• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
6 #define V8_X64_ASSEMBLER_X64_INL_H_
7 
8 #include "src/x64/assembler-x64.h"
9 
10 #include "src/base/cpu.h"
11 #include "src/debug/debug.h"
12 #include "src/v8memory.h"
13 
14 namespace v8 {
15 namespace internal {
16 
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18 
19 
20 // -----------------------------------------------------------------------------
21 // Implementation of Assembler
22 
23 
24 static const byte kCallOpcode = 0xE8;
25 // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
26 static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
27 
28 
emitl(uint32_t x)29 void Assembler::emitl(uint32_t x) {
30   Memory::uint32_at(pc_) = x;
31   pc_ += sizeof(uint32_t);
32 }
33 
34 
emitp(void * x,RelocInfo::Mode rmode)35 void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
36   uintptr_t value = reinterpret_cast<uintptr_t>(x);
37   Memory::uintptr_at(pc_) = value;
38   if (!RelocInfo::IsNone(rmode)) {
39     RecordRelocInfo(rmode, value);
40   }
41   pc_ += sizeof(uintptr_t);
42 }
43 
44 
emitq(uint64_t x)45 void Assembler::emitq(uint64_t x) {
46   Memory::uint64_at(pc_) = x;
47   pc_ += sizeof(uint64_t);
48 }
49 
50 
emitw(uint16_t x)51 void Assembler::emitw(uint16_t x) {
52   Memory::uint16_at(pc_) = x;
53   pc_ += sizeof(uint16_t);
54 }
55 
56 
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)57 void Assembler::emit_code_target(Handle<Code> target,
58                                  RelocInfo::Mode rmode,
59                                  TypeFeedbackId ast_id) {
60   DCHECK(RelocInfo::IsCodeTarget(rmode) ||
61       rmode == RelocInfo::CODE_AGE_SEQUENCE);
62   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
63     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
64   } else {
65     RecordRelocInfo(rmode);
66   }
67   int current = code_targets_.length();
68   if (current > 0 && code_targets_.last().is_identical_to(target)) {
69     // Optimization if we keep jumping to the same code target.
70     emitl(current - 1);
71   } else {
72     code_targets_.Add(target);
73     emitl(current);
74   }
75 }
76 
77 
emit_runtime_entry(Address entry,RelocInfo::Mode rmode)78 void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
79   DCHECK(RelocInfo::IsRuntimeEntry(rmode));
80   RecordRelocInfo(rmode);
81   emitl(static_cast<uint32_t>(
82       entry - isolate()->heap()->memory_allocator()->code_range()->start()));
83 }
84 
85 
emit_rex_64(Register reg,Register rm_reg)86 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
87   emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
88 }
89 
90 
emit_rex_64(XMMRegister reg,Register rm_reg)91 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
92   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
93 }
94 
95 
emit_rex_64(Register reg,XMMRegister rm_reg)96 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
97   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
98 }
99 
100 
emit_rex_64(Register reg,const Operand & op)101 void Assembler::emit_rex_64(Register reg, const Operand& op) {
102   emit(0x48 | reg.high_bit() << 2 | op.rex_);
103 }
104 
105 
emit_rex_64(XMMRegister reg,const Operand & op)106 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
107   emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
108 }
109 
110 
emit_rex_64(Register rm_reg)111 void Assembler::emit_rex_64(Register rm_reg) {
112   DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
113   emit(0x48 | rm_reg.high_bit());
114 }
115 
116 
emit_rex_64(const Operand & op)117 void Assembler::emit_rex_64(const Operand& op) {
118   emit(0x48 | op.rex_);
119 }
120 
121 
emit_rex_32(Register reg,Register rm_reg)122 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
123   emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
124 }
125 
126 
emit_rex_32(Register reg,const Operand & op)127 void Assembler::emit_rex_32(Register reg, const Operand& op) {
128   emit(0x40 | reg.high_bit() << 2  | op.rex_);
129 }
130 
131 
emit_rex_32(Register rm_reg)132 void Assembler::emit_rex_32(Register rm_reg) {
133   emit(0x40 | rm_reg.high_bit());
134 }
135 
136 
emit_rex_32(const Operand & op)137 void Assembler::emit_rex_32(const Operand& op) {
138   emit(0x40 | op.rex_);
139 }
140 
141 
emit_optional_rex_32(Register reg,Register rm_reg)142 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
143   byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
144   if (rex_bits != 0) emit(0x40 | rex_bits);
145 }
146 
147 
emit_optional_rex_32(Register reg,const Operand & op)148 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
149   byte rex_bits =  reg.high_bit() << 2 | op.rex_;
150   if (rex_bits != 0) emit(0x40 | rex_bits);
151 }
152 
153 
emit_optional_rex_32(XMMRegister reg,const Operand & op)154 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
155   byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
156   if (rex_bits != 0) emit(0x40 | rex_bits);
157 }
158 
159 
emit_optional_rex_32(XMMRegister reg,XMMRegister base)160 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
161   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
162   if (rex_bits != 0) emit(0x40 | rex_bits);
163 }
164 
165 
emit_optional_rex_32(XMMRegister reg,Register base)166 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
167   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
168   if (rex_bits != 0) emit(0x40 | rex_bits);
169 }
170 
171 
emit_optional_rex_32(Register reg,XMMRegister base)172 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
173   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
174   if (rex_bits != 0) emit(0x40 | rex_bits);
175 }
176 
177 
emit_optional_rex_32(Register rm_reg)178 void Assembler::emit_optional_rex_32(Register rm_reg) {
179   if (rm_reg.high_bit()) emit(0x41);
180 }
181 
emit_optional_rex_32(XMMRegister rm_reg)182 void Assembler::emit_optional_rex_32(XMMRegister rm_reg) {
183   if (rm_reg.high_bit()) emit(0x41);
184 }
185 
emit_optional_rex_32(const Operand & op)186 void Assembler::emit_optional_rex_32(const Operand& op) {
187   if (op.rex_ != 0) emit(0x40 | op.rex_);
188 }
189 
190 
191 // byte 1 of 3-byte VEX
emit_vex3_byte1(XMMRegister reg,XMMRegister rm,LeadingOpcode m)192 void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm,
193                                 LeadingOpcode m) {
194   byte rxb = ~((reg.high_bit() << 2) | rm.high_bit()) << 5;
195   emit(rxb | m);
196 }
197 
198 
199 // byte 1 of 3-byte VEX
emit_vex3_byte1(XMMRegister reg,const Operand & rm,LeadingOpcode m)200 void Assembler::emit_vex3_byte1(XMMRegister reg, const Operand& rm,
201                                 LeadingOpcode m) {
202   byte rxb = ~((reg.high_bit() << 2) | rm.rex_) << 5;
203   emit(rxb | m);
204 }
205 
206 
207 // byte 1 of 2-byte VEX
emit_vex2_byte1(XMMRegister reg,XMMRegister v,VectorLength l,SIMDPrefix pp)208 void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
209                                 SIMDPrefix pp) {
210   byte rv = ~((reg.high_bit() << 4) | v.code()) << 3;
211   emit(rv | l | pp);
212 }
213 
214 
215 // byte 2 of 3-byte VEX
emit_vex3_byte2(VexW w,XMMRegister v,VectorLength l,SIMDPrefix pp)216 void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
217                                 SIMDPrefix pp) {
218   emit(w | ((~v.code() & 0xf) << 3) | l | pp);
219 }
220 
221 
emit_vex_prefix(XMMRegister reg,XMMRegister vreg,XMMRegister rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)222 void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
223                                 XMMRegister rm, VectorLength l, SIMDPrefix pp,
224                                 LeadingOpcode mm, VexW w) {
225   if (rm.high_bit() || mm != k0F || w != kW0) {
226     emit_vex3_byte0();
227     emit_vex3_byte1(reg, rm, mm);
228     emit_vex3_byte2(w, vreg, l, pp);
229   } else {
230     emit_vex2_byte0();
231     emit_vex2_byte1(reg, vreg, l, pp);
232   }
233 }
234 
235 
emit_vex_prefix(Register reg,Register vreg,Register rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)236 void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm,
237                                 VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
238                                 VexW w) {
239   XMMRegister ireg = {reg.code()};
240   XMMRegister ivreg = {vreg.code()};
241   XMMRegister irm = {rm.code()};
242   emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w);
243 }
244 
245 
emit_vex_prefix(XMMRegister reg,XMMRegister vreg,const Operand & rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)246 void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
247                                 const Operand& rm, VectorLength l,
248                                 SIMDPrefix pp, LeadingOpcode mm, VexW w) {
249   if (rm.rex_ || mm != k0F || w != kW0) {
250     emit_vex3_byte0();
251     emit_vex3_byte1(reg, rm, mm);
252     emit_vex3_byte2(w, vreg, l, pp);
253   } else {
254     emit_vex2_byte0();
255     emit_vex2_byte1(reg, vreg, l, pp);
256   }
257 }
258 
259 
emit_vex_prefix(Register reg,Register vreg,const Operand & rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)260 void Assembler::emit_vex_prefix(Register reg, Register vreg, const Operand& rm,
261                                 VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
262                                 VexW w) {
263   XMMRegister ireg = {reg.code()};
264   XMMRegister ivreg = {vreg.code()};
265   emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w);
266 }
267 
268 
target_address_at(Address pc,Address constant_pool)269 Address Assembler::target_address_at(Address pc, Address constant_pool) {
270   return Memory::int32_at(pc) + pc + 4;
271 }
272 
273 
set_target_address_at(Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)274 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
275                                       Address constant_pool, Address target,
276                                       ICacheFlushMode icache_flush_mode) {
277   Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
278   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
279     Assembler::FlushICache(isolate, pc, sizeof(int32_t));
280   }
281 }
282 
283 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)284 void Assembler::deserialization_set_target_internal_reference_at(
285     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
286   Memory::Address_at(pc) = target;
287 }
288 
289 
target_address_from_return_address(Address pc)290 Address Assembler::target_address_from_return_address(Address pc) {
291   return pc - kCallTargetAddressOffset;
292 }
293 
294 
code_target_object_handle_at(Address pc)295 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
296   return code_targets_[Memory::int32_at(pc)];
297 }
298 
299 
runtime_entry_at(Address pc)300 Address Assembler::runtime_entry_at(Address pc) {
301   return Memory::int32_at(pc) +
302          isolate()->heap()->memory_allocator()->code_range()->start();
303 }
304 
305 // -----------------------------------------------------------------------------
306 // Implementation of RelocInfo
307 
308 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)309 void RelocInfo::apply(intptr_t delta) {
310   if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
311     Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
312   } else if (IsCodeAgeSequence(rmode_)) {
313     if (*pc_ == kCallOpcode) {
314       int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
315       *p -= static_cast<int32_t>(delta);  // Relocate entry.
316     }
317   } else if (IsInternalReference(rmode_)) {
318     // absolute code pointer inside code object moves with the code object.
319     Memory::Address_at(pc_) += delta;
320   }
321 }
322 
323 
target_address()324 Address RelocInfo::target_address() {
325   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
326   return Assembler::target_address_at(pc_, host_);
327 }
328 
target_address_address()329 Address RelocInfo::target_address_address() {
330   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
331                               || rmode_ == EMBEDDED_OBJECT
332                               || rmode_ == EXTERNAL_REFERENCE);
333   return reinterpret_cast<Address>(pc_);
334 }
335 
336 
constant_pool_entry_address()337 Address RelocInfo::constant_pool_entry_address() {
338   UNREACHABLE();
339   return NULL;
340 }
341 
342 
target_address_size()343 int RelocInfo::target_address_size() {
344   if (IsCodedSpecially()) {
345     return Assembler::kSpecialTargetSize;
346   } else {
347     return kPointerSize;
348   }
349 }
350 
351 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)352 void RelocInfo::set_target_address(Address target,
353                                    WriteBarrierMode write_barrier_mode,
354                                    ICacheFlushMode icache_flush_mode) {
355   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
356   Assembler::set_target_address_at(isolate_, pc_, host_, target,
357                                    icache_flush_mode);
358   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
359       IsCodeTarget(rmode_)) {
360     Object* target_code = Code::GetCodeFromTargetAddress(target);
361     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
362         host(), this, HeapObject::cast(target_code));
363   }
364 }
365 
target_object()366 Object* RelocInfo::target_object() {
367   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
368   return Memory::Object_at(pc_);
369 }
370 
371 
target_object_handle(Assembler * origin)372 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
373   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
374   if (rmode_ == EMBEDDED_OBJECT) {
375     return Memory::Object_Handle_at(pc_);
376   } else {
377     return origin->code_target_object_handle_at(pc_);
378   }
379 }
380 
381 
target_external_reference()382 Address RelocInfo::target_external_reference() {
383   DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
384   return Memory::Address_at(pc_);
385 }
386 
387 
target_internal_reference()388 Address RelocInfo::target_internal_reference() {
389   DCHECK(rmode_ == INTERNAL_REFERENCE);
390   return Memory::Address_at(pc_);
391 }
392 
393 
target_internal_reference_address()394 Address RelocInfo::target_internal_reference_address() {
395   DCHECK(rmode_ == INTERNAL_REFERENCE);
396   return reinterpret_cast<Address>(pc_);
397 }
398 
399 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)400 void RelocInfo::set_target_object(Object* target,
401                                   WriteBarrierMode write_barrier_mode,
402                                   ICacheFlushMode icache_flush_mode) {
403   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
404   Memory::Object_at(pc_) = target;
405   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
406     Assembler::FlushICache(isolate_, pc_, sizeof(Address));
407   }
408   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
409       host() != NULL &&
410       target->IsHeapObject()) {
411     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
412         host(), this, HeapObject::cast(target));
413   }
414 }
415 
416 
target_runtime_entry(Assembler * origin)417 Address RelocInfo::target_runtime_entry(Assembler* origin) {
418   DCHECK(IsRuntimeEntry(rmode_));
419   return origin->runtime_entry_at(pc_);
420 }
421 
422 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)423 void RelocInfo::set_target_runtime_entry(Address target,
424                                          WriteBarrierMode write_barrier_mode,
425                                          ICacheFlushMode icache_flush_mode) {
426   DCHECK(IsRuntimeEntry(rmode_));
427   if (target_address() != target) {
428     set_target_address(target, write_barrier_mode, icache_flush_mode);
429   }
430 }
431 
432 
target_cell_handle()433 Handle<Cell> RelocInfo::target_cell_handle() {
434   DCHECK(rmode_ == RelocInfo::CELL);
435   Address address = Memory::Address_at(pc_);
436   return Handle<Cell>(reinterpret_cast<Cell**>(address));
437 }
438 
439 
target_cell()440 Cell* RelocInfo::target_cell() {
441   DCHECK(rmode_ == RelocInfo::CELL);
442   return Cell::FromValueAddress(Memory::Address_at(pc_));
443 }
444 
445 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)446 void RelocInfo::set_target_cell(Cell* cell,
447                                 WriteBarrierMode write_barrier_mode,
448                                 ICacheFlushMode icache_flush_mode) {
449   DCHECK(rmode_ == RelocInfo::CELL);
450   Address address = cell->address() + Cell::kValueOffset;
451   Memory::Address_at(pc_) = address;
452   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
453     Assembler::FlushICache(isolate_, pc_, sizeof(Address));
454   }
455   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
456       host() != NULL) {
457     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
458                                                                   cell);
459   }
460 }
461 
462 
WipeOut()463 void RelocInfo::WipeOut() {
464   if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
465       IsInternalReference(rmode_)) {
466     Memory::Address_at(pc_) = NULL;
467   } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
468     // Effectively write zero into the relocation.
469     Assembler::set_target_address_at(isolate_, pc_, host_,
470                                      pc_ + sizeof(int32_t));
471   } else {
472     UNREACHABLE();
473   }
474 }
475 
476 
code_age_stub_handle(Assembler * origin)477 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
478   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
479   DCHECK(*pc_ == kCallOpcode);
480   return origin->code_target_object_handle_at(pc_ + 1);
481 }
482 
483 
code_age_stub()484 Code* RelocInfo::code_age_stub() {
485   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
486   DCHECK(*pc_ == kCallOpcode);
487   return Code::GetCodeFromTargetAddress(
488       Assembler::target_address_at(pc_ + 1, host_));
489 }
490 
491 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)492 void RelocInfo::set_code_age_stub(Code* stub,
493                                   ICacheFlushMode icache_flush_mode) {
494   DCHECK(*pc_ == kCallOpcode);
495   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
496   Assembler::set_target_address_at(
497       isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode);
498 }
499 
500 
debug_call_address()501 Address RelocInfo::debug_call_address() {
502   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
503   return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
504 }
505 
506 
set_debug_call_address(Address target)507 void RelocInfo::set_debug_call_address(Address target) {
508   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
509   Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
510       target;
511   Assembler::FlushICache(isolate_,
512                          pc_ + Assembler::kPatchDebugBreakSlotAddressOffset,
513                          sizeof(Address));
514   if (host() != NULL) {
515     Object* target_code = Code::GetCodeFromTargetAddress(target);
516     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
517         host(), this, HeapObject::cast(target_code));
518   }
519 }
520 
521 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)522 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
523   RelocInfo::Mode mode = rmode();
524   if (mode == RelocInfo::EMBEDDED_OBJECT) {
525     visitor->VisitEmbeddedPointer(this);
526     Assembler::FlushICache(isolate, pc_, sizeof(Address));
527   } else if (RelocInfo::IsCodeTarget(mode)) {
528     visitor->VisitCodeTarget(this);
529   } else if (mode == RelocInfo::CELL) {
530     visitor->VisitCell(this);
531   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
532     visitor->VisitExternalReference(this);
533   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
534     visitor->VisitInternalReference(this);
535   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
536     visitor->VisitCodeAgeSequence(this);
537   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
538              IsPatchedDebugBreakSlotSequence()) {
539     visitor->VisitDebugTarget(this);
540   } else if (RelocInfo::IsRuntimeEntry(mode)) {
541     visitor->VisitRuntimeEntry(this);
542   }
543 }
544 
545 
546 template<typename StaticVisitor>
Visit(Heap * heap)547 void RelocInfo::Visit(Heap* heap) {
548   RelocInfo::Mode mode = rmode();
549   if (mode == RelocInfo::EMBEDDED_OBJECT) {
550     StaticVisitor::VisitEmbeddedPointer(heap, this);
551     Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
552   } else if (RelocInfo::IsCodeTarget(mode)) {
553     StaticVisitor::VisitCodeTarget(heap, this);
554   } else if (mode == RelocInfo::CELL) {
555     StaticVisitor::VisitCell(heap, this);
556   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
557     StaticVisitor::VisitExternalReference(this);
558   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
559     StaticVisitor::VisitInternalReference(this);
560   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
561     StaticVisitor::VisitCodeAgeSequence(heap, this);
562   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
563              IsPatchedDebugBreakSlotSequence()) {
564     StaticVisitor::VisitDebugTarget(heap, this);
565   } else if (RelocInfo::IsRuntimeEntry(mode)) {
566     StaticVisitor::VisitRuntimeEntry(this);
567   }
568 }
569 
570 
571 // -----------------------------------------------------------------------------
572 // Implementation of Operand
573 
set_modrm(int mod,Register rm_reg)574 void Operand::set_modrm(int mod, Register rm_reg) {
575   DCHECK(is_uint2(mod));
576   buf_[0] = mod << 6 | rm_reg.low_bits();
577   // Set REX.B to the high bit of rm.code().
578   rex_ |= rm_reg.high_bit();
579 }
580 
581 
set_sib(ScaleFactor scale,Register index,Register base)582 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
583   DCHECK(len_ == 1);
584   DCHECK(is_uint2(scale));
585   // Use SIB with no index register only for base rsp or r12. Otherwise we
586   // would skip the SIB byte entirely.
587   DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
588   buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
589   rex_ |= index.high_bit() << 1 | base.high_bit();
590   len_ = 2;
591 }
592 
set_disp8(int disp)593 void Operand::set_disp8(int disp) {
594   DCHECK(is_int8(disp));
595   DCHECK(len_ == 1 || len_ == 2);
596   int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
597   *p = disp;
598   len_ += sizeof(int8_t);
599 }
600 
set_disp32(int disp)601 void Operand::set_disp32(int disp) {
602   DCHECK(len_ == 1 || len_ == 2);
603   int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
604   *p = disp;
605   len_ += sizeof(int32_t);
606 }
607 
set_disp64(int64_t disp)608 void Operand::set_disp64(int64_t disp) {
609   DCHECK_EQ(1, len_);
610   int64_t* p = reinterpret_cast<int64_t*>(&buf_[len_]);
611   *p = disp;
612   len_ += sizeof(disp);
613 }
614 }  // namespace internal
615 }  // namespace v8
616 
617 #endif  // V8_X64_ASSEMBLER_X64_INL_H_
618