15168   } else if (IsStringWrapperElementsKind(kind)) {
15169     dictionary_kind = SLOW_STRING_WRAPPER_ELEMENTS;
15170   }
15171 
15172   if (attributes != NONE) {
15173     kind = dictionary_kind;
15174   } else if (elements->IsSeededNumberDictionary()) {
15175     kind = ShouldConvertToFastElements(*object,
15176                                        SeededNumberDictionary::cast(elements),
15177                                        index, &new_capacity)
15178                ? BestFittingFastElementsKind(*object)
15179                : dictionary_kind;  // Overwrite in case of arguments.
15180   } else if (ShouldConvertToSlowElements(
15181                  *object, static_cast<uint32_t>(elements->length()), index,
15182                  &new_capacity)) {
15183     kind = dictionary_kind;
15184   }
15185 
15186   ElementsKind to = value->OptimalElementsKind();
15187   if (IsHoleyElementsKind(kind) || !object->IsJSArray() || index > old_length) {
15188     to = GetHoleyElementsKind(to);
15189     kind = GetHoleyElementsKind(kind);
15190   }
15191   to = GetMoreGeneralElementsKind(kind, to);
15192   ElementsAccessor* accessor = ElementsAccessor::ForKind(to);
15193   accessor->Add(object, index, value, attributes, new_capacity);
15194 
15195   uint32_t new_length = old_length;
15196   Handle<Object> new_length_handle;
15197   if (object->IsJSArray() && index >= old_length) {
15198     new_length = index + 1;
15199     new_length_handle = isolate->factory()->NewNumberFromUint(new_length);
15200     JSArray::cast(*object)->set_length(*new_length_handle);
15201   }
15202 
15203   return Just(true);
15204 }
15205 
15206 
SetLengthWouldNormalize(uint32_t new_length)15207 bool JSArray::SetLengthWouldNormalize(uint32_t new_length) {
15208   if (!HasFastElements()) return false;
15209   uint32_t capacity = static_cast<uint32_t>(elements()->length());
15210   uint32_t new_capacity;
15211   return JSArray::SetLengthWouldNormalize(GetHeap(), new_length) &&
15212          ShouldConvertToSlowElements(this, capacity, new_length - 1,
15213                                      &new_capacity);
15214 }
15215 
15216 
15217 const double AllocationSite::kPretenureRatio = 0.85;
15218 
15219 
ResetPretenureDecision()15220 void AllocationSite::ResetPretenureDecision() {
15221   set_pretenure_decision(kUndecided);
15222   set_memento_found_count(0);
15223   set_memento_create_count(0);
15224 }
15225 
15226 
GetPretenureMode()15227 PretenureFlag AllocationSite::GetPretenureMode() {
15228   PretenureDecision mode = pretenure_decision();
15229   // Zombie objects "decide" to be untenured.
15230   return mode == kTenure ? TENURED : NOT_TENURED;
15231 }
15232 
15233 
IsNestedSite()15234 bool AllocationSite::IsNestedSite() {
15235   DCHECK(FLAG_trace_track_allocation_sites);
15236   Object* current = GetHeap()->allocation_sites_list();
15237   while (current->IsAllocationSite()) {
15238     AllocationSite* current_site = AllocationSite::cast(current);
15239     if (current_site->nested_site() == this) {
15240       return true;
15241     }
15242     current = current_site->weak_next();
15243   }
15244   return false;
15245 }
15246 
15247 
DigestTransitionFeedback(Handle<AllocationSite> site,ElementsKind to_kind)15248 void AllocationSite::DigestTransitionFeedback(Handle<AllocationSite> site,
15249                                               ElementsKind to_kind) {
15250   Isolate* isolate = site->GetIsolate();
15251 
15252   if (site->SitePointsToLiteral() && site->transition_info()->IsJSArray()) {
15253     Handle<JSArray> transition_info =
15254         handle(JSArray::cast(site->transition_info()));
15255     ElementsKind kind = transition_info->GetElementsKind();
15256     // if kind is holey ensure that to_kind is as well.
15257     if (IsHoleyElementsKind(kind)) {
15258       to_kind = GetHoleyElementsKind(to_kind);
15259     }
15260     if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
15261       // If the array is huge, it's not likely to be defined in a local
15262       // function, so we shouldn't make new instances of it very often.
15263       uint32_t length = 0;
15264       CHECK(transition_info->length()->ToArrayLength(&length));
15265       if (length <= kMaximumArrayBytesToPretransition) {
15266         if (FLAG_trace_track_allocation_sites) {
15267           bool is_nested = site->IsNestedSite();
15268           PrintF(
15269               "AllocationSite: JSArray %p boilerplate %s updated %s->%s\n",
15270               reinterpret_cast<void*>(*site),
15271               is_nested ? "(nested)" : "",
15272               ElementsKindToString(kind),
15273               ElementsKindToString(to_kind));
15274         }
15275         JSObject::TransitionElementsKind(transition_info, to_kind);
15276         site->dependent_code()->DeoptimizeDependentCodeGroup(
15277             isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
15278       }
15279     }
15280   } else {
15281     ElementsKind kind = site->GetElementsKind();
15282     // if kind is holey ensure that to_kind is as well.
15283     if (IsHoleyElementsKind(kind)) {
15284       to_kind = GetHoleyElementsKind(to_kind);
15285     }
15286     if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
15287       if (FLAG_trace_track_allocation_sites) {
15288         PrintF("AllocationSite: JSArray %p site updated %s->%s\n",
15289                reinterpret_cast<void*>(*site),
15290                ElementsKindToString(kind),
15291                ElementsKindToString(to_kind));
15292       }
15293       site->SetElementsKind(to_kind);
15294       site->dependent_code()->DeoptimizeDependentCodeGroup(
15295           isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
15296     }
15297   }
15298 }
15299 
15300 
PretenureDecisionName(PretenureDecision decision)15301 const char* AllocationSite::PretenureDecisionName(PretenureDecision decision) {
15302   switch (decision) {
15303     case kUndecided: return "undecided";
15304     case kDontTenure: return "don't tenure";
15305     case kMaybeTenure: return "maybe tenure";
15306     case kTenure: return "tenure";
15307     case kZombie: return "zombie";
15308     default: UNREACHABLE();
15309   }
15310   return NULL;
15311 }
15312 
15313 
UpdateAllocationSite(Handle<JSObject> object,ElementsKind to_kind)15314 void JSObject::UpdateAllocationSite(Handle<JSObject> object,
15315                                     ElementsKind to_kind) {
15316   if (!object->IsJSArray()) return;
15317 
15318   Heap* heap = object->GetHeap();
15319   if (!heap->InNewSpace(*object)) return;
15320 
15321   Handle<AllocationSite> site;
15322   {
15323     DisallowHeapAllocation no_allocation;
15324 
15325     AllocationMemento* memento =
15326         heap->FindAllocationMemento<Heap::kForRuntime>(*object);
15327     if (memento == NULL) return;
15328 
15329     // Walk through to the Allocation Site
15330     site = handle(memento->GetAllocationSite());
15331   }
15332   AllocationSite::DigestTransitionFeedback(site, to_kind);
15333 }
15334 
15335 
TransitionElementsKind(Handle<JSObject> object,ElementsKind to_kind)15336 void JSObject::TransitionElementsKind(Handle<JSObject> object,
15337                                       ElementsKind to_kind) {
15338   ElementsKind from_kind = object->GetElementsKind();
15339 
15340   if (IsFastHoleyElementsKind(from_kind)) {
15341     to_kind = GetHoleyElementsKind(to_kind);
15342   }
15343 
15344   if (from_kind == to_kind) return;
15345 
15346   // This method should never be called for any other case.
15347   DCHECK(IsFastElementsKind(from_kind));
15348   DCHECK(IsFastElementsKind(to_kind));
15349   DCHECK_NE(TERMINAL_FAST_ELEMENTS_KIND, from_kind);
15350 
15351   UpdateAllocationSite(object, to_kind);
15352   if (object->elements() == object->GetHeap()->empty_fixed_array() ||
15353       IsFastDoubleElementsKind(from_kind) ==
15354           IsFastDoubleElementsKind(to_kind)) {
15355     // No change is needed to the elements() buffer, the transition
15356     // only requires a map change.
15357     Handle<Map> new_map = GetElementsTransitionMap(object, to_kind);
15358     MigrateToMap(object, new_map);
15359     if (FLAG_trace_elements_transitions) {
15360       Handle<FixedArrayBase> elms(object->elements());
15361       PrintElementsTransition(stdout, object, from_kind, elms, to_kind, elms);
15362     }
15363   } else {
15364     DCHECK((IsFastSmiElementsKind(from_kind) &&
15365             IsFastDoubleElementsKind(to_kind)) ||
15366            (IsFastDoubleElementsKind(from_kind) &&
15367             IsFastObjectElementsKind(to_kind)));
15368     uint32_t c = static_cast<uint32_t>(object->elements()->length());
15369     ElementsAccessor::ForKind(to_kind)->GrowCapacityAndConvert(object, c);
15370   }
15371 }
15372 
15373 
15374 // static
IsValidElementsTransition(ElementsKind from_kind,ElementsKind to_kind)15375 bool Map::IsValidElementsTransition(ElementsKind from_kind,
15376                                     ElementsKind to_kind) {
15377   // Transitions can't go backwards.
15378   if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) {
15379     return false;
15380   }
15381 
15382   // Transitions from HOLEY -> PACKED are not allowed.
15383   return !IsFastHoleyElementsKind(from_kind) ||
15384       IsFastHoleyElementsKind(to_kind);
15385 }
15386 
15387 
HasReadOnlyLength(Handle<JSArray> array)15388 bool JSArray::HasReadOnlyLength(Handle<JSArray> array) {
15389   Map* map = array->map();
15390   // Fast path: "length" is the first fast property of arrays. Since it's not
15391   // configurable, it's guaranteed to be the first in the descriptor array.
15392   if (!map->is_dictionary_map()) {
15393     DCHECK(map->instance_descriptors()->GetKey(0) ==
15394            array->GetHeap()->length_string());
15395     return map->instance_descriptors()->GetDetails(0).IsReadOnly();
15396   }
15397 
15398   Isolate* isolate = array->GetIsolate();
15399   LookupIterator it(array, isolate->factory()->length_string(), array,
15400                     LookupIterator::OWN_SKIP_INTERCEPTOR);
15401   CHECK_EQ(LookupIterator::ACCESSOR, it.state());
15402   return it.IsReadOnly();
15403 }
15404 
15405 
WouldChangeReadOnlyLength(Handle<JSArray> array,uint32_t index)15406 bool JSArray::WouldChangeReadOnlyLength(Handle<JSArray> array,
15407                                         uint32_t index) {
15408   uint32_t length = 0;
15409   CHECK(array->length()->ToArrayLength(&length));
15410   if (length <= index) return HasReadOnlyLength(array);
15411   return false;
15412 }
15413 
15414 
15415 template <typename BackingStore>
FastHoleyElementsUsage(JSObject * object,BackingStore * store)15416 static int FastHoleyElementsUsage(JSObject* object, BackingStore* store) {
15417   int limit = object->IsJSArray()
15418                   ? Smi::cast(JSArray::cast(object)->length())->value()
15419                   : store->length();
15420   int used = 0;
15421   for (int i = 0; i < limit; ++i) {
15422     if (!store->is_the_hole(i)) ++used;
15423   }
15424   return used;
15425 }
15426 
15427 
GetFastElementsUsage()15428 int JSObject::GetFastElementsUsage() {
15429   FixedArrayBase* store = elements();
15430   switch (GetElementsKind()) {
15431     case FAST_SMI_ELEMENTS:
15432     case FAST_DOUBLE_ELEMENTS:
15433     case FAST_ELEMENTS:
15434       return IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value()
15435                          : store->length();
15436     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
15437       store = FixedArray::cast(FixedArray::cast(store)->get(1));
15438     // Fall through.
15439     case FAST_HOLEY_SMI_ELEMENTS:
15440     case FAST_HOLEY_ELEMENTS:
15441     case FAST_STRING_WRAPPER_ELEMENTS:
15442       return FastHoleyElementsUsage(this, FixedArray::cast(store));
15443     case FAST_HOLEY_DOUBLE_ELEMENTS:
15444       if (elements()->length() == 0) return 0;
15445       return FastHoleyElementsUsage(this, FixedDoubleArray::cast(store));
15446 
15447     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
15448     case SLOW_STRING_WRAPPER_ELEMENTS:
15449     case DICTIONARY_ELEMENTS:
15450     case NO_ELEMENTS:
15451 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                      \
15452     case TYPE##_ELEMENTS:                                                    \
15453 
15454     TYPED_ARRAYS(TYPED_ARRAY_CASE)
15455 #undef TYPED_ARRAY_CASE
15456     UNREACHABLE();
15457   }
15458   return 0;
15459 }
15460 
15461 
15462 // Certain compilers request function template instantiation when they
15463 // see the definition of the other template functions in the
15464 // class. This requires us to have the template functions put
15465 // together, so even though this function belongs in objects-debug.cc,
15466 // we keep it here instead to satisfy certain compilers.
15467 #ifdef OBJECT_PRINT
15468 template <typename Derived, typename Shape, typename Key>
Print(std::ostream & os)15469 void Dictionary<Derived, Shape, Key>::Print(std::ostream& os) {  // NOLINT
15470   Isolate* isolate = this->GetIsolate();
15471   int capacity = this->Capacity();
15472   for (int i = 0; i < capacity; i++) {
15473     Object* k = this->KeyAt(i);
15474     if (this->IsKey(isolate, k)) {
15475       os << "\n   ";
15476       if (k->IsString()) {
15477         String::cast(k)->StringPrint(os);
15478       } else {
15479         os << Brief(k);
15480       }
15481       os << ": " << Brief(this->ValueAt(i)) << " " << this->DetailsAt(i);
15482     }
15483   }
15484 }
15485 template <typename Derived, typename Shape, typename Key>
Print()15486 void Dictionary<Derived, Shape, Key>::Print() {
15487   OFStream os(stdout);
15488   Print(os);
15489 }
15490 #endif
15491 
15492 
15493 template<typename Derived, typename Shape, typename Key>
CopyValuesTo(FixedArray * elements)15494 void Dictionary<Derived, Shape, Key>::CopyValuesTo(FixedArray* elements) {
15495   Isolate* isolate = this->GetIsolate();
15496   int pos = 0;
15497   int capacity = this->Capacity();
15498   DisallowHeapAllocation no_gc;
15499   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
15500   for (int i = 0; i < capacity; i++) {
15501     Object* k = this->KeyAt(i);
15502     if (this->IsKey(isolate, k)) {
15503       elements->set(pos++, this->ValueAt(i), mode);
15504     }
15505   }
15506   DCHECK(pos == elements->length());
15507 }
15508 
15509 
GetPropertyWithInterceptor(LookupIterator * it,bool * done)15510 MaybeHandle<Object> JSObject::GetPropertyWithInterceptor(LookupIterator* it,
15511                                                          bool* done) {
15512   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
15513   return GetPropertyWithInterceptorInternal(it, it->GetInterceptor(), done);
15514 }
15515 
HasRealNamedProperty(Handle<JSObject> object,Handle<Name> name)15516 Maybe<bool> JSObject::HasRealNamedProperty(Handle<JSObject> object,
15517                                            Handle<Name> name) {
15518   LookupIterator it = LookupIterator::PropertyOrElement(
15519       name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
15520   return HasProperty(&it);
15521 }
15522 
15523 
HasRealElementProperty(Handle<JSObject> object,uint32_t index)15524 Maybe<bool> JSObject::HasRealElementProperty(Handle<JSObject> object,
15525                                              uint32_t index) {
15526   Isolate* isolate = object->GetIsolate();
15527   LookupIterator it(isolate, object, index, object,
15528                     LookupIterator::OWN_SKIP_INTERCEPTOR);
15529   return HasProperty(&it);
15530 }
15531 
15532 
HasRealNamedCallbackProperty(Handle<JSObject> object,Handle<Name> name)15533 Maybe<bool> JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object,
15534                                                    Handle<Name> name) {
15535   LookupIterator it = LookupIterator::PropertyOrElement(
15536       name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
15537   Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it);
15538   return maybe_result.IsJust() ? Just(it.state() == LookupIterator::ACCESSOR)
15539                                : Nothing<bool>();
15540 }
15541 
15542 
SwapPairs(FixedArray * numbers,int i,int j)15543 void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
15544   Object* temp = get(i);
15545   set(i, get(j));
15546   set(j, temp);
15547   if (this != numbers) {
15548     temp = numbers->get(i);
15549     numbers->set(i, Smi::cast(numbers->get(j)));
15550     numbers->set(j, Smi::cast(temp));
15551   }
15552 }
15553 
15554 
InsertionSortPairs(FixedArray * content,FixedArray * numbers,int len)15555 static void InsertionSortPairs(FixedArray* content,
15556                                FixedArray* numbers,
15557                                int len) {
15558   for (int i = 1; i < len; i++) {
15559     int j = i;
15560     while (j > 0 &&
15561            (NumberToUint32(numbers->get(j - 1)) >
15562             NumberToUint32(numbers->get(j)))) {
15563       content->SwapPairs(numbers, j - 1, j);
15564       j--;
15565     }
15566   }
15567 }
15568 
15569 
HeapSortPairs(FixedArray * content,FixedArray * numbers,int len)15570 void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
15571   // In-place heap sort.
15572   DCHECK(content->length() == numbers->length());
15573 
15574   // Bottom-up max-heap construction.
15575   for (int i = 1; i < len; ++i) {
15576     int child_index = i;
15577     while (child_index > 0) {
15578       int parent_index = ((child_index + 1) >> 1) - 1;
15579       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
15580       uint32_t child_value = NumberToUint32(numbers->get(child_index));
15581       if (parent_value < child_value) {
15582         content->SwapPairs(numbers, parent_index, child_index);
15583       } else {
15584         break;
15585       }
15586       child_index = parent_index;
15587     }
15588   }
15589 
15590   // Extract elements and create sorted array.
15591   for (int i = len - 1; i > 0; --i) {
15592     // Put max element at the back of the array.
15593     content->SwapPairs(numbers, 0, i);
15594     // Sift down the new top element.
15595     int parent_index = 0;
15596     while (true) {
15597       int child_index = ((parent_index + 1) << 1) - 1;
15598       if (child_index >= i) break;
15599       uint32_t child1_value = NumberToUint32(numbers->get(child_index));
15600       uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
15601       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
15602       if (child_index + 1 >= i || child1_value > child2_value) {
15603         if (parent_value > child1_value) break;
15604         content->SwapPairs(numbers, parent_index, child_index);
15605         parent_index = child_index;
15606       } else {
15607         if (parent_value > child2_value) break;
15608         content->SwapPairs(numbers, parent_index, child_index + 1);
15609         parent_index = child_index + 1;
15610       }
15611     }
15612   }
15613 }
15614 
15615 
15616 // Sort this array and the numbers as pairs wrt. the (distinct) numbers.
SortPairs(FixedArray * numbers,uint32_t len)15617 void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
15618   DCHECK(this->length() == numbers->length());
15619   // For small arrays, simply use insertion sort.
15620   if (len <= 10) {
15621     InsertionSortPairs(this, numbers, len);
15622     return;
15623   }
15624   // Check the range of indices.
15625   uint32_t min_index = NumberToUint32(numbers->get(0));
15626   uint32_t max_index = min_index;
15627   uint32_t i;
15628   for (i = 1; i < len; i++) {
15629     if (NumberToUint32(numbers->get(i)) < min_index) {
15630       min_index = NumberToUint32(numbers->get(i));
15631     } else if (NumberToUint32(numbers->get(i)) > max_index) {
15632       max_index = NumberToUint32(numbers->get(i));
15633     }
15634   }
15635   if (max_index - min_index + 1 == len) {
15636     // Indices form a contiguous range, unless there are duplicates.
15637     // Do an in-place linear time sort assuming distinct numbers, but
15638     // avoid hanging in case they are not.
15639     for (i = 0; i < len; i++) {
15640       uint32_t p;
15641       uint32_t j = 0;
15642       // While the current element at i is not at its correct position p,
15643       // swap the elements at these two positions.
15644       while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
15645              j++ < len) {
15646         SwapPairs(numbers, i, p);
15647       }
15648     }
15649   } else {
15650     HeapSortPairs(this, numbers, len);
15651     return;
15652   }
15653 }
15654 
WasConstructedFromApiFunction()15655 bool JSObject::WasConstructedFromApiFunction() {
15656   auto instance_type = map()->instance_type();
15657   bool is_api_object = instance_type == JS_API_OBJECT_TYPE ||
15658                        instance_type == JS_SPECIAL_API_OBJECT_TYPE;
15659 #ifdef ENABLE_SLOW_DCHECKS
15660   if (FLAG_enable_slow_asserts) {
15661     Object* maybe_constructor = map()->GetConstructor();
15662     if (!maybe_constructor->IsJSFunction()) return false;
15663     JSFunction* constructor = JSFunction::cast(maybe_constructor);
15664     if (constructor->shared()->IsApiFunction()) {
15665       DCHECK(is_api_object);
15666     } else {
15667       DCHECK(!is_api_object);
15668     }
15669   }
15670 #endif
15671   return is_api_object;
15672 }
15673 
ObjectProtoToString(Isolate * isolate,Handle<Object> object)15674 MaybeHandle<String> Object::ObjectProtoToString(Isolate* isolate,
15675                                                 Handle<Object> object) {
15676   if (*object == isolate->heap()->undefined_value()) {
15677     return isolate->factory()->undefined_to_string();
15678   }
15679   if (*object == isolate->heap()->null_value()) {
15680     return isolate->factory()->null_to_string();
15681   }
15682 
15683   Handle<JSReceiver> receiver =
15684       Object::ToObject(isolate, object).ToHandleChecked();
15685 
15686   // For proxies, we must check IsArray() before get(toStringTag) to comply
15687   // with the specification
15688   Maybe<bool> is_array = Nothing<bool>();
15689   InstanceType instance_type = receiver->map()->instance_type();
15690   if (instance_type == JS_PROXY_TYPE) {
15691     is_array = Object::IsArray(receiver);
15692     MAYBE_RETURN(is_array, MaybeHandle<String>());
15693   }
15694 
15695   Handle<String> tag;
15696   Handle<Object> to_string_tag;
15697   ASSIGN_RETURN_ON_EXCEPTION(
15698       isolate, to_string_tag,
15699       JSReceiver::GetProperty(receiver,
15700                               isolate->factory()->to_string_tag_symbol()),
15701       String);
15702   if (to_string_tag->IsString()) {
15703     tag = Handle<String>::cast(to_string_tag);
15704   } else {
15705     switch (instance_type) {
15706       case JS_API_OBJECT_TYPE:
15707       case JS_SPECIAL_API_OBJECT_TYPE:
15708         tag = handle(receiver->class_name(), isolate);
15709         break;
15710       case JS_ARGUMENTS_TYPE:
15711         return isolate->factory()->arguments_to_string();
15712       case JS_ARRAY_TYPE:
15713         return isolate->factory()->array_to_string();
15714       case JS_BOUND_FUNCTION_TYPE:
15715       case JS_FUNCTION_TYPE:
15716         return isolate->factory()->function_to_string();
15717       case JS_ERROR_TYPE:
15718         return isolate->factory()->error_to_string();
15719       case JS_DATE_TYPE:
15720         return isolate->factory()->date_to_string();
15721       case JS_REGEXP_TYPE:
15722         return isolate->factory()->regexp_to_string();
15723       case JS_PROXY_TYPE: {
15724         if (is_array.FromJust()) {
15725           return isolate->factory()->array_to_string();
15726         }
15727         if (receiver->IsCallable()) {
15728           return isolate->factory()->function_to_string();
15729         }
15730         return isolate->factory()->object_to_string();
15731       }
15732       case JS_VALUE_TYPE: {
15733         Object* value = JSValue::cast(*receiver)->value();
15734         if (value->IsString()) {
15735           return isolate->factory()->string_to_string();
15736         }
15737         if (value->IsNumber()) {
15738           return isolate->factory()->number_to_string();
15739         }
15740         if (value->IsBoolean()) {
15741           return isolate->factory()->boolean_to_string();
15742         }
15743         if (value->IsSymbol()) {
15744           return isolate->factory()->object_to_string();
15745         }
15746         UNREACHABLE();
15747         tag = handle(receiver->class_name(), isolate);
15748         break;
15749       }
15750       default:
15751         return isolate->factory()->object_to_string();
15752     }
15753   }
15754 
15755   IncrementalStringBuilder builder(isolate);
15756   builder.AppendCString("[object ");
15757   builder.AppendString(tag);
15758   builder.AppendCharacter(']');
15759   return builder.Finish();
15760 }
15761 
PrivateSymbolToName() const15762 const char* Symbol::PrivateSymbolToName() const {
15763   Heap* heap = GetIsolate()->heap();
15764 #define SYMBOL_CHECK_AND_PRINT(name) \
15765   if (this == heap->name()) return #name;
15766   PRIVATE_SYMBOL_LIST(SYMBOL_CHECK_AND_PRINT)
15767 #undef SYMBOL_CHECK_AND_PRINT
15768   return "UNKNOWN";
15769 }
15770 
15771 
SymbolShortPrint(std::ostream & os)15772 void Symbol::SymbolShortPrint(std::ostream& os) {
15773   os << "<Symbol:";
15774   if (!name()->IsUndefined(GetIsolate())) {
15775     os << " ";
15776     HeapStringAllocator allocator;
15777     StringStream accumulator(&allocator);
15778     String::cast(name())->StringShortPrint(&accumulator, false);
15779     os << accumulator.ToCString().get();
15780   } else {
15781     os << " (" << PrivateSymbolToName() << ")";
15782   }
15783   os << ">";
15784 }
15785 
15786 
15787 // StringSharedKeys are used as keys in the eval cache.
15788 class StringSharedKey : public HashTableKey {
15789  public:
StringSharedKey(Handle<String> source,Handle<SharedFunctionInfo> shared,LanguageMode language_mode,int scope_position)15790   StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared,
15791                   LanguageMode language_mode, int scope_position)
15792       : source_(source),
15793         shared_(shared),
15794         language_mode_(language_mode),
15795         scope_position_(scope_position) {}
15796 
IsMatch(Object * other)15797   bool IsMatch(Object* other) override {
15798     DisallowHeapAllocation no_allocation;
15799     if (!other->IsFixedArray()) {
15800       if (!other->IsNumber()) return false;
15801       uint32_t other_hash = static_cast<uint32_t>(other->Number());
15802       return Hash() == other_hash;
15803     }
15804     FixedArray* other_array = FixedArray::cast(other);
15805     SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
15806     if (shared != *shared_) return false;
15807     int language_unchecked = Smi::cast(other_array->get(2))->value();
15808     DCHECK(is_valid_language_mode(language_unchecked));
15809     LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
15810     if (language_mode != language_mode_) return false;
15811     int scope_position = Smi::cast(other_array->get(3))->value();
15812     if (scope_position != scope_position_) return false;
15813     String* source = String::cast(other_array->get(1));
15814     return source->Equals(*source_);
15815   }
15816 
StringSharedHashHelper(String * source,SharedFunctionInfo * shared,LanguageMode language_mode,int scope_position)15817   static uint32_t StringSharedHashHelper(String* source,
15818                                          SharedFunctionInfo* shared,
15819                                          LanguageMode language_mode,
15820                                          int scope_position) {
15821     uint32_t hash = source->Hash();
15822     if (shared->HasSourceCode()) {
15823       // Instead of using the SharedFunctionInfo pointer in the hash
15824       // code computation, we use a combination of the hash of the
15825       // script source code and the start position of the calling scope.
15826       // We do this to ensure that the cache entries can survive garbage
15827       // collection.
15828       Script* script(Script::cast(shared->script()));
15829       hash ^= String::cast(script->source())->Hash();
15830       STATIC_ASSERT(LANGUAGE_END == 3);
15831       if (is_strict(language_mode)) hash ^= 0x8000;
15832       hash += scope_position;
15833     }
15834     return hash;
15835   }
15836 
Hash()15837   uint32_t Hash() override {
15838     return StringSharedHashHelper(*source_, *shared_, language_mode_,
15839                                   scope_position_);
15840   }
15841 
HashForObject(Object * obj)15842   uint32_t HashForObject(Object* obj) override {
15843     DisallowHeapAllocation no_allocation;
15844     if (obj->IsNumber()) {
15845       return static_cast<uint32_t>(obj->Number());
15846     }
15847     FixedArray* other_array = FixedArray::cast(obj);
15848     SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
15849     String* source = String::cast(other_array->get(1));
15850     int language_unchecked = Smi::cast(other_array->get(2))->value();
15851     DCHECK(is_valid_language_mode(language_unchecked));
15852     LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
15853     int scope_position = Smi::cast(other_array->get(3))->value();
15854     return StringSharedHashHelper(source, shared, language_mode,
15855                                   scope_position);
15856   }
15857 
15858 
AsHandle(Isolate * isolate)15859   Handle<Object> AsHandle(Isolate* isolate) override {
15860     Handle<FixedArray> array = isolate->factory()->NewFixedArray(4);
15861     array->set(0, *shared_);
15862     array->set(1, *source_);
15863     array->set(2, Smi::FromInt(language_mode_));
15864     array->set(3, Smi::FromInt(scope_position_));
15865     return array;
15866   }
15867 
15868  private:
15869   Handle<String> source_;
15870   Handle<SharedFunctionInfo> shared_;
15871   LanguageMode language_mode_;
15872   int scope_position_;
15873 };
15874 
15875 
15876 namespace {
15877 
RegExpFlagsFromString(Handle<String> flags,bool * success)15878 JSRegExp::Flags RegExpFlagsFromString(Handle<String> flags, bool* success) {
15879   JSRegExp::Flags value = JSRegExp::kNone;
15880   int length = flags->length();
15881   // A longer flags string cannot be valid.
15882   if (length > 5) return JSRegExp::Flags(0);
15883   for (int i = 0; i < length; i++) {
15884     JSRegExp::Flag flag = JSRegExp::kNone;
15885     switch (flags->Get(i)) {
15886       case 'g':
15887         flag = JSRegExp::kGlobal;
15888         break;
15889       case 'i':
15890         flag = JSRegExp::kIgnoreCase;
15891         break;
15892       case 'm':
15893         flag = JSRegExp::kMultiline;
15894         break;
15895       case 'u':
15896         flag = JSRegExp::kUnicode;
15897         break;
15898       case 'y':
15899         flag = JSRegExp::kSticky;
15900         break;
15901       default:
15902         return JSRegExp::Flags(0);
15903     }
15904     // Duplicate flag.
15905     if (value & flag) return JSRegExp::Flags(0);
15906     value |= flag;
15907   }
15908   *success = true;
15909   return value;
15910 }
15911 
15912 }  // namespace
15913 
15914 
15915 // static
New(Handle<String> pattern,Flags flags)15916 MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern, Flags flags) {
15917   Isolate* isolate = pattern->GetIsolate();
15918   Handle<JSFunction> constructor = isolate->regexp_function();
15919   Handle<JSRegExp> regexp =
15920       Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor));
15921 
15922   return JSRegExp::Initialize(regexp, pattern, flags);
15923 }
15924 
15925 
15926 // static
Copy(Handle<JSRegExp> regexp)15927 Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) {
15928   Isolate* const isolate = regexp->GetIsolate();
15929   return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp));
15930 }
15931 
15932 
15933 template <typename Char>
CountRequiredEscapes(Handle<String> source)15934 inline int CountRequiredEscapes(Handle<String> source) {
15935   DisallowHeapAllocation no_gc;
15936   int escapes = 0;
15937   Vector<const Char> src = source->GetCharVector<Char>();
15938   for (int i = 0; i < src.length(); i++) {
15939     if (src[i] == '/' && (i == 0 || src[i - 1] != '\\')) escapes++;
15940   }
15941   return escapes;
15942 }
15943 
15944 
15945 template <typename Char, typename StringType>
WriteEscapedRegExpSource(Handle<String> source,Handle<StringType> result)15946 inline Handle<StringType> WriteEscapedRegExpSource(Handle<String> source,
15947                                                    Handle<StringType> result) {
15948   DisallowHeapAllocation no_gc;
15949   Vector<const Char> src = source->GetCharVector<Char>();
15950   Vector<Char> dst(result->GetChars(), result->length());
15951   int s = 0;
15952   int d = 0;
15953   while (s < src.length()) {
15954     if (src[s] == '/' && (s == 0 || src[s - 1] != '\\')) dst[d++] = '\\';
15955     dst[d++] = src[s++];
15956   }
15957   DCHECK_EQ(result->length(), d);
15958   return result;
15959 }
15960 
15961 
EscapeRegExpSource(Isolate * isolate,Handle<String> source)15962 MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
15963                                        Handle<String> source) {
15964   String::Flatten(source);
15965   if (source->length() == 0) return isolate->factory()->query_colon_string();
15966   bool one_byte = source->IsOneByteRepresentationUnderneath();
15967   int escapes = one_byte ? CountRequiredEscapes<uint8_t>(source)
15968                          : CountRequiredEscapes<uc16>(source);
15969   if (escapes == 0) return source;
15970   int length = source->length() + escapes;
15971   if (one_byte) {
15972     Handle<SeqOneByteString> result;
15973     ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
15974                                isolate->factory()->NewRawOneByteString(length),
15975                                String);
15976     return WriteEscapedRegExpSource<uint8_t>(source, result);
15977   } else {
15978     Handle<SeqTwoByteString> result;
15979     ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
15980                                isolate->factory()->NewRawTwoByteString(length),
15981                                String);
15982     return WriteEscapedRegExpSource<uc16>(source, result);
15983   }
15984 }
15985 
15986 
15987 // static
Initialize(Handle<JSRegExp> regexp,Handle<String> source,Handle<String> flags_string)15988 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
15989                                            Handle<String> source,
15990                                            Handle<String> flags_string) {
15991   Isolate* isolate = source->GetIsolate();
15992   bool success = false;
15993   Flags flags = RegExpFlagsFromString(flags_string, &success);
15994   if (!success) {
15995     THROW_NEW_ERROR(
15996         isolate,
15997         NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
15998         JSRegExp);
15999   }
16000   return Initialize(regexp, source, flags);
16001 }
16002 
16003 
16004 // static
Initialize(Handle<JSRegExp> regexp,Handle<String> source,Flags flags)16005 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
16006                                            Handle<String> source, Flags flags) {
16007   Isolate* isolate = regexp->GetIsolate();
16008   Factory* factory = isolate->factory();
16009   // If source is the empty string we set it to "(?:)" instead as
16010   // suggested by ECMA-262, 5th, section 15.10.4.1.
16011   if (source->length() == 0) source = factory->query_colon_string();
16012 
16013   Handle<String> escaped_source;
16014   ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source,
16015                              EscapeRegExpSource(isolate, source), JSRegExp);
16016 
16017   RETURN_ON_EXCEPTION(isolate, RegExpImpl::Compile(regexp, source, flags),
16018                       JSRegExp);
16019 
16020   regexp->set_source(*escaped_source);
16021   regexp->set_flags(Smi::FromInt(flags));
16022 
16023   Map* map = regexp->map();
16024   Object* constructor = map->GetConstructor();
16025   if (constructor->IsJSFunction() &&
16026       JSFunction::cast(constructor)->initial_map() == map) {
16027     // If we still have the original map, set in-object properties directly.
16028     regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex,
16029                                   Smi::FromInt(0), SKIP_WRITE_BARRIER);
16030   } else {
16031     // Map has changed, so use generic, but slower, method.
16032     PropertyAttributes writable =
16033         static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
16034     JSObject::SetOwnPropertyIgnoreAttributes(
16035         regexp, factory->last_index_string(),
16036         Handle<Smi>(Smi::FromInt(0), isolate), writable)
16037         .Check();
16038   }
16039 
16040   return regexp;
16041 }
16042 
16043 
16044 // RegExpKey carries the source and flags of a regular expression as key.
16045 class RegExpKey : public HashTableKey {
16046  public:
RegExpKey(Handle<String> string,JSRegExp::Flags flags)16047   RegExpKey(Handle<String> string, JSRegExp::Flags flags)
16048       : string_(string), flags_(Smi::FromInt(flags)) {}
16049 
16050   // Rather than storing the key in the hash table, a pointer to the
16051   // stored value is stored where the key should be.  IsMatch then
16052   // compares the search key to the found object, rather than comparing
16053   // a key to a key.
IsMatch(Object * obj)16054   bool IsMatch(Object* obj) override {
16055     FixedArray* val = FixedArray::cast(obj);
16056     return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
16057         && (flags_ == val->get(JSRegExp::kFlagsIndex));
16058   }
16059 
Hash()16060   uint32_t Hash() override { return RegExpHash(*string_, flags_); }
16061 
AsHandle(Isolate * isolate)16062   Handle<Object> AsHandle(Isolate* isolate) override {
16063     // Plain hash maps, which is where regexp keys are used, don't
16064     // use this function.
16065     UNREACHABLE();
16066     return MaybeHandle<Object>().ToHandleChecked();
16067   }
16068 
HashForObject(Object * obj)16069   uint32_t HashForObject(Object* obj) override {
16070     FixedArray* val = FixedArray::cast(obj);
16071     return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
16072                       Smi::cast(val->get(JSRegExp::kFlagsIndex)));
16073   }
16074 
RegExpHash(String * string,Smi * flags)16075   static uint32_t RegExpHash(String* string, Smi* flags) {
16076     return string->Hash() + flags->value();
16077   }
16078 
16079   Handle<String> string_;
16080   Smi* flags_;
16081 };
16082 
16083 
AsHandle(Isolate * isolate)16084 Handle<Object> OneByteStringKey::AsHandle(Isolate* isolate) {
16085   if (hash_field_ == 0) Hash();
16086   return isolate->factory()->NewOneByteInternalizedString(string_, hash_field_);
16087 }
16088 
16089 
AsHandle(Isolate * isolate)16090 Handle<Object> TwoByteStringKey::AsHandle(Isolate* isolate) {
16091   if (hash_field_ == 0) Hash();
16092   return isolate->factory()->NewTwoByteInternalizedString(string_, hash_field_);
16093 }
16094 
16095 
AsHandle(Isolate * isolate)16096 Handle<Object> SeqOneByteSubStringKey::AsHandle(Isolate* isolate) {
16097   if (hash_field_ == 0) Hash();
16098   return isolate->factory()->NewOneByteInternalizedSubString(
16099       string_, from_, length_, hash_field_);
16100 }
16101 
16102 
IsMatch(Object * string)16103 bool SeqOneByteSubStringKey::IsMatch(Object* string) {
16104   Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
16105   return String::cast(string)->IsOneByteEqualTo(chars);
16106 }
16107 
16108 
16109 // InternalizedStringKey carries a string/internalized-string object as key.
16110 class InternalizedStringKey : public HashTableKey {
16111  public:
InternalizedStringKey(Handle<String> string)16112   explicit InternalizedStringKey(Handle<String> string)
16113       : string_(String::Flatten(string)) {}
16114 
IsMatch(Object * string)16115   bool IsMatch(Object* string) override {
16116     return String::cast(string)->Equals(*string_);
16117   }
16118 
Hash()16119   uint32_t Hash() override { return string_->Hash(); }
16120 
HashForObject(Object * other)16121   uint32_t HashForObject(Object* other) override {
16122     return String::cast(other)->Hash();
16123   }
16124 
AsHandle(Isolate * isolate)16125   Handle<Object> AsHandle(Isolate* isolate) override {
16126     // Internalize the string if possible.
16127     MaybeHandle<Map> maybe_map =
16128         isolate->factory()->InternalizedStringMapForString(string_);
16129     Handle<Map> map;
16130     if (maybe_map.ToHandle(&map)) {
16131       string_->set_map_no_write_barrier(*map);
16132       DCHECK(string_->IsInternalizedString());
16133       return string_;
16134     }
16135     // Otherwise allocate a new internalized string.
16136     return isolate->factory()->NewInternalizedStringImpl(
16137         string_, string_->length(), string_->hash_field());
16138   }
16139 
StringHash(Object * obj)16140   static uint32_t StringHash(Object* obj) {
16141     return String::cast(obj)->Hash();
16142   }
16143 
16144   Handle<String> string_;
16145 };
16146 
16147 
16148 template<typename Derived, typename Shape, typename Key>
IteratePrefix(ObjectVisitor * v)16149 void HashTable<Derived, Shape, Key>::IteratePrefix(ObjectVisitor* v) {
16150   BodyDescriptorBase::IteratePointers(this, 0, kElementsStartOffset, v);
16151 }
16152 
16153 
16154 template<typename Derived, typename Shape, typename Key>
IterateElements(ObjectVisitor * v)16155 void HashTable<Derived, Shape, Key>::IterateElements(ObjectVisitor* v) {
16156   BodyDescriptorBase::IteratePointers(this, kElementsStartOffset,
16157                                       kHeaderSize + length() * kPointerSize, v);
16158 }
16159 
16160 
16161 template<typename Derived, typename Shape, typename Key>
New(Isolate * isolate,int at_least_space_for,MinimumCapacity capacity_option,PretenureFlag pretenure)16162 Handle<Derived> HashTable<Derived, Shape, Key>::New(
16163     Isolate* isolate,
16164     int at_least_space_for,
16165     MinimumCapacity capacity_option,
16166     PretenureFlag pretenure) {
16167   DCHECK(0 <= at_least_space_for);
16168   DCHECK(!capacity_option || base::bits::IsPowerOfTwo32(at_least_space_for));
16169 
16170   int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY)
16171                      ? at_least_space_for
16172                      : ComputeCapacity(at_least_space_for);
16173   if (capacity > HashTable::kMaxCapacity) {
16174     v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
16175   }
16176 
16177   Factory* factory = isolate->factory();
16178   int length = EntryToIndex(capacity);
16179   Handle<FixedArray> array = factory->NewFixedArray(length, pretenure);
16180   array->set_map_no_write_barrier(*factory->hash_table_map());
16181   Handle<Derived> table = Handle<Derived>::cast(array);
16182 
16183   table->SetNumberOfElements(0);
16184   table->SetNumberOfDeletedElements(0);
16185   table->SetCapacity(capacity);
16186   return table;
16187 }
16188 
16189 
16190 // Find entry for key otherwise return kNotFound.
16191 template <typename Derived, typename Shape>
FindEntry(Handle<Name> key)16192 int NameDictionaryBase<Derived, Shape>::FindEntry(Handle<Name> key) {
16193   if (!key->IsUniqueName()) {
16194     return DerivedDictionary::FindEntry(key);
16195   }
16196 
16197   // Optimized for unique names. Knowledge of the key type allows:
16198   // 1. Move the check if the key is unique out of the loop.
16199   // 2. Avoid comparing hash codes in unique-to-unique comparison.
16200   // 3. Detect a case when a dictionary key is not unique but the key is.
16201   //    In case of positive result the dictionary key may be replaced by the
16202   //    internalized string with minimal performance penalty. It gives a chance
16203   //    to perform further lookups in code stubs (and significant performance
16204   //    boost a certain style of code).
16205 
16206   // EnsureCapacity will guarantee the hash table is never full.
16207   uint32_t capacity = this->Capacity();
16208   uint32_t entry = Derived::FirstProbe(key->Hash(), capacity);
16209   uint32_t count = 1;
16210   Isolate* isolate = this->GetIsolate();
16211   while (true) {
16212     Object* element = this->KeyAt(entry);
16213     if (element->IsUndefined(isolate)) break;  // Empty entry.
16214     if (*key == element) return entry;
16215     DCHECK(element->IsTheHole(isolate) || element->IsUniqueName());
16216     entry = Derived::NextProbe(entry, count++, capacity);
16217   }
16218   return Derived::kNotFound;
16219 }
16220 
16221 
16222 template<typename Derived, typename Shape, typename Key>
Rehash(Handle<Derived> new_table,Key key)16223 void HashTable<Derived, Shape, Key>::Rehash(
16224     Handle<Derived> new_table,
16225     Key key) {
16226   DCHECK(NumberOfElements() < new_table->Capacity());
16227 
16228   DisallowHeapAllocation no_gc;
16229   WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc);
16230 
16231   // Copy prefix to new array.
16232   for (int i = kPrefixStartIndex;
16233        i < kPrefixStartIndex + Shape::kPrefixSize;
16234        i++) {
16235     new_table->set(i, get(i), mode);
16236   }
16237 
16238   // Rehash the elements.
16239   int capacity = this->Capacity();
16240   Heap* heap = new_table->GetHeap();
16241   Object* the_hole = heap->the_hole_value();
16242   Object* undefined = heap->undefined_value();
16243   for (int i = 0; i < capacity; i++) {
16244     uint32_t from_index = EntryToIndex(i);
16245     Object* k = this->get(from_index);
16246     if (k != the_hole && k != undefined) {
16247       uint32_t hash = this->HashForObject(key, k);
16248       uint32_t insertion_index =
16249           EntryToIndex(new_table->FindInsertionEntry(hash));
16250       for (int j = 0; j < Shape::kEntrySize; j++) {
16251         new_table->set(insertion_index + j, get(from_index + j), mode);
16252       }
16253     }
16254   }
16255   new_table->SetNumberOfElements(NumberOfElements());
16256   new_table->SetNumberOfDeletedElements(0);
16257 }
16258 
16259 
16260 template<typename Derived, typename Shape, typename Key>
EntryForProbe(Key key,Object * k,int probe,uint32_t expected)16261 uint32_t HashTable<Derived, Shape, Key>::EntryForProbe(
16262     Key key,
16263     Object* k,
16264     int probe,
16265     uint32_t expected) {
16266   uint32_t hash = this->HashForObject(key, k);
16267   uint32_t capacity = this->Capacity();
16268   uint32_t entry = FirstProbe(hash, capacity);
16269   for (int i = 1; i < probe; i++) {
16270     if (entry == expected) return expected;
16271     entry = NextProbe(entry, i, capacity);
16272   }
16273   return entry;
16274 }
16275 
16276 
16277 template<typename Derived, typename Shape, typename Key>
Swap(uint32_t entry1,uint32_t entry2,WriteBarrierMode mode)16278 void HashTable<Derived, Shape, Key>::Swap(uint32_t entry1,
16279                                           uint32_t entry2,
16280                                           WriteBarrierMode mode) {
16281   int index1 = EntryToIndex(entry1);
16282   int index2 = EntryToIndex(entry2);
16283   Object* temp[Shape::kEntrySize];
16284   for (int j = 0; j < Shape::kEntrySize; j++) {
16285     temp[j] = get(index1 + j);
16286   }
16287   for (int j = 0; j < Shape::kEntrySize; j++) {
16288     set(index1 + j, get(index2 + j), mode);
16289   }
16290   for (int j = 0; j < Shape::kEntrySize; j++) {
16291     set(index2 + j, temp[j], mode);
16292   }
16293 }
16294 
16295 
16296 template<typename Derived, typename Shape, typename Key>
Rehash(Key key)16297 void HashTable<Derived, Shape, Key>::Rehash(Key key) {
16298   DisallowHeapAllocation no_gc;
16299   WriteBarrierMode mode = GetWriteBarrierMode(no_gc);
16300   Isolate* isolate = GetIsolate();
16301   uint32_t capacity = Capacity();
16302   bool done = false;
16303   for (int probe = 1; !done; probe++) {
16304     // All elements at entries given by one of the first _probe_ probes
16305     // are placed correctly. Other elements might need to be moved.
16306     done = true;
16307     for (uint32_t current = 0; current < capacity; current++) {
16308       Object* current_key = KeyAt(current);
16309       if (IsKey(isolate, current_key)) {
16310         uint32_t target = EntryForProbe(key, current_key, probe, current);
16311         if (current == target) continue;
16312         Object* target_key = KeyAt(target);
16313         if (!IsKey(target_key) ||
16314             EntryForProbe(key, target_key, probe, target) != target) {
16315           // Put the current element into the correct position.
16316           Swap(current, target, mode);
16317           // The other element will be processed on the next iteration.
16318           current--;
16319         } else {
16320           // The place for the current element is occupied. Leave the element
16321           // for the next probe.
16322           done = false;
16323         }
16324       }
16325     }
16326   }
16327   // Wipe deleted entries.
16328   Object* the_hole = isolate->heap()->the_hole_value();
16329   Object* undefined = isolate->heap()->undefined_value();
16330   for (uint32_t current = 0; current < capacity; current++) {
16331     if (KeyAt(current) == the_hole) {
16332       set(EntryToIndex(current) + Derived::kEntryKeyIndex, undefined);
16333     }
16334   }
16335   SetNumberOfDeletedElements(0);
16336 }
16337 
16338 
16339 template<typename Derived, typename Shape, typename Key>
EnsureCapacity(Handle<Derived> table,int n,Key key,PretenureFlag pretenure)16340 Handle<Derived> HashTable<Derived, Shape, Key>::EnsureCapacity(
16341     Handle<Derived> table,
16342     int n,
16343     Key key,
16344     PretenureFlag pretenure) {
16345   Isolate* isolate = table->GetIsolate();
16346   int capacity = table->Capacity();
16347   int nof = table->NumberOfElements() + n;
16348 
16349   if (table->HasSufficientCapacityToAdd(n)) return table;
16350 
16351   const int kMinCapacityForPretenure = 256;
16352   bool should_pretenure = pretenure == TENURED ||
16353       ((capacity > kMinCapacityForPretenure) &&
16354           !isolate->heap()->InNewSpace(*table));
16355   Handle<Derived> new_table = HashTable::New(
16356       isolate,
16357       nof * 2,
16358       USE_DEFAULT_MINIMUM_CAPACITY,
16359       should_pretenure ? TENURED : NOT_TENURED);
16360 
16361   table->Rehash(new_table, key);
16362   return new_table;
16363 }
16364 
16365 template <typename Derived, typename Shape, typename Key>
HasSufficientCapacityToAdd(int number_of_additional_elements)16366 bool HashTable<Derived, Shape, Key>::HasSufficientCapacityToAdd(
16367     int number_of_additional_elements) {
16368   int capacity = Capacity();
16369   int nof = NumberOfElements() + number_of_additional_elements;
16370   int nod = NumberOfDeletedElements();
16371   // Return true if:
16372   //   50% is still free after adding number_of_additional_elements elements and
16373   //   at most 50% of the free elements are deleted elements.
16374   if ((nof < capacity) && ((nod <= (capacity - nof) >> 1))) {
16375     int needed_free = nof >> 1;
16376     if (nof + needed_free <= capacity) return true;
16377   }
16378   return false;
16379 }
16380 
16381 
16382 template<typename Derived, typename Shape, typename Key>
Shrink(Handle<Derived> table,Key key)16383 Handle<Derived> HashTable<Derived, Shape, Key>::Shrink(Handle<Derived> table,
16384                                                        Key key) {
16385   int capacity = table->Capacity();
16386   int nof = table->NumberOfElements();
16387 
16388   // Shrink to fit the number of elements if only a quarter of the
16389   // capacity is filled with elements.
16390   if (nof > (capacity >> 2)) return table;
16391   // Allocate a new dictionary with room for at least the current
16392   // number of elements. The allocation method will make sure that
16393   // there is extra room in the dictionary for additions. Don't go
16394   // lower than room for 16 elements.
16395   int at_least_room_for = nof;
16396   if (at_least_room_for < 16) return table;
16397 
16398   Isolate* isolate = table->GetIsolate();
16399   const int kMinCapacityForPretenure = 256;
16400   bool pretenure =
16401       (at_least_room_for > kMinCapacityForPretenure) &&
16402       !isolate->heap()->InNewSpace(*table);
16403   Handle<Derived> new_table = HashTable::New(
16404       isolate,
16405       at_least_room_for,
16406       USE_DEFAULT_MINIMUM_CAPACITY,
16407       pretenure ? TENURED : NOT_TENURED);
16408 
16409   table->Rehash(new_table, key);
16410   return new_table;
16411 }
16412 
16413 
16414 template<typename Derived, typename Shape, typename Key>
FindInsertionEntry(uint32_t hash)16415 uint32_t HashTable<Derived, Shape, Key>::FindInsertionEntry(uint32_t hash) {
16416   uint32_t capacity = Capacity();
16417   uint32_t entry = FirstProbe(hash, capacity);
16418   uint32_t count = 1;
16419   // EnsureCapacity will guarantee the hash table is never full.
16420   Isolate* isolate = GetIsolate();
16421   while (true) {
16422     Object* element = KeyAt(entry);
16423     if (!IsKey(isolate, element)) break;
16424     entry = NextProbe(entry, count++, capacity);
16425   }
16426   return entry;
16427 }
16428 
16429 
16430 // Force instantiation of template instances class.
16431 // Please note this list is compiler dependent.
16432 
16433 template class HashTable<StringTable, StringTableShape, HashTableKey*>;
16434 
16435 template class HashTable<CompilationCacheTable,
16436                          CompilationCacheShape,
16437                          HashTableKey*>;
16438 
16439 template class HashTable<ObjectHashTable,
16440                          ObjectHashTableShape,
16441                          Handle<Object> >;
16442 
16443 template class HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> >;
16444 
16445 template class Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >;
16446 
16447 template class Dictionary<GlobalDictionary, GlobalDictionaryShape,
16448                           Handle<Name> >;
16449 
16450 template class Dictionary<SeededNumberDictionary,
16451                           SeededNumberDictionaryShape,
16452                           uint32_t>;
16453 
16454 template class Dictionary<UnseededNumberDictionary,
16455                           UnseededNumberDictionaryShape,
16456                           uint32_t>;
16457 
16458 template Handle<SeededNumberDictionary>
16459 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16460     New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
16461 
16462 template Handle<UnseededNumberDictionary>
16463 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16464     New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
16465 
16466 template Handle<NameDictionary>
16467 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
16468     New(Isolate*, int n, PretenureFlag pretenure);
16469 
16470 template Handle<GlobalDictionary>
16471 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::New(
16472     Isolate*, int n, PretenureFlag pretenure);
16473 
16474 template Handle<SeededNumberDictionary>
16475 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16476     AtPut(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>);
16477 
16478 template Handle<UnseededNumberDictionary>
16479 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16480     AtPut(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>);
16481 
16482 template Object*
16483 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16484     SlowReverseLookup(Object* value);
16485 
16486 template Object*
16487 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
16488     SlowReverseLookup(Object* value);
16489 
16490 template Handle<Object>
16491 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::DeleteProperty(
16492     Handle<NameDictionary>, int);
16493 
16494 template Handle<Object>
16495 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape,
16496            uint32_t>::DeleteProperty(Handle<SeededNumberDictionary>, int);
16497 
16498 template Handle<Object>
16499 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape,
16500            uint32_t>::DeleteProperty(Handle<UnseededNumberDictionary>, int);
16501 
16502 template Handle<NameDictionary>
16503 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
16504     New(Isolate*, int, MinimumCapacity, PretenureFlag);
16505 
16506 template Handle<NameDictionary>
16507 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
16508     Shrink(Handle<NameDictionary>, Handle<Name>);
16509 
16510 template Handle<SeededNumberDictionary>
16511 HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16512     Shrink(Handle<SeededNumberDictionary>, uint32_t);
16513 
16514 template Handle<UnseededNumberDictionary>
16515     HashTable<UnseededNumberDictionary, UnseededNumberDictionaryShape,
16516               uint32_t>::Shrink(Handle<UnseededNumberDictionary>, uint32_t);
16517 
16518 template Handle<NameDictionary>
16519 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::Add(
16520     Handle<NameDictionary>, Handle<Name>, Handle<Object>, PropertyDetails);
16521 
16522 template Handle<GlobalDictionary>
16523     Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::Add(
16524         Handle<GlobalDictionary>, Handle<Name>, Handle<Object>,
16525         PropertyDetails);
16526 
16527 template Handle<FixedArray> Dictionary<
16528     NameDictionary, NameDictionaryShape,
16529     Handle<Name> >::BuildIterationIndicesArray(Handle<NameDictionary>);
16530 
16531 template Handle<FixedArray> Dictionary<
16532     NameDictionary, NameDictionaryShape,
16533     Handle<Name> >::GenerateNewEnumerationIndices(Handle<NameDictionary>);
16534 
16535 template Handle<SeededNumberDictionary>
16536 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16537     Add(Handle<SeededNumberDictionary>,
16538         uint32_t,
16539         Handle<Object>,
16540         PropertyDetails);
16541 
16542 template Handle<UnseededNumberDictionary>
16543 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16544     Add(Handle<UnseededNumberDictionary>,
16545         uint32_t,
16546         Handle<Object>,
16547         PropertyDetails);
16548 
16549 template Handle<SeededNumberDictionary>
16550 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16551     EnsureCapacity(Handle<SeededNumberDictionary>, int, uint32_t);
16552 
16553 template Handle<UnseededNumberDictionary>
16554 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16555     EnsureCapacity(Handle<UnseededNumberDictionary>, int, uint32_t);
16556 
16557 template void Dictionary<NameDictionary, NameDictionaryShape,
16558                          Handle<Name> >::SetRequiresCopyOnCapacityChange();
16559 
16560 template Handle<NameDictionary>
16561 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
16562     EnsureCapacity(Handle<NameDictionary>, int, Handle<Name>);
16563 
16564 template int HashTable<SeededNumberDictionary, SeededNumberDictionaryShape,
16565                        uint32_t>::FindEntry(uint32_t);
16566 
16567 template int NameDictionaryBase<NameDictionary, NameDictionaryShape>::FindEntry(
16568     Handle<Name>);
16569 
16570 template int Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name>>::
16571     NumberOfElementsFilterAttributes(PropertyFilter filter);
16572 
16573 template int Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>::
16574     NumberOfElementsFilterAttributes(PropertyFilter filter);
16575 
16576 template void Dictionary<GlobalDictionary, GlobalDictionaryShape,
16577                          Handle<Name>>::CopyEnumKeysTo(FixedArray* storage);
16578 
16579 template void Dictionary<NameDictionary, NameDictionaryShape,
16580                          Handle<Name>>::CopyEnumKeysTo(FixedArray* storage);
16581 
16582 template void
16583 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name>>::
16584     CollectKeysTo(Handle<Dictionary<GlobalDictionary, GlobalDictionaryShape,
16585                                     Handle<Name>>>
16586                       dictionary,
16587                   KeyAccumulator* keys, PropertyFilter filter);
16588 
16589 template void
16590 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>::CollectKeysTo(
16591     Handle<Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>>
16592         dictionary,
16593     KeyAccumulator* keys, PropertyFilter filter);
16594 
PrepareSlowElementsForSort(Handle<JSObject> object,uint32_t limit)16595 Handle<Object> JSObject::PrepareSlowElementsForSort(
16596     Handle<JSObject> object, uint32_t limit) {
16597   DCHECK(object->HasDictionaryElements());
16598   Isolate* isolate = object->GetIsolate();
16599   // Must stay in dictionary mode, either because of requires_slow_elements,
16600   // or because we are not going to sort (and therefore compact) all of the
16601   // elements.
16602   Handle<SeededNumberDictionary> dict(object->element_dictionary(), isolate);
16603   Handle<SeededNumberDictionary> new_dict =
16604       SeededNumberDictionary::New(isolate, dict->NumberOfElements());
16605 
16606   uint32_t pos = 0;
16607   uint32_t undefs = 0;
16608   int capacity = dict->Capacity();
16609   Handle<Smi> bailout(Smi::FromInt(-1), isolate);
16610   // Entry to the new dictionary does not cause it to grow, as we have
16611   // allocated one that is large enough for all entries.
16612   DisallowHeapAllocation no_gc;
16613   for (int i = 0; i < capacity; i++) {
16614     Object* k = dict->KeyAt(i);
16615     if (!dict->IsKey(isolate, k)) continue;
16616 
16617     DCHECK(k->IsNumber());
16618     DCHECK(!k->IsSmi() || Smi::cast(k)->value() >= 0);
16619     DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
16620     DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
16621 
16622     HandleScope scope(isolate);
16623     Handle<Object> value(dict->ValueAt(i), isolate);
16624     PropertyDetails details = dict->DetailsAt(i);
16625     if (details.type() == ACCESSOR_CONSTANT || details.IsReadOnly()) {
16626       // Bail out and do the sorting of undefineds and array holes in JS.
16627       // Also bail out if the element is not supposed to be moved.
16628       return bailout;
16629     }
16630 
16631     uint32_t key = NumberToUint32(k);
16632     if (key < limit) {
16633       if (value->IsUndefined(isolate)) {
16634         undefs++;
16635       } else if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
16636         // Adding an entry with the key beyond smi-range requires
16637         // allocation. Bailout.
16638         return bailout;
16639       } else {
16640         Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
16641             new_dict, pos, value, details, object->map()->is_prototype_map());
16642         DCHECK(result.is_identical_to(new_dict));
16643         USE(result);
16644         pos++;
16645       }
16646     } else if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
16647       // Adding an entry with the key beyond smi-range requires
16648       // allocation. Bailout.
16649       return bailout;
16650     } else {
16651       Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
16652           new_dict, key, value, details, object->map()->is_prototype_map());
16653       DCHECK(result.is_identical_to(new_dict));
16654       USE(result);
16655     }
16656   }
16657 
16658   uint32_t result = pos;
16659   PropertyDetails no_details = PropertyDetails::Empty();
16660   while (undefs > 0) {
16661     if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
16662       // Adding an entry with the key beyond smi-range requires
16663       // allocation. Bailout.
16664       return bailout;
16665     }
16666     HandleScope scope(isolate);
16667     Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
16668         new_dict, pos, isolate->factory()->undefined_value(), no_details,
16669         object->map()->is_prototype_map());
16670     DCHECK(result.is_identical_to(new_dict));
16671     USE(result);
16672     pos++;
16673     undefs--;
16674   }
16675 
16676   object->set_elements(*new_dict);
16677 
16678   AllowHeapAllocation allocate_return_value;
16679   return isolate->factory()->NewNumberFromUint(result);
16680 }
16681 
16682 
16683 // Collects all defined (non-hole) and non-undefined (array) elements at
16684 // the start of the elements array.
16685 // If the object is in dictionary mode, it is converted to fast elements
16686 // mode.
PrepareElementsForSort(Handle<JSObject> object,uint32_t limit)16687 Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object,
16688                                                 uint32_t limit) {
16689   Isolate* isolate = object->GetIsolate();
16690   if (object->HasSloppyArgumentsElements()) {
16691     return handle(Smi::FromInt(-1), isolate);
16692   }
16693 
16694   if (object->HasStringWrapperElements()) {
16695     int len = String::cast(Handle<JSValue>::cast(object)->value())->length();
16696     return handle(Smi::FromInt(len), isolate);
16697   }
16698 
16699   if (object->HasDictionaryElements()) {
16700     // Convert to fast elements containing only the existing properties.
16701     // Ordering is irrelevant, since we are going to sort anyway.
16702     Handle<SeededNumberDictionary> dict(object->element_dictionary());
16703     if (object->IsJSArray() || dict->requires_slow_elements() ||
16704         dict->max_number_key() >= limit) {
16705       return JSObject::PrepareSlowElementsForSort(object, limit);
16706     }
16707     // Convert to fast elements.
16708 
16709     Handle<Map> new_map =
16710         JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS);
16711 
16712     PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ?
16713         NOT_TENURED: TENURED;
16714     Handle<FixedArray> fast_elements =
16715         isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure);
16716     dict->CopyValuesTo(*fast_elements);
16717     JSObject::ValidateElements(object);
16718 
16719     JSObject::SetMapAndElements(object, new_map, fast_elements);
16720   } else if (object->HasFixedTypedArrayElements()) {
16721     // Typed arrays cannot have holes or undefined elements.
16722     return handle(Smi::FromInt(
16723         FixedArrayBase::cast(object->elements())->length()), isolate);
16724   } else if (!object->HasFastDoubleElements()) {
16725     EnsureWritableFastElements(object);
16726   }
16727   DCHECK(object->HasFastSmiOrObjectElements() ||
16728          object->HasFastDoubleElements());
16729 
16730   // Collect holes at the end, undefined before that and the rest at the
16731   // start, and return the number of non-hole, non-undefined values.
16732 
16733   Handle<FixedArrayBase> elements_base(object->elements());
16734   uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
16735   if (limit > elements_length) {
16736     limit = elements_length;
16737   }
16738   if (limit == 0) {
16739     return handle(Smi::FromInt(0), isolate);
16740   }
16741 
16742   uint32_t result = 0;
16743   if (elements_base->map() == isolate->heap()->fixed_double_array_map()) {
16744     FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base);
16745     // Split elements into defined and the_hole, in that order.
16746     unsigned int holes = limit;
16747     // Assume most arrays contain no holes and undefined values, so minimize the
16748     // number of stores of non-undefined, non-the-hole values.
16749     for (unsigned int i = 0; i < holes; i++) {
16750       if (elements->is_the_hole(i)) {
16751         holes--;
16752       } else {
16753         continue;
16754       }
16755       // Position i needs to be filled.
16756       while (holes > i) {
16757         if (elements->is_the_hole(holes)) {
16758           holes--;
16759         } else {
16760           elements->set(i, elements->get_scalar(holes));
16761           break;
16762         }
16763       }
16764     }
16765     result = holes;
16766     while (holes < limit) {
16767       elements->set_the_hole(holes);
16768       holes++;
16769     }
16770   } else {
16771     FixedArray* elements = FixedArray::cast(*elements_base);
16772     DisallowHeapAllocation no_gc;
16773 
16774     // Split elements into defined, undefined and the_hole, in that order.  Only
16775     // count locations for undefined and the hole, and fill them afterwards.
16776     WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
16777     unsigned int undefs = limit;
16778     unsigned int holes = limit;
16779     // Assume most arrays contain no holes and undefined values, so minimize the
16780     // number of stores of non-undefined, non-the-hole values.
16781     for (unsigned int i = 0; i < undefs; i++) {
16782       Object* current = elements->get(i);
16783       if (current->IsTheHole(isolate)) {
16784         holes--;
16785         undefs--;
16786       } else if (current->IsUndefined(isolate)) {
16787         undefs--;
16788       } else {
16789         continue;
16790       }
16791       // Position i needs to be filled.
16792       while (undefs > i) {
16793         current = elements->get(undefs);
16794         if (current->IsTheHole(isolate)) {
16795           holes--;
16796           undefs--;
16797         } else if (current->IsUndefined(isolate)) {
16798           undefs--;
16799         } else {
16800           elements->set(i, current, write_barrier);
16801           break;
16802         }
16803       }
16804     }
16805     result = undefs;
16806     while (undefs < holes) {
16807       elements->set_undefined(undefs);
16808       undefs++;
16809     }
16810     while (holes < limit) {
16811       elements->set_the_hole(holes);
16812       holes++;
16813     }
16814   }
16815 
16816   return isolate->factory()->NewNumberFromUint(result);
16817 }
16818 
16819 
type()16820 ExternalArrayType JSTypedArray::type() {
16821   switch (elements()->map()->instance_type()) {
16822 #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size)            \
16823     case FIXED_##TYPE##_ARRAY_TYPE:                                           \
16824       return kExternal##Type##Array;
16825 
16826     TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE)
16827 #undef INSTANCE_TYPE_TO_ARRAY_TYPE
16828 
16829     default:
16830       UNREACHABLE();
16831       return static_cast<ExternalArrayType>(-1);
16832   }
16833 }
16834 
16835 
element_size()16836 size_t JSTypedArray::element_size() {
16837   switch (elements()->map()->instance_type()) {
16838 #define INSTANCE_TYPE_TO_ELEMENT_SIZE(Type, type, TYPE, ctype, size) \
16839   case FIXED_##TYPE##_ARRAY_TYPE:                                    \
16840     return size;
16841 
16842     TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENT_SIZE)
16843 #undef INSTANCE_TYPE_TO_ELEMENT_SIZE
16844 
16845     default:
16846       UNREACHABLE();
16847       return 0;
16848   }
16849 }
16850 
16851 
InvalidatePropertyCell(Handle<JSGlobalObject> global,Handle<Name> name)16852 void JSGlobalObject::InvalidatePropertyCell(Handle<JSGlobalObject> global,
16853                                             Handle<Name> name) {
16854   DCHECK(!global->HasFastProperties());
16855   auto dictionary = handle(global->global_dictionary());
16856   int entry = dictionary->FindEntry(name);
16857   if (entry == GlobalDictionary::kNotFound) return;
16858   PropertyCell::InvalidateEntry(dictionary, entry);
16859 }
16860 
16861 
16862 // TODO(ishell): rename to EnsureEmptyPropertyCell or something.
EnsurePropertyCell(Handle<JSGlobalObject> global,Handle<Name> name)16863 Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell(
16864     Handle<JSGlobalObject> global, Handle<Name> name) {
16865   Isolate* isolate = global->GetIsolate();
16866   DCHECK(!global->HasFastProperties());
16867   auto dictionary = handle(global->global_dictionary(), isolate);
16868   int entry = dictionary->FindEntry(name);
16869   Handle<PropertyCell> cell;
16870   if (entry != GlobalDictionary::kNotFound) {
16871     // This call should be idempotent.
16872     DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
16873     cell = handle(PropertyCell::cast(dictionary->ValueAt(entry)));
16874     DCHECK(cell->property_details().cell_type() ==
16875                PropertyCellType::kUninitialized ||
16876            cell->property_details().cell_type() ==
16877                PropertyCellType::kInvalidated);
16878     DCHECK(cell->value()->IsTheHole(isolate));
16879     return cell;
16880   }
16881   cell = isolate->factory()->NewPropertyCell();
16882   PropertyDetails details(NONE, DATA, 0, PropertyCellType::kUninitialized);
16883   dictionary = GlobalDictionary::Add(dictionary, name, cell, details);
16884   global->set_properties(*dictionary);
16885   return cell;
16886 }
16887 
16888 
16889 // This class is used for looking up two character strings in the string table.
16890 // If we don't have a hit we don't want to waste much time so we unroll the
16891 // string hash calculation loop here for speed.  Doesn't work if the two
16892 // characters form a decimal integer, since such strings have a different hash
16893 // algorithm.
16894 class TwoCharHashTableKey : public HashTableKey {
16895  public:
TwoCharHashTableKey(uint16_t c1,uint16_t c2,uint32_t seed)16896   TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
16897     : c1_(c1), c2_(c2) {
16898     // Char 1.
16899     uint32_t hash = seed;
16900     hash += c1;
16901     hash += hash << 10;
16902     hash ^= hash >> 6;
16903     // Char 2.
16904     hash += c2;
16905     hash += hash << 10;
16906     hash ^= hash >> 6;
16907     // GetHash.
16908     hash += hash << 3;
16909     hash ^= hash >> 11;
16910     hash += hash << 15;
16911     if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
16912     hash_ = hash;
16913 #ifdef DEBUG
16914     // If this assert fails then we failed to reproduce the two-character
16915     // version of the string hashing algorithm above.  One reason could be
16916     // that we were passed two digits as characters, since the hash
16917     // algorithm is different in that case.
16918     uint16_t chars[2] = {c1, c2};
16919     uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
16920     hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
16921     DCHECK_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
16922 #endif
16923   }
16924 
IsMatch(Object * o)16925   bool IsMatch(Object* o) override {
16926     if (!o->IsString()) return false;
16927     String* other = String::cast(o);
16928     if (other->length() != 2) return false;
16929     if (other->Get(0) != c1_) return false;
16930     return other->Get(1) == c2_;
16931   }
16932 
Hash()16933   uint32_t Hash() override { return hash_; }
HashForObject(Object * key)16934   uint32_t HashForObject(Object* key) override {
16935     if (!key->IsString()) return 0;
16936     return String::cast(key)->Hash();
16937   }
16938 
AsHandle(Isolate * isolate)16939   Handle<Object> AsHandle(Isolate* isolate) override {
16940     // The TwoCharHashTableKey is only used for looking in the string
16941     // table, not for adding to it.
16942     UNREACHABLE();
16943     return MaybeHandle<Object>().ToHandleChecked();
16944   }
16945 
16946  private:
16947   uint16_t c1_;
16948   uint16_t c2_;
16949   uint32_t hash_;
16950 };
16951 
16952 
InternalizeStringIfExists(Isolate * isolate,Handle<String> string)16953 MaybeHandle<String> StringTable::InternalizeStringIfExists(
16954     Isolate* isolate,
16955     Handle<String> string) {
16956   if (string->IsInternalizedString()) {
16957     return string;
16958   }
16959   return LookupStringIfExists(isolate, string);
16960 }
16961 
16962 
LookupStringIfExists(Isolate * isolate,Handle<String> string)16963 MaybeHandle<String> StringTable::LookupStringIfExists(
16964     Isolate* isolate,
16965     Handle<String> string) {
16966   Handle<StringTable> string_table = isolate->factory()->string_table();
16967   InternalizedStringKey key(string);
16968   int entry = string_table->FindEntry(&key);
16969   if (entry == kNotFound) {
16970     return MaybeHandle<String>();
16971   } else {
16972     Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
16973     DCHECK(StringShape(*result).IsInternalized());
16974     return result;
16975   }
16976 }
16977 
16978 
LookupTwoCharsStringIfExists(Isolate * isolate,uint16_t c1,uint16_t c2)16979 MaybeHandle<String> StringTable::LookupTwoCharsStringIfExists(
16980     Isolate* isolate,
16981     uint16_t c1,
16982     uint16_t c2) {
16983   Handle<StringTable> string_table = isolate->factory()->string_table();
16984   TwoCharHashTableKey key(c1, c2, isolate->heap()->HashSeed());
16985   int entry = string_table->FindEntry(&key);
16986   if (entry == kNotFound) {
16987     return MaybeHandle<String>();
16988   } else {
16989     Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
16990     DCHECK(StringShape(*result).IsInternalized());
16991     return result;
16992   }
16993 }
16994 
16995 
EnsureCapacityForDeserialization(Isolate * isolate,int expected)16996 void StringTable::EnsureCapacityForDeserialization(Isolate* isolate,
16997                                                    int expected) {
16998   Handle<StringTable> table = isolate->factory()->string_table();
16999   // We need a key instance for the virtual hash function.
17000   InternalizedStringKey dummy_key(isolate->factory()->empty_string());
17001   table = StringTable::EnsureCapacity(table, expected, &dummy_key);
17002   isolate->heap()->SetRootStringTable(*table);
17003 }
17004 
17005 
LookupString(Isolate * isolate,Handle<String> string)17006 Handle<String> StringTable::LookupString(Isolate* isolate,
17007                                          Handle<String> string) {
17008   if (string->IsConsString() && string->IsFlat()) {
17009     string = String::Flatten(string);
17010     if (string->IsInternalizedString()) return string;
17011   }
17012 
17013   InternalizedStringKey key(string);
17014   Handle<String> result = LookupKey(isolate, &key);
17015 
17016   if (string->IsConsString()) {
17017     Handle<ConsString> cons = Handle<ConsString>::cast(string);
17018     cons->set_first(*result);
17019     cons->set_second(isolate->heap()->empty_string());
17020   } else if (string->IsSlicedString()) {
17021     STATIC_ASSERT(ConsString::kSize == SlicedString::kSize);
17022     DisallowHeapAllocation no_gc;
17023     bool one_byte = result->IsOneByteRepresentation();
17024     Handle<Map> map = one_byte ? isolate->factory()->cons_one_byte_string_map()
17025                                : isolate->factory()->cons_string_map();
17026     string->set_map(*map);
17027     Handle<ConsString> cons = Handle<ConsString>::cast(string);
17028     cons->set_first(*result);
17029     cons->set_second(isolate->heap()->empty_string());
17030   }
17031   return result;
17032 }
17033 
17034 
LookupKey(Isolate * isolate,HashTableKey * key)17035 Handle<String> StringTable::LookupKey(Isolate* isolate, HashTableKey* key) {
17036   Handle<StringTable> table = isolate->factory()->string_table();
17037   int entry = table->FindEntry(key);
17038 
17039   // String already in table.
17040   if (entry != kNotFound) {
17041     return handle(String::cast(table->KeyAt(entry)), isolate);
17042   }
17043 
17044   // Adding new string. Grow table if needed.
17045   table = StringTable::EnsureCapacity(table, 1, key);
17046 
17047   // Create string object.
17048   Handle<Object> string = key->AsHandle(isolate);
17049   // There must be no attempts to internalize strings that could throw
17050   // InvalidStringLength error.
17051   CHECK(!string.is_null());
17052 
17053   // Add the new string and return it along with the string table.
17054   entry = table->FindInsertionEntry(key->Hash());
17055   table->set(EntryToIndex(entry), *string);
17056   table->ElementAdded();
17057 
17058   isolate->heap()->SetRootStringTable(*table);
17059   return Handle<String>::cast(string);
17060 }
17061 
17062 
LookupKeyIfExists(Isolate * isolate,HashTableKey * key)17063 String* StringTable::LookupKeyIfExists(Isolate* isolate, HashTableKey* key) {
17064   Handle<StringTable> table = isolate->factory()->string_table();
17065   int entry = table->FindEntry(key);
17066   if (entry != kNotFound) return String::cast(table->KeyAt(entry));
17067   return NULL;
17068 }
17069 
New(Isolate * isolate)17070 Handle<StringSet> StringSet::New(Isolate* isolate) {
17071   return HashTable::New(isolate, 0);
17072 }
17073 
Add(Handle<StringSet> stringset,Handle<String> name)17074 Handle<StringSet> StringSet::Add(Handle<StringSet> stringset,
17075                                  Handle<String> name) {
17076   if (!stringset->Has(name)) {
17077     stringset = EnsureCapacity(stringset, 1, *name);
17078     uint32_t hash = StringSetShape::Hash(*name);
17079     int entry = stringset->FindInsertionEntry(hash);
17080     stringset->set(EntryToIndex(entry), *name);
17081     stringset->ElementAdded();
17082   }
17083   return stringset;
17084 }
17085 
Has(Handle<String> name)17086 bool StringSet::Has(Handle<String> name) {
17087   return FindEntry(*name) != kNotFound;
17088 }
17089 
Lookup(Handle<String> src,Handle<Context> context,LanguageMode language_mode)17090 Handle<Object> CompilationCacheTable::Lookup(Handle<String> src,
17091                                              Handle<Context> context,
17092                                              LanguageMode language_mode) {
17093   Isolate* isolate = GetIsolate();
17094   Handle<SharedFunctionInfo> shared(context->closure()->shared());
17095   StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
17096   int entry = FindEntry(&key);
17097   if (entry == kNotFound) return isolate->factory()->undefined_value();
17098   int index = EntryToIndex(entry);
17099   if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
17100   return Handle<Object>(get(index + 1), isolate);
17101 }
17102 
17103 
LookupEval(Handle<String> src,Handle<SharedFunctionInfo> outer_info,LanguageMode language_mode,int scope_position)17104 Handle<Object> CompilationCacheTable::LookupEval(
17105     Handle<String> src, Handle<SharedFunctionInfo> outer_info,
17106     LanguageMode language_mode, int scope_position) {
17107   Isolate* isolate = GetIsolate();
17108   // Cache key is the tuple (source, outer shared function info, scope position)
17109   // to unambiguously identify the context chain the cached eval code assumes.
17110   StringSharedKey key(src, outer_info, language_mode, scope_position);
17111   int entry = FindEntry(&key);
17112   if (entry == kNotFound) return isolate->factory()->undefined_value();
17113   int index = EntryToIndex(entry);
17114   if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
17115   return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
17116 }
17117 
17118 
LookupRegExp(Handle<String> src,JSRegExp::Flags flags)17119 Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src,
17120                                                    JSRegExp::Flags flags) {
17121   Isolate* isolate = GetIsolate();
17122   DisallowHeapAllocation no_allocation;
17123   RegExpKey key(src, flags);
17124   int entry = FindEntry(&key);
17125   if (entry == kNotFound) return isolate->factory()->undefined_value();
17126   return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
17127 }
17128 
17129 
Put(Handle<CompilationCacheTable> cache,Handle<String> src,Handle<Context> context,LanguageMode language_mode,Handle<Object> value)17130 Handle<CompilationCacheTable> CompilationCacheTable::Put(
17131     Handle<CompilationCacheTable> cache, Handle<String> src,
17132     Handle<Context> context, LanguageMode language_mode, Handle<Object> value) {
17133   Isolate* isolate = cache->GetIsolate();
17134   Handle<SharedFunctionInfo> shared(context->closure()->shared());
17135   StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
17136   Handle<Object> k = key.AsHandle(isolate);
17137   cache = EnsureCapacity(cache, 1, &key);
17138   int entry = cache->FindInsertionEntry(key.Hash());
17139   cache->set(EntryToIndex(entry), *k);
17140   cache->set(EntryToIndex(entry) + 1, *value);
17141   cache->ElementAdded();
17142   return cache;
17143 }
17144 
17145 
PutEval(Handle<CompilationCacheTable> cache,Handle<String> src,Handle<SharedFunctionInfo> outer_info,Handle<SharedFunctionInfo> value,int scope_position)17146 Handle<CompilationCacheTable> CompilationCacheTable::PutEval(
17147     Handle<CompilationCacheTable> cache, Handle<String> src,
17148     Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value,
17149     int scope_position) {
17150   Isolate* isolate = cache->GetIsolate();
17151   StringSharedKey key(src, outer_info, value->language_mode(), scope_position);
17152   {
17153     Handle<Object> k = key.AsHandle(isolate);
17154     DisallowHeapAllocation no_allocation_scope;
17155     int entry = cache->FindEntry(&key);
17156     if (entry != kNotFound) {
17157       cache->set(EntryToIndex(entry), *k);
17158       cache->set(EntryToIndex(entry) + 1, *value);
17159       return cache;
17160     }
17161   }
17162 
17163   cache = EnsureCapacity(cache, 1, &key);
17164   int entry = cache->FindInsertionEntry(key.Hash());
17165   Handle<Object> k =
17166       isolate->factory()->NewNumber(static_cast<double>(key.Hash()));
17167   cache->set(EntryToIndex(entry), *k);
17168   cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations));
17169   cache->ElementAdded();
17170   return cache;
17171 }
17172 
17173 
PutRegExp(Handle<CompilationCacheTable> cache,Handle<String> src,JSRegExp::Flags flags,Handle<FixedArray> value)17174 Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp(
17175       Handle<CompilationCacheTable> cache, Handle<String> src,
17176       JSRegExp::Flags flags, Handle<FixedArray> value) {
17177   RegExpKey key(src, flags);
17178   cache = EnsureCapacity(cache, 1, &key);
17179   int entry = cache->FindInsertionEntry(key.Hash());
17180   // We store the value in the key slot, and compare the search key
17181   // to the stored value with a custon IsMatch function during lookups.
17182   cache->set(EntryToIndex(entry), *value);
17183   cache->set(EntryToIndex(entry) + 1, *value);
17184   cache->ElementAdded();
17185   return cache;
17186 }
17187 
17188 
Age()17189 void CompilationCacheTable::Age() {
17190   DisallowHeapAllocation no_allocation;
17191   Object* the_hole_value = GetHeap()->the_hole_value();
17192   uint32_t capacity = Capacity();
17193   for (int entry = 0, size = capacity; entry < size; entry++) {
17194     int entry_index = EntryToIndex(entry);
17195     int value_index = entry_index + 1;
17196 
17197     if (get(entry_index)->IsNumber()) {
17198       Smi* count = Smi::cast(get(value_index));
17199       count = Smi::FromInt(count->value() - 1);
17200       if (count->value() == 0) {
17201         NoWriteBarrierSet(this, entry_index, the_hole_value);
17202         NoWriteBarrierSet(this, value_index, the_hole_value);
17203         ElementRemoved();
17204       } else {
17205         NoWriteBarrierSet(this, value_index, count);
17206       }
17207     } else if (get(entry_index)->IsFixedArray()) {
17208       SharedFunctionInfo* info = SharedFunctionInfo::cast(get(value_index));
17209       if (info->code()->kind() != Code::FUNCTION || info->code()->IsOld()) {
17210         NoWriteBarrierSet(this, entry_index, the_hole_value);
17211         NoWriteBarrierSet(this, value_index, the_hole_value);
17212         ElementRemoved();
17213       }
17214     }
17215   }
17216   // Wipe deleted entries.
17217   Heap* heap = GetHeap();
17218   Object* the_hole = heap->the_hole_value();
17219   Object* undefined = heap->undefined_value();
17220   for (uint32_t current = 0; current < capacity; current++) {
17221     if (get(EntryToIndex(current)) == the_hole) {
17222       set(EntryToIndex(current), undefined);
17223     }
17224   }
17225   SetNumberOfDeletedElements(0);
17226 }
17227 
17228 
Remove(Object * value)17229 void CompilationCacheTable::Remove(Object* value) {
17230   DisallowHeapAllocation no_allocation;
17231   Object* the_hole_value = GetHeap()->the_hole_value();
17232   for (int entry = 0, size = Capacity(); entry < size; entry++) {
17233     int entry_index = EntryToIndex(entry);
17234     int value_index = entry_index + 1;
17235     if (get(value_index) == value) {
17236       NoWriteBarrierSet(this, entry_index, the_hole_value);
17237       NoWriteBarrierSet(this, value_index, the_hole_value);
17238       ElementRemoved();
17239     }
17240   }
17241   return;
17242 }
17243 
17244 
17245 template<typename Derived, typename Shape, typename Key>
New(Isolate * isolate,int at_least_space_for,PretenureFlag pretenure)17246 Handle<Derived> Dictionary<Derived, Shape, Key>::New(
17247     Isolate* isolate,
17248     int at_least_space_for,
17249     PretenureFlag pretenure) {
17250   DCHECK(0 <= at_least_space_for);
17251   Handle<Derived> dict = DerivedHashTable::New(isolate,
17252                                                at_least_space_for,
17253                                                USE_DEFAULT_MINIMUM_CAPACITY,
17254                                                pretenure);
17255 
17256   // Initialize the next enumeration index.
17257   dict->SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
17258   return dict;
17259 }
17260 
17261 
17262 template <typename Derived, typename Shape, typename Key>
BuildIterationIndicesArray(Handle<Derived> dictionary)17263 Handle<FixedArray> Dictionary<Derived, Shape, Key>::BuildIterationIndicesArray(
17264     Handle<Derived> dictionary) {
17265   Isolate* isolate = dictionary->GetIsolate();
17266   Factory* factory = isolate->factory();
17267   int length = dictionary->NumberOfElements();
17268 
17269   Handle<FixedArray> iteration_order = factory->NewFixedArray(length);
17270   Handle<FixedArray> enumeration_order = factory->NewFixedArray(length);
17271 
17272   // Fill both the iteration order array and the enumeration order array
17273   // with property details.
17274   int capacity = dictionary->Capacity();
17275   int pos = 0;
17276   for (int i = 0; i < capacity; i++) {
17277     if (dictionary->IsKey(isolate, dictionary->KeyAt(i))) {
17278       int index = dictionary->DetailsAt(i).dictionary_index();
17279       iteration_order->set(pos, Smi::FromInt(i));
17280       enumeration_order->set(pos, Smi::FromInt(index));
17281       pos++;
17282     }
17283   }
17284   DCHECK(pos == length);
17285 
17286   // Sort the arrays wrt. enumeration order.
17287   iteration_order->SortPairs(*enumeration_order, enumeration_order->length());
17288   return iteration_order;
17289 }
17290 
17291 
17292 template <typename Derived, typename Shape, typename Key>
17293 Handle<FixedArray>
GenerateNewEnumerationIndices(Handle<Derived> dictionary)17294 Dictionary<Derived, Shape, Key>::GenerateNewEnumerationIndices(
17295     Handle<Derived> dictionary) {
17296   int length = dictionary->NumberOfElements();
17297 
17298   Handle<FixedArray> iteration_order = BuildIterationIndicesArray(dictionary);
17299   DCHECK(iteration_order->length() == length);
17300 
17301   // Iterate over the dictionary using the enumeration order and update
17302   // the dictionary with new enumeration indices.
17303   for (int i = 0; i < length; i++) {
17304     int index = Smi::cast(iteration_order->get(i))->value();
17305     DCHECK(dictionary->IsKey(dictionary->KeyAt(index)));
17306 
17307     int enum_index = PropertyDetails::kInitialIndex + i;
17308 
17309     PropertyDetails details = dictionary->DetailsAt(index);
17310     PropertyDetails new_details = details.set_index(enum_index);
17311     dictionary->DetailsAtPut(index, new_details);
17312   }
17313 
17314   // Set the next enumeration index.
17315   dictionary->SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
17316   return iteration_order;
17317 }
17318 
17319 
17320 template <typename Derived, typename Shape, typename Key>
SetRequiresCopyOnCapacityChange()17321 void Dictionary<Derived, Shape, Key>::SetRequiresCopyOnCapacityChange() {
17322   DCHECK_EQ(0, DerivedHashTable::NumberOfElements());
17323   DCHECK_EQ(0, DerivedHashTable::NumberOfDeletedElements());
17324   // Make sure that HashTable::EnsureCapacity will create a copy.
17325   DerivedHashTable::SetNumberOfDeletedElements(DerivedHashTable::Capacity());
17326   DCHECK(!DerivedHashTable::HasSufficientCapacityToAdd(1));
17327 }
17328 
17329 
17330 template <typename Derived, typename Shape, typename Key>
EnsureCapacity(Handle<Derived> dictionary,int n,Key key)17331 Handle<Derived> Dictionary<Derived, Shape, Key>::EnsureCapacity(
17332     Handle<Derived> dictionary, int n, Key key) {
17333   // Check whether there are enough enumeration indices to add n elements.
17334   if (Shape::kIsEnumerable &&
17335       !PropertyDetails::IsValidIndex(dictionary->NextEnumerationIndex() + n)) {
17336     // If not, we generate new indices for the properties.
17337     GenerateNewEnumerationIndices(dictionary);
17338   }
17339   return DerivedHashTable::EnsureCapacity(dictionary, n, key);
17340 }
17341 
17342 
17343 template <typename Derived, typename Shape, typename Key>
DeleteProperty(Handle<Derived> dictionary,int entry)17344 Handle<Object> Dictionary<Derived, Shape, Key>::DeleteProperty(
17345     Handle<Derived> dictionary, int entry) {
17346   Factory* factory = dictionary->GetIsolate()->factory();
17347   PropertyDetails details = dictionary->DetailsAt(entry);
17348   if (!details.IsConfigurable()) return factory->false_value();
17349 
17350   dictionary->SetEntry(
17351       entry, factory->the_hole_value(), factory->the_hole_value());
17352   dictionary->ElementRemoved();
17353   return factory->true_value();
17354 }
17355 
17356 
17357 template<typename Derived, typename Shape, typename Key>
AtPut(Handle<Derived> dictionary,Key key,Handle<Object> value)17358 Handle<Derived> Dictionary<Derived, Shape, Key>::AtPut(
17359     Handle<Derived> dictionary, Key key, Handle<Object> value) {
17360   int entry = dictionary->FindEntry(key);
17361 
17362   // If the entry is present set the value;
17363   if (entry != Dictionary::kNotFound) {
17364     dictionary->ValueAtPut(entry, *value);
17365     return dictionary;
17366   }
17367 
17368   // Check whether the dictionary should be extended.
17369   dictionary = EnsureCapacity(dictionary, 1, key);
17370 #ifdef DEBUG
17371   USE(Shape::AsHandle(dictionary->GetIsolate(), key));
17372 #endif
17373   PropertyDetails details = PropertyDetails::Empty();
17374 
17375   AddEntry(dictionary, key, value, details, dictionary->Hash(key));
17376   return dictionary;
17377 }
17378 
17379 
17380 template<typename Derived, typename Shape, typename Key>
Add(Handle<Derived> dictionary,Key key,Handle<Object> value,PropertyDetails details)17381 Handle<Derived> Dictionary<Derived, Shape, Key>::Add(
17382     Handle<Derived> dictionary,
17383     Key key,
17384     Handle<Object> value,
17385     PropertyDetails details) {
17386   // Valdate key is absent.
17387   SLOW_DCHECK((dictionary->FindEntry(key) == Dictionary::kNotFound));
17388   // Check whether the dictionary should be extended.
17389   dictionary = EnsureCapacity(dictionary, 1, key);
17390 
17391   AddEntry(dictionary, key, value, details, dictionary->Hash(key));
17392   return dictionary;
17393 }
17394 
17395 
17396 // Add a key, value pair to the dictionary.
17397 template<typename Derived, typename Shape, typename Key>
AddEntry(Handle<Derived> dictionary,Key key,Handle<Object> value,PropertyDetails details,uint32_t hash)17398 void Dictionary<Derived, Shape, Key>::AddEntry(
17399     Handle<Derived> dictionary,
17400     Key key,
17401     Handle<Object> value,
17402     PropertyDetails details,
17403     uint32_t hash) {
17404   // Compute the key object.
17405   Handle<Object> k = Shape::AsHandle(dictionary->GetIsolate(), key);
17406 
17407   uint32_t entry = dictionary->FindInsertionEntry(hash);
17408   // Insert element at empty or deleted entry
17409   if (details.dictionary_index() == 0 && Shape::kIsEnumerable) {
17410     // Assign an enumeration index to the property and update
17411     // SetNextEnumerationIndex.
17412     int index = dictionary->NextEnumerationIndex();
17413     details = details.set_index(index);
17414     dictionary->SetNextEnumerationIndex(index + 1);
17415   }
17416   dictionary->SetEntry(entry, k, value, details);
17417   DCHECK((dictionary->KeyAt(entry)->IsNumber() ||
17418           dictionary->KeyAt(entry)->IsName()));
17419   dictionary->ElementAdded();
17420 }
17421 
HasComplexElements()17422 bool SeededNumberDictionary::HasComplexElements() {
17423   if (!requires_slow_elements()) return false;
17424   Isolate* isolate = this->GetIsolate();
17425   int capacity = this->Capacity();
17426   for (int i = 0; i < capacity; i++) {
17427     Object* k = this->KeyAt(i);
17428     if (!this->IsKey(isolate, k)) continue;
17429     DCHECK(!IsDeleted(i));
17430     PropertyDetails details = this->DetailsAt(i);
17431     if (details.type() == ACCESSOR_CONSTANT) return true;
17432     PropertyAttributes attr = details.attributes();
17433     if (attr & ALL_ATTRIBUTES_MASK) return true;
17434   }
17435   return false;
17436 }
17437 
UpdateMaxNumberKey(uint32_t key,bool used_as_prototype)17438 void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key,
17439                                                 bool used_as_prototype) {
17440   DisallowHeapAllocation no_allocation;
17441   // If the dictionary requires slow elements an element has already
17442   // been added at a high index.
17443   if (requires_slow_elements()) return;
17444   // Check if this index is high enough that we should require slow
17445   // elements.
17446   if (key > kRequiresSlowElementsLimit) {
17447     if (used_as_prototype) {
17448       // TODO(verwaest): Remove this hack.
17449       TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
17450     }
17451     set_requires_slow_elements();
17452     return;
17453   }
17454   // Update max key value.
17455   Object* max_index_object = get(kMaxNumberKeyIndex);
17456   if (!max_index_object->IsSmi() || max_number_key() < key) {
17457     FixedArray::set(kMaxNumberKeyIndex,
17458                     Smi::FromInt(key << kRequiresSlowElementsTagSize));
17459   }
17460 }
17461 
17462 
AddNumberEntry(Handle<SeededNumberDictionary> dictionary,uint32_t key,Handle<Object> value,PropertyDetails details,bool used_as_prototype)17463 Handle<SeededNumberDictionary> SeededNumberDictionary::AddNumberEntry(
17464     Handle<SeededNumberDictionary> dictionary, uint32_t key,
17465     Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
17466   dictionary->UpdateMaxNumberKey(key, used_as_prototype);
17467   SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
17468   return Add(dictionary, key, value, details);
17469 }
17470 
17471 
AddNumberEntry(Handle<UnseededNumberDictionary> dictionary,uint32_t key,Handle<Object> value)17472 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AddNumberEntry(
17473     Handle<UnseededNumberDictionary> dictionary,
17474     uint32_t key,
17475     Handle<Object> value) {
17476   SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
17477   return Add(dictionary, key, value, PropertyDetails::Empty());
17478 }
17479 
17480 
AtNumberPut(Handle<SeededNumberDictionary> dictionary,uint32_t key,Handle<Object> value,bool used_as_prototype)17481 Handle<SeededNumberDictionary> SeededNumberDictionary::AtNumberPut(
17482     Handle<SeededNumberDictionary> dictionary, uint32_t key,
17483     Handle<Object> value, bool used_as_prototype) {
17484   dictionary->UpdateMaxNumberKey(key, used_as_prototype);
17485   return AtPut(dictionary, key, value);
17486 }
17487 
17488 
AtNumberPut(Handle<UnseededNumberDictionary> dictionary,uint32_t key,Handle<Object> value)17489 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AtNumberPut(
17490     Handle<UnseededNumberDictionary> dictionary,
17491     uint32_t key,
17492     Handle<Object> value) {
17493   return AtPut(dictionary, key, value);
17494 }
17495 
17496 
Set(Handle<SeededNumberDictionary> dictionary,uint32_t key,Handle<Object> value,PropertyDetails details,bool used_as_prototype)17497 Handle<SeededNumberDictionary> SeededNumberDictionary::Set(
17498     Handle<SeededNumberDictionary> dictionary, uint32_t key,
17499     Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
17500   int entry = dictionary->FindEntry(key);
17501   if (entry == kNotFound) {
17502     return AddNumberEntry(dictionary, key, value, details, used_as_prototype);
17503   }
17504   // Preserve enumeration index.
17505   details = details.set_index(dictionary->DetailsAt(entry).dictionary_index());
17506   Handle<Object> object_key =
17507       SeededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
17508   dictionary->SetEntry(entry, object_key, value, details);
17509   return dictionary;
17510 }
17511 
17512 
Set(Handle<UnseededNumberDictionary> dictionary,uint32_t key,Handle<Object> value)17513 Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set(
17514     Handle<UnseededNumberDictionary> dictionary,
17515     uint32_t key,
17516     Handle<Object> value) {
17517   int entry = dictionary->FindEntry(key);
17518   if (entry == kNotFound) return AddNumberEntry(dictionary, key, value);
17519   Handle<Object> object_key =
17520       UnseededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
17521   dictionary->SetEntry(entry, object_key, value);
17522   return dictionary;
17523 }
17524 
17525 
17526 template <typename Derived, typename Shape, typename Key>
NumberOfElementsFilterAttributes(PropertyFilter filter)17527 int Dictionary<Derived, Shape, Key>::NumberOfElementsFilterAttributes(
17528     PropertyFilter filter) {
17529   Isolate* isolate = this->GetIsolate();
17530   int capacity = this->Capacity();
17531   int result = 0;
17532   for (int i = 0; i < capacity; i++) {
17533     Object* k = this->KeyAt(i);
17534     if (this->IsKey(isolate, k) && !k->FilterKey(filter)) {
17535       if (this->IsDeleted(i)) continue;
17536       PropertyDetails details = this->DetailsAt(i);
17537       PropertyAttributes attr = details.attributes();
17538       if ((attr & filter) == 0) result++;
17539     }
17540   }
17541   return result;
17542 }
17543 
17544 
17545 template <typename Dictionary>
17546 struct EnumIndexComparator {
EnumIndexComparatorv8::internal::EnumIndexComparator17547   explicit EnumIndexComparator(Dictionary* dict) : dict(dict) {}
operator ()v8::internal::EnumIndexComparator17548   bool operator() (Smi* a, Smi* b) {
17549     PropertyDetails da(dict->DetailsAt(a->value()));
17550     PropertyDetails db(dict->DetailsAt(b->value()));
17551     return da.dictionary_index() < db.dictionary_index();
17552   }
17553   Dictionary* dict;
17554 };
17555 
17556 
17557 template <typename Derived, typename Shape, typename Key>
CopyEnumKeysTo(FixedArray * storage)17558 void Dictionary<Derived, Shape, Key>::CopyEnumKeysTo(FixedArray* storage) {
17559   Isolate* isolate = this->GetIsolate();
17560   int length = storage->length();
17561   int capacity = this->Capacity();
17562   int properties = 0;
17563   for (int i = 0; i < capacity; i++) {
17564     Object* k = this->KeyAt(i);
17565     if (this->IsKey(isolate, k) && !k->IsSymbol()) {
17566       PropertyDetails details = this->DetailsAt(i);
17567       if (details.IsDontEnum() || this->IsDeleted(i)) continue;
17568       storage->set(properties, Smi::FromInt(i));
17569       properties++;
17570       if (properties == length) break;
17571     }
17572   }
17573   CHECK_EQ(length, properties);
17574   EnumIndexComparator<Derived> cmp(static_cast<Derived*>(this));
17575   Smi** start = reinterpret_cast<Smi**>(storage->GetFirstElementAddress());
17576   std::sort(start, start + length, cmp);
17577   for (int i = 0; i < length; i++) {
17578     int index = Smi::cast(storage->get(i))->value();
17579     storage->set(i, this->KeyAt(index));
17580   }
17581 }
17582 
17583 template <typename Derived, typename Shape, typename Key>
CollectKeysTo(Handle<Dictionary<Derived,Shape,Key>> dictionary,KeyAccumulator * keys,PropertyFilter filter)17584 void Dictionary<Derived, Shape, Key>::CollectKeysTo(
17585     Handle<Dictionary<Derived, Shape, Key> > dictionary, KeyAccumulator* keys,
17586     PropertyFilter filter) {
17587   Isolate* isolate = keys->isolate();
17588   int capacity = dictionary->Capacity();
17589   Handle<FixedArray> array =
17590       isolate->factory()->NewFixedArray(dictionary->NumberOfElements());
17591   int array_size = 0;
17592 
17593   {
17594     DisallowHeapAllocation no_gc;
17595     Dictionary<Derived, Shape, Key>* raw_dict = *dictionary;
17596     for (int i = 0; i < capacity; i++) {
17597       Object* k = raw_dict->KeyAt(i);
17598       if (!raw_dict->IsKey(isolate, k) || k->FilterKey(filter)) continue;
17599       if (raw_dict->IsDeleted(i)) continue;
17600       PropertyDetails details = raw_dict->DetailsAt(i);
17601       if ((details.attributes() & filter) != 0) continue;
17602       if (filter & ONLY_ALL_CAN_READ) {
17603         if (details.kind() != kAccessor) continue;
17604         Object* accessors = raw_dict->ValueAt(i);
17605         if (accessors->IsPropertyCell()) {
17606           accessors = PropertyCell::cast(accessors)->value();
17607         }
17608         if (!accessors->IsAccessorInfo()) continue;
17609         if (!AccessorInfo::cast(accessors)->all_can_read()) continue;
17610       }
17611       array->set(array_size++, Smi::FromInt(i));
17612     }
17613 
17614     EnumIndexComparator<Derived> cmp(static_cast<Derived*>(raw_dict));
17615     Smi** start = reinterpret_cast<Smi**>(array->GetFirstElementAddress());
17616     std::sort(start, start + array_size, cmp);
17617   }
17618 
17619   bool has_seen_symbol = false;
17620   for (int i = 0; i < array_size; i++) {
17621     int index = Smi::cast(array->get(i))->value();
17622     Object* key = dictionary->KeyAt(index);
17623     if (key->IsSymbol()) {
17624       has_seen_symbol = true;
17625       continue;
17626     }
17627     keys->AddKey(key, DO_NOT_CONVERT);
17628   }
17629   if (has_seen_symbol) {
17630     for (int i = 0; i < array_size; i++) {
17631       int index = Smi::cast(array->get(i))->value();
17632       Object* key = dictionary->KeyAt(index);
17633       if (!key->IsSymbol()) continue;
17634       keys->AddKey(key, DO_NOT_CONVERT);
17635     }
17636   }
17637 }
17638 
17639 
17640 // Backwards lookup (slow).
17641 template<typename Derived, typename Shape, typename Key>
SlowReverseLookup(Object * value)17642 Object* Dictionary<Derived, Shape, Key>::SlowReverseLookup(Object* value) {
17643   Isolate* isolate = this->GetIsolate();
17644   int capacity = this->Capacity();
17645   for (int i = 0; i < capacity; i++) {
17646     Object* k = this->KeyAt(i);
17647     if (!this->IsKey(isolate, k)) continue;
17648     Object* e = this->ValueAt(i);
17649     // TODO(dcarney): this should be templatized.
17650     if (e->IsPropertyCell()) {
17651       e = PropertyCell::cast(e)->value();
17652     }
17653     if (e == value) return k;
17654   }
17655   return isolate->heap()->undefined_value();
17656 }
17657 
17658 
Lookup(Isolate * isolate,Handle<Object> key,int32_t hash)17659 Object* ObjectHashTable::Lookup(Isolate* isolate, Handle<Object> key,
17660                                 int32_t hash) {
17661   DisallowHeapAllocation no_gc;
17662   DCHECK(IsKey(isolate, *key));
17663 
17664   int entry = FindEntry(isolate, key, hash);
17665   if (entry == kNotFound) return isolate->heap()->the_hole_value();
17666   return get(EntryToIndex(entry) + 1);
17667 }
17668 
17669 
Lookup(Handle<Object> key)17670 Object* ObjectHashTable::Lookup(Handle<Object> key) {
17671   DisallowHeapAllocation no_gc;
17672 
17673   Isolate* isolate = GetIsolate();
17674   DCHECK(IsKey(isolate, *key));
17675 
17676   // If the object does not have an identity hash, it was never used as a key.
17677   Object* hash = key->GetHash();
17678   if (hash->IsUndefined(isolate)) {
17679     return isolate->heap()->the_hole_value();
17680   }
17681   return Lookup(isolate, key, Smi::cast(hash)->value());
17682 }
17683 
17684 
Lookup(Handle<Object> key,int32_t hash)17685 Object* ObjectHashTable::Lookup(Handle<Object> key, int32_t hash) {
17686   return Lookup(GetIsolate(), key, hash);
17687 }
17688 
17689 
Put(Handle<ObjectHashTable> table,Handle<Object> key,Handle<Object> value)17690 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
17691                                              Handle<Object> key,
17692                                              Handle<Object> value) {
17693   Isolate* isolate = table->GetIsolate();
17694   DCHECK(table->IsKey(isolate, *key));
17695   DCHECK(!value->IsTheHole(isolate));
17696 
17697   // Make sure the key object has an identity hash code.
17698   int32_t hash = Object::GetOrCreateHash(isolate, key)->value();
17699 
17700   return Put(table, key, value, hash);
17701 }
17702 
17703 
Put(Handle<ObjectHashTable> table,Handle<Object> key,Handle<Object> value,int32_t hash)17704 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
17705                                              Handle<Object> key,
17706                                              Handle<Object> value,
17707                                              int32_t hash) {
17708   Isolate* isolate = table->GetIsolate();
17709   DCHECK(table->IsKey(isolate, *key));
17710   DCHECK(!value->IsTheHole(isolate));
17711 
17712   int entry = table->FindEntry(isolate, key, hash);
17713 
17714   // Key is already in table, just overwrite value.
17715   if (entry != kNotFound) {
17716     table->set(EntryToIndex(entry) + 1, *value);
17717     return table;
17718   }
17719 
17720   // Rehash if more than 25% of the entries are deleted entries.
17721   // TODO(jochen): Consider to shrink the fixed array in place.
17722   if ((table->NumberOfDeletedElements() << 1) > table->NumberOfElements()) {
17723     table->Rehash(isolate->factory()->undefined_value());
17724   }
17725   // If we're out of luck, we didn't get a GC recently, and so rehashing
17726   // isn't enough to avoid a crash.
17727   if (!table->HasSufficientCapacityToAdd(1)) {
17728     int nof = table->NumberOfElements() + 1;
17729     int capacity = ObjectHashTable::ComputeCapacity(nof * 2);
17730     if (capacity > ObjectHashTable::kMaxCapacity) {
17731       for (size_t i = 0; i < 2; ++i) {
17732         isolate->heap()->CollectAllGarbage(
17733             Heap::kFinalizeIncrementalMarkingMask, "full object hash table");
17734       }
17735       table->Rehash(isolate->factory()->undefined_value());
17736     }
17737   }
17738 
17739   // Check whether the hash table should be extended.
17740   table = EnsureCapacity(table, 1, key);
17741   table->AddEntry(table->FindInsertionEntry(hash), *key, *value);
17742   return table;
17743 }
17744 
17745 
Remove(Handle<ObjectHashTable> table,Handle<Object> key,bool * was_present)17746 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
17747                                                 Handle<Object> key,
17748                                                 bool* was_present) {
17749   DCHECK(table->IsKey(table->GetIsolate(), *key));
17750 
17751   Object* hash = key->GetHash();
17752   if (hash->IsUndefined(table->GetIsolate())) {
17753     *was_present = false;
17754     return table;
17755   }
17756 
17757   return Remove(table, key, was_present, Smi::cast(hash)->value());
17758 }
17759 
17760 
Remove(Handle<ObjectHashTable> table,Handle<Object> key,bool * was_present,int32_t hash)17761 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
17762                                                 Handle<Object> key,
17763                                                 bool* was_present,
17764                                                 int32_t hash) {
17765   Isolate* isolate = table->GetIsolate();
17766   DCHECK(table->IsKey(isolate, *key));
17767 
17768   int entry = table->FindEntry(isolate, key, hash);
17769   if (entry == kNotFound) {
17770     *was_present = false;
17771     return table;
17772   }
17773 
17774   *was_present = true;
17775   table->RemoveEntry(entry);
17776   return Shrink(table, key);
17777 }
17778 
17779 
AddEntry(int entry,Object * key,Object * value)17780 void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) {
17781   set(EntryToIndex(entry), key);
17782   set(EntryToIndex(entry) + 1, value);
17783   ElementAdded();
17784 }
17785 
17786 
RemoveEntry(int entry)17787 void ObjectHashTable::RemoveEntry(int entry) {
17788   set_the_hole(EntryToIndex(entry));
17789   set_the_hole(EntryToIndex(entry) + 1);
17790   ElementRemoved();
17791 }
17792 
17793 
Lookup(Handle<HeapObject> key)17794 Object* WeakHashTable::Lookup(Handle<HeapObject> key) {
17795   DisallowHeapAllocation no_gc;
17796   Isolate* isolate = GetIsolate();
17797   DCHECK(IsKey(isolate, *key));
17798   int entry = FindEntry(key);
17799   if (entry == kNotFound) return isolate->heap()->the_hole_value();
17800   return get(EntryToValueIndex(entry));
17801 }
17802 
17803 
Put(Handle<WeakHashTable> table,Handle<HeapObject> key,Handle<HeapObject> value)17804 Handle<WeakHashTable> WeakHashTable::Put(Handle<WeakHashTable> table,
17805                                          Handle<HeapObject> key,
17806                                          Handle<HeapObject> value) {
17807   Isolate* isolate = key->GetIsolate();
17808   DCHECK(table->IsKey(isolate, *key));
17809   int entry = table->FindEntry(key);
17810   // Key is already in table, just overwrite value.
17811   if (entry != kNotFound) {
17812     table->set(EntryToValueIndex(entry), *value);
17813     return table;
17814   }
17815 
17816   Handle<WeakCell> key_cell = isolate->factory()->NewWeakCell(key);
17817 
17818   // Check whether the hash table should be extended.
17819   table = EnsureCapacity(table, 1, key, TENURED);
17820 
17821   table->AddEntry(table->FindInsertionEntry(table->Hash(key)), key_cell, value);
17822   return table;
17823 }
17824 
17825 
AddEntry(int entry,Handle<WeakCell> key_cell,Handle<HeapObject> value)17826 void WeakHashTable::AddEntry(int entry, Handle<WeakCell> key_cell,
17827                              Handle<HeapObject> value) {
17828   DisallowHeapAllocation no_allocation;
17829   set(EntryToIndex(entry), *key_cell);
17830   set(EntryToValueIndex(entry), *value);
17831   ElementAdded();
17832 }
17833 
17834 
17835 template<class Derived, class Iterator, int entrysize>
Allocate(Isolate * isolate,int capacity,PretenureFlag pretenure)17836 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Allocate(
17837     Isolate* isolate, int capacity, PretenureFlag pretenure) {
17838   // Capacity must be a power of two, since we depend on being able
17839   // to divide and multiple by 2 (kLoadFactor) to derive capacity
17840   // from number of buckets. If we decide to change kLoadFactor
17841   // to something other than 2, capacity should be stored as another
17842   // field of this object.
17843   capacity = base::bits::RoundUpToPowerOfTwo32(Max(kMinCapacity, capacity));
17844   if (capacity > kMaxCapacity) {
17845     v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
17846   }
17847   int num_buckets = capacity / kLoadFactor;
17848   Handle<FixedArray> backing_store = isolate->factory()->NewFixedArray(
17849       kHashTableStartIndex + num_buckets + (capacity * kEntrySize), pretenure);
17850   backing_store->set_map_no_write_barrier(
17851       isolate->heap()->ordered_hash_table_map());
17852   Handle<Derived> table = Handle<Derived>::cast(backing_store);
17853   for (int i = 0; i < num_buckets; ++i) {
17854     table->set(kHashTableStartIndex + i, Smi::FromInt(kNotFound));
17855   }
17856   table->SetNumberOfBuckets(num_buckets);
17857   table->SetNumberOfElements(0);
17858   table->SetNumberOfDeletedElements(0);
17859   return table;
17860 }
17861 
17862 
17863 template<class Derived, class Iterator, int entrysize>
EnsureGrowable(Handle<Derived> table)17864 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::EnsureGrowable(
17865     Handle<Derived> table) {
17866   DCHECK(!table->IsObsolete());
17867 
17868   int nof = table->NumberOfElements();
17869   int nod = table->NumberOfDeletedElements();
17870   int capacity = table->Capacity();
17871   if ((nof + nod) < capacity) return table;
17872   // Don't need to grow if we can simply clear out deleted entries instead.
17873   // Note that we can't compact in place, though, so we always allocate
17874   // a new table.
17875   return Rehash(table, (nod < (capacity >> 1)) ? capacity << 1 : capacity);
17876 }
17877 
17878 
17879 template<class Derived, class Iterator, int entrysize>
Shrink(Handle<Derived> table)17880 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Shrink(
17881     Handle<Derived> table) {
17882   DCHECK(!table->IsObsolete());
17883 
17884   int nof = table->NumberOfElements();
17885   int capacity = table->Capacity();
17886   if (nof >= (capacity >> 2)) return table;
17887   return Rehash(table, capacity / 2);
17888 }
17889 
17890 
17891 template<class Derived, class Iterator, int entrysize>
Clear(Handle<Derived> table)17892 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Clear(
17893     Handle<Derived> table) {
17894   DCHECK(!table->IsObsolete());
17895 
17896   Handle<Derived> new_table =
17897       Allocate(table->GetIsolate(),
17898                kMinCapacity,
17899                table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
17900 
17901   table->SetNextTable(*new_table);
17902   table->SetNumberOfDeletedElements(kClearedTableSentinel);
17903 
17904   return new_table;
17905 }
17906 
17907 template <class Derived, class Iterator, int entrysize>
HasKey(Handle<Derived> table,Handle<Object> key)17908 bool OrderedHashTable<Derived, Iterator, entrysize>::HasKey(
17909     Handle<Derived> table, Handle<Object> key) {
17910   DisallowHeapAllocation no_gc;
17911   Isolate* isolate = table->GetIsolate();
17912   Object* raw_key = *key;
17913   int entry = table->KeyToFirstEntry(isolate, raw_key);
17914   // Walk the chain in the bucket to find the key.
17915   while (entry != kNotFound) {
17916     Object* candidate_key = table->KeyAt(entry);
17917     if (candidate_key->SameValueZero(raw_key)) return true;
17918     entry = table->NextChainEntry(entry);
17919   }
17920   return false;
17921 }
17922 
17923 
Add(Handle<OrderedHashSet> table,Handle<Object> key)17924 Handle<OrderedHashSet> OrderedHashSet::Add(Handle<OrderedHashSet> table,
17925                                            Handle<Object> key) {
17926   int hash = Object::GetOrCreateHash(table->GetIsolate(), key)->value();
17927   int entry = table->HashToEntry(hash);
17928   // Walk the chain of the bucket and try finding the key.
17929   while (entry != kNotFound) {
17930     Object* candidate_key = table->KeyAt(entry);
17931     // Do not add if we have the key already
17932     if (candidate_key->SameValueZero(*key)) return table;
17933     entry = table->NextChainEntry(entry);
17934   }
17935 
17936   table = OrderedHashSet::EnsureGrowable(table);
17937   // Read the existing bucket values.
17938   int bucket = table->HashToBucket(hash);
17939   int previous_entry = table->HashToEntry(hash);
17940   int nof = table->NumberOfElements();
17941   // Insert a new entry at the end,
17942   int new_entry = nof + table->NumberOfDeletedElements();
17943   int new_index = table->EntryToIndex(new_entry);
17944   table->set(new_index, *key);
17945   table->set(new_index + kChainOffset, Smi::FromInt(previous_entry));
17946   // and point the bucket to the new entry.
17947   table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
17948   table->SetNumberOfElements(nof + 1);
17949   return table;
17950 }
17951 
ConvertToKeysArray(Handle<OrderedHashSet> table,GetKeysConversion convert)17952 Handle<FixedArray> OrderedHashSet::ConvertToKeysArray(
17953     Handle<OrderedHashSet> table, GetKeysConversion convert) {
17954   Isolate* isolate = table->GetIsolate();
17955   int length = table->NumberOfElements();
17956   int nof_buckets = table->NumberOfBuckets();
17957   // Convert the dictionary to a linear list.
17958   Handle<FixedArray> result = Handle<FixedArray>::cast(table);
17959   // From this point on table is no longer a valid OrderedHashSet.
17960   result->set_map(isolate->heap()->fixed_array_map());
17961   for (int i = 0; i < length; i++) {
17962     int index = kHashTableStartIndex + nof_buckets + (i * kEntrySize);
17963     Object* key = table->get(index);
17964     if (convert == GetKeysConversion::kConvertToString && key->IsNumber()) {
17965       key = *isolate->factory()->NumberToString(handle(key, isolate));
17966     }
17967     result->set(i, key);
17968   }
17969   result->Shrink(length);
17970   return result;
17971 }
17972 
17973 template<class Derived, class Iterator, int entrysize>
Rehash(Handle<Derived> table,int new_capacity)17974 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Rehash(
17975     Handle<Derived> table, int new_capacity) {
17976   Isolate* isolate = table->GetIsolate();
17977   DCHECK(!table->IsObsolete());
17978 
17979   Handle<Derived> new_table =
17980       Allocate(isolate, new_capacity,
17981                isolate->heap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
17982   int nof = table->NumberOfElements();
17983   int nod = table->NumberOfDeletedElements();
17984   int new_buckets = new_table->NumberOfBuckets();
17985   int new_entry = 0;
17986   int removed_holes_index = 0;
17987 
17988   DisallowHeapAllocation no_gc;
17989   for (int old_entry = 0; old_entry < (nof + nod); ++old_entry) {
17990     Object* key = table->KeyAt(old_entry);
17991     if (key->IsTheHole(isolate)) {
17992       table->SetRemovedIndexAt(removed_holes_index++, old_entry);
17993       continue;
17994     }
17995 
17996     Object* hash = key->GetHash();
17997     int bucket = Smi::cast(hash)->value() & (new_buckets - 1);
17998     Object* chain_entry = new_table->get(kHashTableStartIndex + bucket);
17999     new_table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
18000     int new_index = new_table->EntryToIndex(new_entry);
18001     int old_index = table->EntryToIndex(old_entry);
18002     for (int i = 0; i < entrysize; ++i) {
18003       Object* value = table->get(old_index + i);
18004       new_table->set(new_index + i, value);
18005     }
18006     new_table->set(new_index + kChainOffset, chain_entry);
18007     ++new_entry;
18008   }
18009 
18010   DCHECK_EQ(nod, removed_holes_index);
18011 
18012   new_table->SetNumberOfElements(nof);
18013   table->SetNextTable(*new_table);
18014 
18015   return new_table;
18016 }
18017 
18018 
18019 template Handle<OrderedHashSet>
18020 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Allocate(
18021     Isolate* isolate, int capacity, PretenureFlag pretenure);
18022 
18023 template Handle<OrderedHashSet>
18024 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::EnsureGrowable(
18025     Handle<OrderedHashSet> table);
18026 
18027 template Handle<OrderedHashSet>
18028 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Shrink(
18029     Handle<OrderedHashSet> table);
18030 
18031 template Handle<OrderedHashSet>
18032 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Clear(
18033     Handle<OrderedHashSet> table);
18034 
18035 template bool OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::HasKey(
18036     Handle<OrderedHashSet> table, Handle<Object> key);
18037 
18038 
18039 template Handle<OrderedHashMap>
18040 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Allocate(
18041     Isolate* isolate, int capacity, PretenureFlag pretenure);
18042 
18043 template Handle<OrderedHashMap>
18044 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::EnsureGrowable(
18045     Handle<OrderedHashMap> table);
18046 
18047 template Handle<OrderedHashMap>
18048 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Shrink(
18049     Handle<OrderedHashMap> table);
18050 
18051 template Handle<OrderedHashMap>
18052 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Clear(
18053     Handle<OrderedHashMap> table);
18054 
18055 template bool OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::HasKey(
18056     Handle<OrderedHashMap> table, Handle<Object> key);
18057 
18058 
18059 template<class Derived, class TableType>
Transition()18060 void OrderedHashTableIterator<Derived, TableType>::Transition() {
18061   DisallowHeapAllocation no_allocation;
18062   TableType* table = TableType::cast(this->table());
18063   if (!table->IsObsolete()) return;
18064 
18065   int index = Smi::cast(this->index())->value();
18066   while (table->IsObsolete()) {
18067     TableType* next_table = table->NextTable();
18068 
18069     if (index > 0) {
18070       int nod = table->NumberOfDeletedElements();
18071 
18072       if (nod == TableType::kClearedTableSentinel) {
18073         index = 0;
18074       } else {
18075         int old_index = index;
18076         for (int i = 0; i < nod; ++i) {
18077           int removed_index = table->RemovedIndexAt(i);
18078           if (removed_index >= old_index) break;
18079           --index;
18080         }
18081       }
18082     }
18083 
18084     table = next_table;
18085   }
18086 
18087   set_table(table);
18088   set_index(Smi::FromInt(index));
18089 }
18090 
18091 
18092 template<class Derived, class TableType>
HasMore()18093 bool OrderedHashTableIterator<Derived, TableType>::HasMore() {
18094   DisallowHeapAllocation no_allocation;
18095   Isolate* isolate = this->GetIsolate();
18096   if (this->table()->IsUndefined(isolate)) return false;
18097 
18098   Transition();
18099 
18100   TableType* table = TableType::cast(this->table());
18101   int index = Smi::cast(this->index())->value();
18102   int used_capacity = table->UsedCapacity();
18103 
18104   while (index < used_capacity && table->KeyAt(index)->IsTheHole(isolate)) {
18105     index++;
18106   }
18107 
18108   set_index(Smi::FromInt(index));
18109 
18110   if (index < used_capacity) return true;
18111 
18112   set_table(isolate->heap()->undefined_value());
18113   return false;
18114 }
18115 
18116 
18117 template<class Derived, class TableType>
Next(JSArray * value_array)18118 Smi* OrderedHashTableIterator<Derived, TableType>::Next(JSArray* value_array) {
18119   DisallowHeapAllocation no_allocation;
18120   if (HasMore()) {
18121     FixedArray* array = FixedArray::cast(value_array->elements());
18122     static_cast<Derived*>(this)->PopulateValueArray(array);
18123     MoveNext();
18124     return Smi::cast(kind());
18125   }
18126   return Smi::FromInt(0);
18127 }
18128 
18129 
18130 template Smi*
18131 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Next(
18132     JSArray* value_array);
18133 
18134 template bool
18135 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::HasMore();
18136 
18137 template void
18138 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::MoveNext();
18139 
18140 template Object*
18141 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::CurrentKey();
18142 
18143 template void
18144 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Transition();
18145 
18146 
18147 template Smi*
18148 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Next(
18149     JSArray* value_array);
18150 
18151 template bool
18152 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::HasMore();
18153 
18154 template void
18155 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::MoveNext();
18156 
18157 template Object*
18158 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::CurrentKey();
18159 
18160 template void
18161 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Transition();
18162 
18163 
Initialize(Handle<JSSet> set,Isolate * isolate)18164 void JSSet::Initialize(Handle<JSSet> set, Isolate* isolate) {
18165   Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
18166   set->set_table(*table);
18167 }
18168 
18169 
Clear(Handle<JSSet> set)18170 void JSSet::Clear(Handle<JSSet> set) {
18171   Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
18172   table = OrderedHashSet::Clear(table);
18173   set->set_table(*table);
18174 }
18175 
18176 
Initialize(Handle<JSMap> map,Isolate * isolate)18177 void JSMap::Initialize(Handle<JSMap> map, Isolate* isolate) {
18178   Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
18179   map->set_table(*table);
18180 }
18181 
18182 
Clear(Handle<JSMap> map)18183 void JSMap::Clear(Handle<JSMap> map) {
18184   Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
18185   table = OrderedHashMap::Clear(table);
18186   map->set_table(*table);
18187 }
18188 
18189 
Initialize(Handle<JSWeakCollection> weak_collection,Isolate * isolate)18190 void JSWeakCollection::Initialize(Handle<JSWeakCollection> weak_collection,
18191                                   Isolate* isolate) {
18192   Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
18193   weak_collection->set_table(*table);
18194 }
18195 
18196 
Set(Handle<JSWeakCollection> weak_collection,Handle<Object> key,Handle<Object> value,int32_t hash)18197 void JSWeakCollection::Set(Handle<JSWeakCollection> weak_collection,
18198                            Handle<Object> key, Handle<Object> value,
18199                            int32_t hash) {
18200   DCHECK(key->IsJSReceiver() || key->IsSymbol());
18201   Handle<ObjectHashTable> table(
18202       ObjectHashTable::cast(weak_collection->table()));
18203   DCHECK(table->IsKey(*key));
18204   Handle<ObjectHashTable> new_table =
18205       ObjectHashTable::Put(table, key, value, hash);
18206   weak_collection->set_table(*new_table);
18207   if (*table != *new_table) {
18208     // Zap the old table since we didn't record slots for its elements.
18209     table->FillWithHoles(0, table->length());
18210   }
18211 }
18212 
18213 
Delete(Handle<JSWeakCollection> weak_collection,Handle<Object> key,int32_t hash)18214 bool JSWeakCollection::Delete(Handle<JSWeakCollection> weak_collection,
18215                               Handle<Object> key, int32_t hash) {
18216   DCHECK(key->IsJSReceiver() || key->IsSymbol());
18217   Handle<ObjectHashTable> table(
18218       ObjectHashTable::cast(weak_collection->table()));
18219   DCHECK(table->IsKey(*key));
18220   bool was_present = false;
18221   Handle<ObjectHashTable> new_table =
18222       ObjectHashTable::Remove(table, key, &was_present, hash);
18223   weak_collection->set_table(*new_table);
18224   if (*table != *new_table) {
18225     // Zap the old table since we didn't record slots for its elements.
18226     table->FillWithHoles(0, table->length());
18227   }
18228   return was_present;
18229 }
18230 
18231 // Check if there is a break point at this code offset.
HasBreakPoint(int code_offset)18232 bool DebugInfo::HasBreakPoint(int code_offset) {
18233   // Get the break point info object for this code offset.
18234   Object* break_point_info = GetBreakPointInfo(code_offset);
18235 
18236   // If there is no break point info object or no break points in the break
18237   // point info object there is no break point at this code offset.
18238   if (break_point_info->IsUndefined(GetIsolate())) return false;
18239   return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
18240 }
18241 
18242 // Get the break point info object for this code offset.
GetBreakPointInfo(int code_offset)18243 Object* DebugInfo::GetBreakPointInfo(int code_offset) {
18244   // Find the index of the break point info object for this code offset.
18245   int index = GetBreakPointInfoIndex(code_offset);
18246 
18247   // Return the break point info object if any.
18248   if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
18249   return BreakPointInfo::cast(break_points()->get(index));
18250 }
18251 
18252 // Clear a break point at the specified code offset.
ClearBreakPoint(Handle<DebugInfo> debug_info,int code_offset,Handle<Object> break_point_object)18253 void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, int code_offset,
18254                                 Handle<Object> break_point_object) {
18255   Isolate* isolate = debug_info->GetIsolate();
18256   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset),
18257                                   isolate);
18258   if (break_point_info->IsUndefined(isolate)) return;
18259   BreakPointInfo::ClearBreakPoint(
18260       Handle<BreakPointInfo>::cast(break_point_info),
18261       break_point_object);
18262 }
18263 
SetBreakPoint(Handle<DebugInfo> debug_info,int code_offset,int source_position,int statement_position,Handle<Object> break_point_object)18264 void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, int code_offset,
18265                               int source_position, int statement_position,
18266                               Handle<Object> break_point_object) {
18267   Isolate* isolate = debug_info->GetIsolate();
18268   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset),
18269                                   isolate);
18270   if (!break_point_info->IsUndefined(isolate)) {
18271     BreakPointInfo::SetBreakPoint(
18272         Handle<BreakPointInfo>::cast(break_point_info),
18273         break_point_object);
18274     return;
18275   }
18276 
18277   // Adding a new break point for a code offset which did not have any
18278   // break points before. Try to find a free slot.
18279   int index = kNoBreakPointInfo;
18280   for (int i = 0; i < debug_info->break_points()->length(); i++) {
18281     if (debug_info->break_points()->get(i)->IsUndefined(isolate)) {
18282       index = i;
18283       break;
18284     }
18285   }
18286   if (index == kNoBreakPointInfo) {
18287     // No free slot - extend break point info array.
18288     Handle<FixedArray> old_break_points = Handle<FixedArray>(
18289         FixedArray::cast(debug_info->break_points()), isolate);
18290     Handle<FixedArray> new_break_points =
18291         isolate->factory()->NewFixedArray(
18292             old_break_points->length() +
18293             DebugInfo::kEstimatedNofBreakPointsInFunction);
18294 
18295     debug_info->set_break_points(*new_break_points);
18296     for (int i = 0; i < old_break_points->length(); i++) {
18297       new_break_points->set(i, old_break_points->get(i));
18298     }
18299     index = old_break_points->length();
18300   }
18301   DCHECK(index != kNoBreakPointInfo);
18302 
18303   // Allocate new BreakPointInfo object and set the break point.
18304   Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
18305       isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
18306   new_break_point_info->set_code_offset(code_offset);
18307   new_break_point_info->set_source_position(source_position);
18308   new_break_point_info->set_statement_position(statement_position);
18309   new_break_point_info->set_break_point_objects(
18310       isolate->heap()->undefined_value());
18311   BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
18312   debug_info->break_points()->set(index, *new_break_point_info);
18313 }
18314 
18315 // Get the break point objects for a code offset.
GetBreakPointObjects(int code_offset)18316 Handle<Object> DebugInfo::GetBreakPointObjects(int code_offset) {
18317   Object* break_point_info = GetBreakPointInfo(code_offset);
18318   Isolate* isolate = GetIsolate();
18319   if (break_point_info->IsUndefined(isolate)) {
18320     return isolate->factory()->undefined_value();
18321   }
18322   return Handle<Object>(
18323       BreakPointInfo::cast(break_point_info)->break_point_objects(), isolate);
18324 }
18325 
18326 
18327 // Get the total number of break points.
GetBreakPointCount()18328 int DebugInfo::GetBreakPointCount() {
18329   Isolate* isolate = GetIsolate();
18330   if (break_points()->IsUndefined(isolate)) return 0;
18331   int count = 0;
18332   for (int i = 0; i < break_points()->length(); i++) {
18333     if (!break_points()->get(i)->IsUndefined(isolate)) {
18334       BreakPointInfo* break_point_info =
18335           BreakPointInfo::cast(break_points()->get(i));
18336       count += break_point_info->GetBreakPointCount();
18337     }
18338   }
18339   return count;
18340 }
18341 
18342 
FindBreakPointInfo(Handle<DebugInfo> debug_info,Handle<Object> break_point_object)18343 Handle<Object> DebugInfo::FindBreakPointInfo(
18344     Handle<DebugInfo> debug_info, Handle<Object> break_point_object) {
18345   Isolate* isolate = debug_info->GetIsolate();
18346   if (!debug_info->break_points()->IsUndefined(isolate)) {
18347     for (int i = 0; i < debug_info->break_points()->length(); i++) {
18348       if (!debug_info->break_points()->get(i)->IsUndefined(isolate)) {
18349         Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>(
18350             BreakPointInfo::cast(debug_info->break_points()->get(i)), isolate);
18351         if (BreakPointInfo::HasBreakPointObject(break_point_info,
18352                                                 break_point_object)) {
18353           return break_point_info;
18354         }
18355       }
18356     }
18357   }
18358   return isolate->factory()->undefined_value();
18359 }
18360 
18361 
18362 // Find the index of the break point info object for the specified code
18363 // position.
GetBreakPointInfoIndex(int code_offset)18364 int DebugInfo::GetBreakPointInfoIndex(int code_offset) {
18365   Isolate* isolate = GetIsolate();
18366   if (break_points()->IsUndefined(isolate)) return kNoBreakPointInfo;
18367   for (int i = 0; i < break_points()->length(); i++) {
18368     if (!break_points()->get(i)->IsUndefined(isolate)) {
18369       BreakPointInfo* break_point_info =
18370           BreakPointInfo::cast(break_points()->get(i));
18371       if (break_point_info->code_offset() == code_offset) {
18372         return i;
18373       }
18374     }
18375   }
18376   return kNoBreakPointInfo;
18377 }
18378 
18379 
18380 // Remove the specified break point object.
ClearBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)18381 void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
18382                                      Handle<Object> break_point_object) {
18383   Isolate* isolate = break_point_info->GetIsolate();
18384   // If there are no break points just ignore.
18385   if (break_point_info->break_point_objects()->IsUndefined(isolate)) return;
18386   // If there is a single break point clear it if it is the same.
18387   if (!break_point_info->break_point_objects()->IsFixedArray()) {
18388     if (break_point_info->break_point_objects() == *break_point_object) {
18389       break_point_info->set_break_point_objects(
18390           isolate->heap()->undefined_value());
18391     }
18392     return;
18393   }
18394   // If there are multiple break points shrink the array
18395   DCHECK(break_point_info->break_point_objects()->IsFixedArray());
18396   Handle<FixedArray> old_array =
18397       Handle<FixedArray>(
18398           FixedArray::cast(break_point_info->break_point_objects()));
18399   Handle<FixedArray> new_array =
18400       isolate->factory()->NewFixedArray(old_array->length() - 1);
18401   int found_count = 0;
18402   for (int i = 0; i < old_array->length(); i++) {
18403     if (old_array->get(i) == *break_point_object) {
18404       DCHECK(found_count == 0);
18405       found_count++;
18406     } else {
18407       new_array->set(i - found_count, old_array->get(i));
18408     }
18409   }
18410   // If the break point was found in the list change it.
18411   if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
18412 }
18413 
18414 
18415 // Add the specified break point object.
SetBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)18416 void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
18417                                    Handle<Object> break_point_object) {
18418   Isolate* isolate = break_point_info->GetIsolate();
18419 
18420   // If there was no break point objects before just set it.
18421   if (break_point_info->break_point_objects()->IsUndefined(isolate)) {
18422     break_point_info->set_break_point_objects(*break_point_object);
18423     return;
18424   }
18425   // If the break point object is the same as before just ignore.
18426   if (break_point_info->break_point_objects() == *break_point_object) return;
18427   // If there was one break point object before replace with array.
18428   if (!break_point_info->break_point_objects()->IsFixedArray()) {
18429     Handle<FixedArray> array = isolate->factory()->NewFixedArray(2);
18430     array->set(0, break_point_info->break_point_objects());
18431     array->set(1, *break_point_object);
18432     break_point_info->set_break_point_objects(*array);
18433     return;
18434   }
18435   // If there was more than one break point before extend array.
18436   Handle<FixedArray> old_array =
18437       Handle<FixedArray>(
18438           FixedArray::cast(break_point_info->break_point_objects()));
18439   Handle<FixedArray> new_array =
18440       isolate->factory()->NewFixedArray(old_array->length() + 1);
18441   for (int i = 0; i < old_array->length(); i++) {
18442     // If the break point was there before just ignore.
18443     if (old_array->get(i) == *break_point_object) return;
18444     new_array->set(i, old_array->get(i));
18445   }
18446   // Add the new break point.
18447   new_array->set(old_array->length(), *break_point_object);
18448   break_point_info->set_break_point_objects(*new_array);
18449 }
18450 
18451 
HasBreakPointObject(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)18452 bool BreakPointInfo::HasBreakPointObject(
18453     Handle<BreakPointInfo> break_point_info,
18454     Handle<Object> break_point_object) {
18455   // No break point.
18456   Isolate* isolate = break_point_info->GetIsolate();
18457   if (break_point_info->break_point_objects()->IsUndefined(isolate)) {
18458     return false;
18459   }
18460   // Single break point.
18461   if (!break_point_info->break_point_objects()->IsFixedArray()) {
18462     return break_point_info->break_point_objects() == *break_point_object;
18463   }
18464   // Multiple break points.
18465   FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
18466   for (int i = 0; i < array->length(); i++) {
18467     if (array->get(i) == *break_point_object) {
18468       return true;
18469     }
18470   }
18471   return false;
18472 }
18473 
18474 
18475 // Get the number of break points.
GetBreakPointCount()18476 int BreakPointInfo::GetBreakPointCount() {
18477   // No break point.
18478   if (break_point_objects()->IsUndefined(GetIsolate())) return 0;
18479   // Single break point.
18480   if (!break_point_objects()->IsFixedArray()) return 1;
18481   // Multiple break points.
18482   return FixedArray::cast(break_point_objects())->length();
18483 }
18484 
18485 
18486 // static
New(Handle<JSFunction> constructor,Handle<JSReceiver> new_target,double tv)18487 MaybeHandle<JSDate> JSDate::New(Handle<JSFunction> constructor,
18488                                 Handle<JSReceiver> new_target, double tv) {
18489   Isolate* const isolate = constructor->GetIsolate();
18490   Handle<JSObject> result;
18491   ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
18492                              JSObject::New(constructor, new_target), JSDate);
18493   if (-DateCache::kMaxTimeInMs <= tv && tv <= DateCache::kMaxTimeInMs) {
18494     tv = DoubleToInteger(tv) + 0.0;
18495   } else {
18496     tv = std::numeric_limits<double>::quiet_NaN();
18497   }
18498   Handle<Object> value = isolate->factory()->NewNumber(tv);
18499   Handle<JSDate>::cast(result)->SetValue(*value, std::isnan(tv));
18500   return Handle<JSDate>::cast(result);
18501 }
18502 
18503 
18504 // static
CurrentTimeValue(Isolate * isolate)18505 double JSDate::CurrentTimeValue(Isolate* isolate) {
18506   if (FLAG_log_timer_events || FLAG_prof_cpp) LOG(isolate, CurrentTimeEvent());
18507 
18508   // According to ECMA-262, section 15.9.1, page 117, the precision of
18509   // the number in a Date object representing a particular instant in
18510   // time is milliseconds. Therefore, we floor the result of getting
18511   // the OS time.
18512   return Floor(FLAG_verify_predictable
18513                    ? isolate->heap()->MonotonicallyIncreasingTimeInMs()
18514                    : base::OS::TimeCurrentMillis());
18515 }
18516 
18517 
18518 // static
GetField(Object * object,Smi * index)18519 Object* JSDate::GetField(Object* object, Smi* index) {
18520   return JSDate::cast(object)->DoGetField(
18521       static_cast<FieldIndex>(index->value()));
18522 }
18523 
18524 
DoGetField(FieldIndex index)18525 Object* JSDate::DoGetField(FieldIndex index) {
18526   DCHECK(index != kDateValue);
18527 
18528   DateCache* date_cache = GetIsolate()->date_cache();
18529 
18530   if (index < kFirstUncachedField) {
18531     Object* stamp = cache_stamp();
18532     if (stamp != date_cache->stamp() && stamp->IsSmi()) {
18533       // Since the stamp is not NaN, the value is also not NaN.
18534       int64_t local_time_ms =
18535           date_cache->ToLocal(static_cast<int64_t>(value()->Number()));
18536       SetCachedFields(local_time_ms, date_cache);
18537     }
18538     switch (index) {
18539       case kYear: return year();
18540       case kMonth: return month();
18541       case kDay: return day();
18542       case kWeekday: return weekday();
18543       case kHour: return hour();
18544       case kMinute: return min();
18545       case kSecond: return sec();
18546       default: UNREACHABLE();
18547     }
18548   }
18549 
18550   if (index >= kFirstUTCField) {
18551     return GetUTCField(index, value()->Number(), date_cache);
18552   }
18553 
18554   double time = value()->Number();
18555   if (std::isnan(time)) return GetIsolate()->heap()->nan_value();
18556 
18557   int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time));
18558   int days = DateCache::DaysFromTime(local_time_ms);
18559 
18560   if (index == kDays) return Smi::FromInt(days);
18561 
18562   int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
18563   if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000);
18564   DCHECK(index == kTimeInDay);
18565   return Smi::FromInt(time_in_day_ms);
18566 }
18567 
18568 
GetUTCField(FieldIndex index,double value,DateCache * date_cache)18569 Object* JSDate::GetUTCField(FieldIndex index,
18570                             double value,
18571                             DateCache* date_cache) {
18572   DCHECK(index >= kFirstUTCField);
18573 
18574   if (std::isnan(value)) return GetIsolate()->heap()->nan_value();
18575 
18576   int64_t time_ms = static_cast<int64_t>(value);
18577 
18578   if (index == kTimezoneOffset) {
18579     return Smi::FromInt(date_cache->TimezoneOffset(time_ms));
18580   }
18581 
18582   int days = DateCache::DaysFromTime(time_ms);
18583 
18584   if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days));
18585 
18586   if (index <= kDayUTC) {
18587     int year, month, day;
18588     date_cache->YearMonthDayFromDays(days, &year, &month, &day);
18589     if (index == kYearUTC) return Smi::FromInt(year);
18590     if (index == kMonthUTC) return Smi::FromInt(month);
18591     DCHECK(index == kDayUTC);
18592     return Smi::FromInt(day);
18593   }
18594 
18595   int time_in_day_ms = DateCache::TimeInDay(time_ms, days);
18596   switch (index) {
18597     case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000));
18598     case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60);
18599     case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60);
18600     case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000);
18601     case kDaysUTC: return Smi::FromInt(days);
18602     case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms);
18603     default: UNREACHABLE();
18604   }
18605 
18606   UNREACHABLE();
18607   return NULL;
18608 }
18609 
18610 
18611 // static
SetValue(Handle<JSDate> date,double v)18612 Handle<Object> JSDate::SetValue(Handle<JSDate> date, double v) {
18613   Isolate* const isolate = date->GetIsolate();
18614   Handle<Object> value = isolate->factory()->NewNumber(v);
18615   bool value_is_nan = std::isnan(v);
18616   date->SetValue(*value, value_is_nan);
18617   return value;
18618 }
18619 
18620 
SetValue(Object * value,bool is_value_nan)18621 void JSDate::SetValue(Object* value, bool is_value_nan) {
18622   set_value(value);
18623   if (is_value_nan) {
18624     HeapNumber* nan = GetIsolate()->heap()->nan_value();
18625     set_cache_stamp(nan, SKIP_WRITE_BARRIER);
18626     set_year(nan, SKIP_WRITE_BARRIER);
18627     set_month(nan, SKIP_WRITE_BARRIER);
18628     set_day(nan, SKIP_WRITE_BARRIER);
18629     set_hour(nan, SKIP_WRITE_BARRIER);
18630     set_min(nan, SKIP_WRITE_BARRIER);
18631     set_sec(nan, SKIP_WRITE_BARRIER);
18632     set_weekday(nan, SKIP_WRITE_BARRIER);
18633   } else {
18634     set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER);
18635   }
18636 }
18637 
18638 
18639 // static
ToPrimitive(Handle<JSReceiver> receiver,Handle<Object> hint)18640 MaybeHandle<Object> JSDate::ToPrimitive(Handle<JSReceiver> receiver,
18641                                         Handle<Object> hint) {
18642   Isolate* const isolate = receiver->GetIsolate();
18643   if (hint->IsString()) {
18644     Handle<String> hint_string = Handle<String>::cast(hint);
18645     if (hint_string->Equals(isolate->heap()->number_string())) {
18646       return JSReceiver::OrdinaryToPrimitive(receiver,
18647                                              OrdinaryToPrimitiveHint::kNumber);
18648     }
18649     if (hint_string->Equals(isolate->heap()->default_string()) ||
18650         hint_string->Equals(isolate->heap()->string_string())) {
18651       return JSReceiver::OrdinaryToPrimitive(receiver,
18652                                              OrdinaryToPrimitiveHint::kString);
18653     }
18654   }
18655   THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kInvalidHint, hint),
18656                   Object);
18657 }
18658 
18659 
SetCachedFields(int64_t local_time_ms,DateCache * date_cache)18660 void JSDate::SetCachedFields(int64_t local_time_ms, DateCache* date_cache) {
18661   int days = DateCache::DaysFromTime(local_time_ms);
18662   int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
18663   int year, month, day;
18664   date_cache->YearMonthDayFromDays(days, &year, &month, &day);
18665   int weekday = date_cache->Weekday(days);
18666   int hour = time_in_day_ms / (60 * 60 * 1000);
18667   int min = (time_in_day_ms / (60 * 1000)) % 60;
18668   int sec = (time_in_day_ms / 1000) % 60;
18669   set_cache_stamp(date_cache->stamp());
18670   set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER);
18671   set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER);
18672   set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER);
18673   set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER);
18674   set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER);
18675   set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER);
18676   set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER);
18677 }
18678 
18679 
Neuter()18680 void JSArrayBuffer::Neuter() {
18681   CHECK(is_neuterable());
18682   CHECK(is_external());
18683   set_backing_store(NULL);
18684   set_byte_length(Smi::FromInt(0));
18685   set_was_neutered(true);
18686 }
18687 
18688 
Setup(Handle<JSArrayBuffer> array_buffer,Isolate * isolate,bool is_external,void * data,size_t allocated_length,SharedFlag shared)18689 void JSArrayBuffer::Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
18690                           bool is_external, void* data, size_t allocated_length,
18691                           SharedFlag shared) {
18692   DCHECK(array_buffer->GetInternalFieldCount() ==
18693          v8::ArrayBuffer::kInternalFieldCount);
18694   for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
18695     array_buffer->SetInternalField(i, Smi::FromInt(0));
18696   }
18697   array_buffer->set_bit_field(0);
18698   array_buffer->set_is_external(is_external);
18699   array_buffer->set_is_neuterable(shared == SharedFlag::kNotShared);
18700   array_buffer->set_is_shared(shared == SharedFlag::kShared);
18701 
18702   Handle<Object> byte_length =
18703       isolate->factory()->NewNumberFromSize(allocated_length);
18704   CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
18705   array_buffer->set_byte_length(*byte_length);
18706   // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
18707   // are currently being constructed in the |ArrayBufferTracker|. The
18708   // registration method below handles the case of registering a buffer that has
18709   // already been promoted.
18710   array_buffer->set_backing_store(data);
18711 
18712   if (data && !is_external) {
18713     isolate->heap()->RegisterNewArrayBuffer(*array_buffer);
18714   }
18715 }
18716 
18717 
SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,Isolate * isolate,size_t allocated_length,bool initialize,SharedFlag shared)18718 bool JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
18719                                         Isolate* isolate,
18720                                         size_t allocated_length,
18721                                         bool initialize, SharedFlag shared) {
18722   void* data;
18723   CHECK(isolate->array_buffer_allocator() != NULL);
18724   // Prevent creating array buffers when serializing.
18725   DCHECK(!isolate->serializer_enabled());
18726   if (allocated_length != 0) {
18727     if (initialize) {
18728       data = isolate->array_buffer_allocator()->Allocate(allocated_length);
18729     } else {
18730       data = isolate->array_buffer_allocator()->AllocateUninitialized(
18731           allocated_length);
18732     }
18733     if (data == NULL) return false;
18734   } else {
18735     data = NULL;
18736   }
18737 
18738   JSArrayBuffer::Setup(array_buffer, isolate, false, data, allocated_length,
18739                        shared);
18740   return true;
18741 }
18742 
18743 
MaterializeArrayBuffer(Handle<JSTypedArray> typed_array)18744 Handle<JSArrayBuffer> JSTypedArray::MaterializeArrayBuffer(
18745     Handle<JSTypedArray> typed_array) {
18746 
18747   Handle<Map> map(typed_array->map());
18748   Isolate* isolate = typed_array->GetIsolate();
18749 
18750   DCHECK(IsFixedTypedArrayElementsKind(map->elements_kind()));
18751 
18752   Handle<FixedTypedArrayBase> fixed_typed_array(
18753       FixedTypedArrayBase::cast(typed_array->elements()));
18754 
18755   Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(typed_array->buffer()),
18756                                isolate);
18757   void* backing_store =
18758       isolate->array_buffer_allocator()->AllocateUninitialized(
18759           fixed_typed_array->DataSize());
18760   buffer->set_is_external(false);
18761   DCHECK(buffer->byte_length()->IsSmi() ||
18762          buffer->byte_length()->IsHeapNumber());
18763   DCHECK(NumberToInt32(buffer->byte_length()) == fixed_typed_array->DataSize());
18764   // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
18765   // are currently being constructed in the |ArrayBufferTracker|. The
18766   // registration method below handles the case of registering a buffer that has
18767   // already been promoted.
18768   buffer->set_backing_store(backing_store);
18769   isolate->heap()->RegisterNewArrayBuffer(*buffer);
18770   memcpy(buffer->backing_store(),
18771          fixed_typed_array->DataPtr(),
18772          fixed_typed_array->DataSize());
18773   Handle<FixedTypedArrayBase> new_elements =
18774       isolate->factory()->NewFixedTypedArrayWithExternalPointer(
18775           fixed_typed_array->length(), typed_array->type(),
18776           static_cast<uint8_t*>(buffer->backing_store()));
18777 
18778   typed_array->set_elements(*new_elements);
18779 
18780   return buffer;
18781 }
18782 
18783 
GetBuffer()18784 Handle<JSArrayBuffer> JSTypedArray::GetBuffer() {
18785   Handle<JSArrayBuffer> array_buffer(JSArrayBuffer::cast(buffer()),
18786                                      GetIsolate());
18787   if (array_buffer->was_neutered() ||
18788       array_buffer->backing_store() != nullptr) {
18789     return array_buffer;
18790   }
18791   Handle<JSTypedArray> self(this);
18792   return MaterializeArrayBuffer(self);
18793 }
18794 
18795 
InvalidateEntry(Handle<GlobalDictionary> dictionary,int entry)18796 Handle<PropertyCell> PropertyCell::InvalidateEntry(
18797     Handle<GlobalDictionary> dictionary, int entry) {
18798   Isolate* isolate = dictionary->GetIsolate();
18799   // Swap with a copy.
18800   DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
18801   Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
18802   auto new_cell = isolate->factory()->NewPropertyCell();
18803   new_cell->set_value(cell->value());
18804   dictionary->ValueAtPut(entry, *new_cell);
18805   bool is_the_hole = cell->value()->IsTheHole(isolate);
18806   // Cell is officially mutable henceforth.
18807   PropertyDetails details = cell->property_details();
18808   details = details.set_cell_type(is_the_hole ? PropertyCellType::kInvalidated
18809                                               : PropertyCellType::kMutable);
18810   new_cell->set_property_details(details);
18811   // Old cell is ready for invalidation.
18812   if (is_the_hole) {
18813     cell->set_value(isolate->heap()->undefined_value());
18814   } else {
18815     cell->set_value(isolate->heap()->the_hole_value());
18816   }
18817   details = details.set_cell_type(PropertyCellType::kInvalidated);
18818   cell->set_property_details(details);
18819   cell->dependent_code()->DeoptimizeDependentCodeGroup(
18820       isolate, DependentCode::kPropertyCellChangedGroup);
18821   return new_cell;
18822 }
18823 
18824 
GetConstantType()18825 PropertyCellConstantType PropertyCell::GetConstantType() {
18826   if (value()->IsSmi()) return PropertyCellConstantType::kSmi;
18827   return PropertyCellConstantType::kStableMap;
18828 }
18829 
18830 
RemainsConstantType(Handle<PropertyCell> cell,Handle<Object> value)18831 static bool RemainsConstantType(Handle<PropertyCell> cell,
18832                                 Handle<Object> value) {
18833   // TODO(dcarney): double->smi and smi->double transition from kConstant
18834   if (cell->value()->IsSmi() && value->IsSmi()) {
18835     return true;
18836   } else if (cell->value()->IsHeapObject() && value->IsHeapObject()) {
18837     return HeapObject::cast(cell->value())->map() ==
18838                HeapObject::cast(*value)->map() &&
18839            HeapObject::cast(*value)->map()->is_stable();
18840   }
18841   return false;
18842 }
18843 
18844 
UpdatedType(Handle<PropertyCell> cell,Handle<Object> value,PropertyDetails details)18845 PropertyCellType PropertyCell::UpdatedType(Handle<PropertyCell> cell,
18846                                            Handle<Object> value,
18847                                            PropertyDetails details) {
18848   PropertyCellType type = details.cell_type();
18849   Isolate* isolate = cell->GetIsolate();
18850   DCHECK(!value->IsTheHole(isolate));
18851   if (cell->value()->IsTheHole(isolate)) {
18852     switch (type) {
18853       // Only allow a cell to transition once into constant state.
18854       case PropertyCellType::kUninitialized:
18855         if (value->IsUndefined(isolate)) return PropertyCellType::kUndefined;
18856         return PropertyCellType::kConstant;
18857       case PropertyCellType::kInvalidated:
18858         return PropertyCellType::kMutable;
18859       default:
18860         UNREACHABLE();
18861         return PropertyCellType::kMutable;
18862     }
18863   }
18864   switch (type) {
18865     case PropertyCellType::kUndefined:
18866       return PropertyCellType::kConstant;
18867     case PropertyCellType::kConstant:
18868       if (*value == cell->value()) return PropertyCellType::kConstant;
18869     // Fall through.
18870     case PropertyCellType::kConstantType:
18871       if (RemainsConstantType(cell, value)) {
18872         return PropertyCellType::kConstantType;
18873       }
18874     // Fall through.
18875     case PropertyCellType::kMutable:
18876       return PropertyCellType::kMutable;
18877   }
18878   UNREACHABLE();
18879   return PropertyCellType::kMutable;
18880 }
18881 
18882 
UpdateCell(Handle<GlobalDictionary> dictionary,int entry,Handle<Object> value,PropertyDetails details)18883 void PropertyCell::UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
18884                               Handle<Object> value, PropertyDetails details) {
18885   Isolate* isolate = dictionary->GetIsolate();
18886   DCHECK(!value->IsTheHole(isolate));
18887   DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
18888   Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
18889   const PropertyDetails original_details = cell->property_details();
18890   // Data accesses could be cached in ics or optimized code.
18891   bool invalidate =
18892       original_details.kind() == kData && details.kind() == kAccessor;
18893   int index = original_details.dictionary_index();
18894   PropertyCellType old_type = original_details.cell_type();
18895   // Preserve the enumeration index unless the property was deleted or never
18896   // initialized.
18897   if (cell->value()->IsTheHole(isolate)) {
18898     index = dictionary->NextEnumerationIndex();
18899     dictionary->SetNextEnumerationIndex(index + 1);
18900     // Negative lookup cells must be invalidated.
18901     invalidate = true;
18902   }
18903   DCHECK(index > 0);
18904   details = details.set_index(index);
18905 
18906   PropertyCellType new_type = UpdatedType(cell, value, original_details);
18907   if (invalidate) cell = PropertyCell::InvalidateEntry(dictionary, entry);
18908 
18909   // Install new property details and cell value.
18910   details = details.set_cell_type(new_type);
18911   cell->set_property_details(details);
18912   cell->set_value(*value);
18913 
18914   // Deopt when transitioning from a constant type.
18915   if (!invalidate && (old_type != new_type ||
18916                       original_details.IsReadOnly() != details.IsReadOnly())) {
18917     cell->dependent_code()->DeoptimizeDependentCodeGroup(
18918         isolate, DependentCode::kPropertyCellChangedGroup);
18919   }
18920 }
18921 
18922 
18923 // static
SetValueWithInvalidation(Handle<PropertyCell> cell,Handle<Object> new_value)18924 void PropertyCell::SetValueWithInvalidation(Handle<PropertyCell> cell,
18925                                             Handle<Object> new_value) {
18926   if (cell->value() != *new_value) {
18927     cell->set_value(*new_value);
18928     Isolate* isolate = cell->GetIsolate();
18929     cell->dependent_code()->DeoptimizeDependentCodeGroup(
18930         isolate, DependentCode::kPropertyCellChangedGroup);
18931   }
18932 }
18933 
source_position() const18934 int JSGeneratorObject::source_position() const {
18935   CHECK(is_suspended());
18936   if (function()->shared()->HasBytecodeArray()) {
18937     // New-style generators.
18938     int offset = Smi::cast(input_or_debug_pos())->value();
18939     // The stored bytecode offset is relative to a different base than what
18940     // is used in the source position table, hence the subtraction.
18941     offset -= BytecodeArray::kHeaderSize - kHeapObjectTag;
18942     return function()->shared()->bytecode_array()->SourcePosition(offset);
18943   } else {
18944     // Old-style generators.
18945     int offset = continuation();
18946     CHECK(0 <= offset && offset < function()->code()->instruction_size());
18947     return function()->code()->SourcePosition(offset);
18948   }
18949 }
18950 
18951 // static
Get(Isolate * isolate,Handle<JSObject> receiver)18952 AccessCheckInfo* AccessCheckInfo::Get(Isolate* isolate,
18953                                       Handle<JSObject> receiver) {
18954   DisallowHeapAllocation no_gc;
18955   DCHECK(receiver->map()->is_access_check_needed());
18956   Object* maybe_constructor = receiver->map()->GetConstructor();
18957   // Might happen for a detached context.
18958   if (!maybe_constructor->IsJSFunction()) return nullptr;
18959   JSFunction* constructor = JSFunction::cast(maybe_constructor);
18960   // Might happen for the debug context.
18961   if (!constructor->shared()->IsApiFunction()) return nullptr;
18962 
18963   Object* data_obj =
18964       constructor->shared()->get_api_func_data()->access_check_info();
18965   if (data_obj->IsUndefined(isolate)) return nullptr;
18966 
18967   return AccessCheckInfo::cast(data_obj);
18968 }
18969 
18970 }  // namespace internal
18971 }  // namespace v8
18972