#include "hardware_composer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::pdx::LocalHandle; using android::pdx::rpc::EmptyVariant; using android::pdx::rpc::IfAnyOf; using namespace std::chrono_literals; namespace android { namespace dvr { namespace { // If the number of pending fences goes over this count at the point when we // are about to submit a new frame to HWC, we will drop the frame. This should // be a signal that the display driver has begun queuing frames. Note that with // smart displays (with RAM), the fence is signaled earlier than the next vsync, // at the point when the DMA to the display completes. Currently we use a smart // display and the EDS timing coincides with zero pending fences, so this is 0. constexpr int kAllowedPendingFenceCount = 0; // Offset before vsync to submit frames to hardware composer. constexpr int64_t kFramePostOffsetNs = 4000000; // 4ms const char kBacklightBrightnessSysFile[] = "/sys/class/leds/lcd-backlight/brightness"; const char kPrimaryDisplayVSyncEventFile[] = "/sys/class/graphics/fb0/vsync_event"; const char kPrimaryDisplayWaitPPEventFile[] = "/sys/class/graphics/fb0/wait_pp"; const char kDvrPerformanceProperty[] = "sys.dvr.performance"; const char kRightEyeOffsetProperty[] = "dvr.right_eye_offset_ns"; // Get time offset from a vsync to when the pose for that vsync should be // predicted out to. For example, if scanout gets halfway through the frame // at the halfway point between vsyncs, then this could be half the period. // With global shutter displays, this should be changed to the offset to when // illumination begins. Low persistence adds a frame of latency, so we predict // to the center of the next frame. inline int64_t GetPosePredictionTimeOffset(int64_t vsync_period_ns) { return (vsync_period_ns * 150) / 100; } // Attempts to set the scheduler class and partiton for the current thread. // Returns true on success or false on failure. bool SetThreadPolicy(const std::string& scheduler_class, const std::string& partition) { int error = dvrSetSchedulerClass(0, scheduler_class.c_str()); if (error < 0) { ALOGE( "SetThreadPolicy: Failed to set scheduler class \"%s\" for " "thread_id=%d: %s", scheduler_class.c_str(), gettid(), strerror(-error)); return false; } error = dvrSetCpuPartition(0, partition.c_str()); if (error < 0) { ALOGE( "SetThreadPolicy: Failed to set cpu partiton \"%s\" for thread_id=%d: " "%s", partition.c_str(), gettid(), strerror(-error)); return false; } return true; } } // anonymous namespace // Layer static data. Hwc2::Composer* Layer::hwc2_hidl_; const HWCDisplayMetrics* Layer::display_metrics_; // HardwareComposer static data; constexpr size_t HardwareComposer::kMaxHardwareLayers; HardwareComposer::HardwareComposer() : HardwareComposer(nullptr, RequestDisplayCallback()) {} HardwareComposer::HardwareComposer( Hwc2::Composer* hwc2_hidl, RequestDisplayCallback request_display_callback) : initialized_(false), hwc2_hidl_(hwc2_hidl), request_display_callback_(request_display_callback), callbacks_(new ComposerCallback) {} HardwareComposer::~HardwareComposer(void) { UpdatePostThreadState(PostThreadState::Quit, true); if (post_thread_.joinable()) post_thread_.join(); } bool HardwareComposer::Initialize() { if (initialized_) { ALOGE("HardwareComposer::Initialize: already initialized."); return false; } HWC::Error error = HWC::Error::None; Hwc2::Config config; error = hwc2_hidl_->getActiveConfig(HWC_DISPLAY_PRIMARY, &config); if (error != HWC::Error::None) { ALOGE("HardwareComposer: Failed to get current display config : %d", config); return false; } error = GetDisplayMetrics(HWC_DISPLAY_PRIMARY, config, &native_display_metrics_); if (error != HWC::Error::None) { ALOGE( "HardwareComposer: Failed to get display attributes for current " "configuration : %d", error.value); return false; } ALOGI( "HardwareComposer: primary display attributes: width=%d height=%d " "vsync_period_ns=%d DPI=%dx%d", native_display_metrics_.width, native_display_metrics_.height, native_display_metrics_.vsync_period_ns, native_display_metrics_.dpi.x, native_display_metrics_.dpi.y); // Set the display metrics but never use rotation to avoid the long latency of // rotation processing in hwc. display_transform_ = HWC_TRANSFORM_NONE; display_metrics_ = native_display_metrics_; // Pass hwc instance and metrics to setup globals for Layer. Layer::InitializeGlobals(hwc2_hidl_, &native_display_metrics_); post_thread_event_fd_.Reset(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); LOG_ALWAYS_FATAL_IF( !post_thread_event_fd_, "HardwareComposer: Failed to create interrupt event fd : %s", strerror(errno)); post_thread_ = std::thread(&HardwareComposer::PostThread, this); initialized_ = true; return initialized_; } void HardwareComposer::Enable() { UpdatePostThreadState(PostThreadState::Suspended, false); } void HardwareComposer::Disable() { UpdatePostThreadState(PostThreadState::Suspended, true); } // Update the post thread quiescent state based on idle and suspended inputs. void HardwareComposer::UpdatePostThreadState(PostThreadStateType state, bool suspend) { std::unique_lock lock(post_thread_mutex_); // Update the votes in the state variable before evaluating the effective // quiescent state. Any bits set in post_thread_state_ indicate that the post // thread should be suspended. if (suspend) { post_thread_state_ |= state; } else { post_thread_state_ &= ~state; } const bool quit = post_thread_state_ & PostThreadState::Quit; const bool effective_suspend = post_thread_state_ != PostThreadState::Active; if (quit) { post_thread_quiescent_ = true; eventfd_write(post_thread_event_fd_.Get(), 1); post_thread_wait_.notify_one(); } else if (effective_suspend && !post_thread_quiescent_) { post_thread_quiescent_ = true; eventfd_write(post_thread_event_fd_.Get(), 1); } else if (!effective_suspend && post_thread_quiescent_) { post_thread_quiescent_ = false; eventfd_t value; eventfd_read(post_thread_event_fd_.Get(), &value); post_thread_wait_.notify_one(); } // Wait until the post thread is in the requested state. post_thread_ready_.wait(lock, [this, effective_suspend] { return effective_suspend != post_thread_resumed_; }); } void HardwareComposer::OnPostThreadResumed() { hwc2_hidl_->resetCommands(); // Connect to pose service. pose_client_ = dvrPoseCreate(); ALOGE_IF(!pose_client_, "HardwareComposer: Failed to create pose client"); // HIDL HWC seems to have an internal race condition. If we submit a frame too // soon after turning on VSync we don't get any VSync signals. Give poor HWC // implementations a chance to enable VSync before we continue. EnableVsync(false); std::this_thread::sleep_for(100ms); EnableVsync(true); std::this_thread::sleep_for(100ms); // TODO(skiazyk): We need to do something about accessing this directly, // supposedly there is a backlight service on the way. // TODO(steventhomas): When we change the backlight setting, will surface // flinger (or something else) set it back to its original value once we give // control of the display back to surface flinger? SetBacklightBrightness(255); // Trigger target-specific performance mode change. property_set(kDvrPerformanceProperty, "performance"); } void HardwareComposer::OnPostThreadPaused() { retire_fence_fds_.clear(); display_surfaces_.clear(); for (size_t i = 0; i < kMaxHardwareLayers; ++i) { layers_[i].Reset(); } active_layer_count_ = 0; if (pose_client_) { dvrPoseDestroy(pose_client_); pose_client_ = nullptr; } EnableVsync(false); hwc2_hidl_->resetCommands(); // Trigger target-specific performance mode change. property_set(kDvrPerformanceProperty, "idle"); } HWC::Error HardwareComposer::Validate(hwc2_display_t display) { uint32_t num_types; uint32_t num_requests; HWC::Error error = hwc2_hidl_->validateDisplay(display, &num_types, &num_requests); if (error == HWC2_ERROR_HAS_CHANGES) { // TODO(skiazyk): We might need to inspect the requested changes first, but // so far it seems like we shouldn't ever hit a bad state. // error = hwc2_funcs_.accept_display_changes_fn_(hardware_composer_device_, // display); error = hwc2_hidl_->acceptDisplayChanges(display); } return error; } int32_t HardwareComposer::EnableVsync(bool enabled) { return (int32_t)hwc2_hidl_->setVsyncEnabled( HWC_DISPLAY_PRIMARY, (Hwc2::IComposerClient::Vsync)(enabled ? HWC2_VSYNC_ENABLE : HWC2_VSYNC_DISABLE)); } HWC::Error HardwareComposer::Present(hwc2_display_t display) { int32_t present_fence; HWC::Error error = hwc2_hidl_->presentDisplay(display, &present_fence); // According to the documentation, this fence is signaled at the time of // vsync/DMA for physical displays. if (error == HWC::Error::None) { ATRACE_INT("HardwareComposer: VsyncFence", present_fence); retire_fence_fds_.emplace_back(present_fence); } else { ATRACE_INT("HardwareComposer: PresentResult", error); } return error; } HWC::Error HardwareComposer::GetDisplayAttribute(hwc2_display_t display, hwc2_config_t config, hwc2_attribute_t attribute, int32_t* out_value) const { return hwc2_hidl_->getDisplayAttribute( display, config, (Hwc2::IComposerClient::Attribute)attribute, out_value); } HWC::Error HardwareComposer::GetDisplayMetrics( hwc2_display_t display, hwc2_config_t config, HWCDisplayMetrics* out_metrics) const { HWC::Error error; error = GetDisplayAttribute(display, config, HWC2_ATTRIBUTE_WIDTH, &out_metrics->width); if (error != HWC::Error::None) { ALOGE( "HardwareComposer::GetDisplayMetrics: Failed to get display width: %s", error.to_string().c_str()); return error; } error = GetDisplayAttribute(display, config, HWC2_ATTRIBUTE_HEIGHT, &out_metrics->height); if (error != HWC::Error::None) { ALOGE( "HardwareComposer::GetDisplayMetrics: Failed to get display height: %s", error.to_string().c_str()); return error; } error = GetDisplayAttribute(display, config, HWC2_ATTRIBUTE_VSYNC_PERIOD, &out_metrics->vsync_period_ns); if (error != HWC::Error::None) { ALOGE( "HardwareComposer::GetDisplayMetrics: Failed to get display height: %s", error.to_string().c_str()); return error; } error = GetDisplayAttribute(display, config, HWC2_ATTRIBUTE_DPI_X, &out_metrics->dpi.x); if (error != HWC::Error::None) { ALOGE( "HardwareComposer::GetDisplayMetrics: Failed to get display DPI X: %s", error.to_string().c_str()); return error; } error = GetDisplayAttribute(display, config, HWC2_ATTRIBUTE_DPI_Y, &out_metrics->dpi.y); if (error != HWC::Error::None) { ALOGE( "HardwareComposer::GetDisplayMetrics: Failed to get display DPI Y: %s", error.to_string().c_str()); return error; } return HWC::Error::None; } std::string HardwareComposer::Dump() { return hwc2_hidl_->dumpDebugInfo(); } void HardwareComposer::PostLayers() { ATRACE_NAME("HardwareComposer::PostLayers"); // Setup the hardware composer layers with current buffers. for (size_t i = 0; i < active_layer_count_; i++) { layers_[i].Prepare(); } HWC::Error error = Validate(HWC_DISPLAY_PRIMARY); if (error != HWC::Error::None) { ALOGE("HardwareComposer::PostLayers: Validate failed: %s", error.to_string().c_str()); return; } // Now that we have taken in a frame from the application, we have a chance // to drop the frame before passing the frame along to HWC. // If the display driver has become backed up, we detect it here and then // react by skipping this frame to catch up latency. while (!retire_fence_fds_.empty() && (!retire_fence_fds_.front() || sync_wait(retire_fence_fds_.front().Get(), 0) == 0)) { // There are only 2 fences in here, no performance problem to shift the // array of ints. retire_fence_fds_.erase(retire_fence_fds_.begin()); } const bool is_frame_pending = IsFramePendingInDriver(); const bool is_fence_pending = retire_fence_fds_.size() > kAllowedPendingFenceCount; if (is_fence_pending || is_frame_pending) { ATRACE_INT("frame_skip_count", ++frame_skip_count_); ALOGW_IF(is_frame_pending, "Warning: frame already queued, dropping frame"); ALOGW_IF(is_fence_pending, "Warning: dropping a frame to catch up with HWC (pending = %zd)", retire_fence_fds_.size()); for (size_t i = 0; i < active_layer_count_; i++) { layers_[i].Drop(); } return; } else { // Make the transition more obvious in systrace when the frame skip happens // above. ATRACE_INT("frame_skip_count", 0); } #if TRACE for (size_t i = 0; i < active_layer_count_; i++) ALOGI("HardwareComposer::PostLayers: layer=%zu composition=%s", i, layers_[i].GetCompositionType().to_string().c_str()); #endif error = Present(HWC_DISPLAY_PRIMARY); if (error != HWC::Error::None) { ALOGE("HardwareComposer::PostLayers: Present failed: %s", error.to_string().c_str()); return; } std::vector out_layers; std::vector out_fences; error = hwc2_hidl_->getReleaseFences(HWC_DISPLAY_PRIMARY, &out_layers, &out_fences); ALOGE_IF(error != HWC::Error::None, "HardwareComposer::PostLayers: Failed to get release fences: %s", error.to_string().c_str()); // Perform post-frame bookkeeping. Unused layers are a no-op. uint32_t num_elements = out_layers.size(); for (size_t i = 0; i < num_elements; ++i) { for (size_t j = 0; j < active_layer_count_; ++j) { if (layers_[j].GetLayerHandle() == out_layers[i]) { layers_[j].Finish(out_fences[i]); } } } } void HardwareComposer::SetDisplaySurfaces( std::vector> surfaces) { ALOGI("HardwareComposer::SetDisplaySurfaces: surface count=%zd", surfaces.size()); const bool display_idle = surfaces.size() == 0; { std::unique_lock lock(post_thread_mutex_); pending_surfaces_ = std::move(surfaces); } // Set idle state based on whether there are any surfaces to handle. UpdatePostThreadState(PostThreadState::Idle, display_idle); // XXX: TEMPORARY // Request control of the display based on whether there are any surfaces to // handle. This callback sets the post thread active state once the transition // is complete in SurfaceFlinger. // TODO(eieio): Unify the control signal used to move SurfaceFlinger into VR // mode. Currently this is hooked up to persistent VR mode, but perhaps this // makes more sense to control it from VrCore, which could in turn base its // decision on persistent VR mode. if (request_display_callback_) request_display_callback_(!display_idle); } int HardwareComposer::PostThreadPollInterruptible( const pdx::LocalHandle& event_fd, int requested_events) { pollfd pfd[2] = { { .fd = event_fd.Get(), .events = static_cast(requested_events), .revents = 0, }, { .fd = post_thread_event_fd_.Get(), .events = POLLPRI | POLLIN, .revents = 0, }, }; int ret, error; do { ret = poll(pfd, 2, -1); error = errno; ALOGW_IF(ret < 0, "HardwareComposer::PostThreadPollInterruptible: Error during " "poll(): %s (%d)", strerror(error), error); } while (ret < 0 && error == EINTR); if (ret < 0) { return -error; } else if (pfd[0].revents != 0) { return 0; } else if (pfd[1].revents != 0) { ALOGI("VrHwcPost thread interrupted"); return kPostThreadInterrupted; } else { return 0; } } // Reads the value of the display driver wait_pingpong state. Returns 0 or 1 // (the value of the state) on success or a negative error otherwise. // TODO(eieio): This is pretty driver specific, this should be moved to a // separate class eventually. int HardwareComposer::ReadWaitPPState() { // Gracefully handle when the kernel does not support this feature. if (!primary_display_wait_pp_fd_) return 0; const int wait_pp_fd = primary_display_wait_pp_fd_.Get(); int ret, error; ret = lseek(wait_pp_fd, 0, SEEK_SET); if (ret < 0) { error = errno; ALOGE("HardwareComposer::ReadWaitPPState: Failed to seek wait_pp fd: %s", strerror(error)); return -error; } char data = -1; ret = read(wait_pp_fd, &data, sizeof(data)); if (ret < 0) { error = errno; ALOGE("HardwareComposer::ReadWaitPPState: Failed to read wait_pp state: %s", strerror(error)); return -error; } switch (data) { case '0': return 0; case '1': return 1; default: ALOGE( "HardwareComposer::ReadWaitPPState: Unexpected value for wait_pp: %d", data); return -EINVAL; } } // Reads the timestamp of the last vsync from the display driver. // TODO(eieio): This is pretty driver specific, this should be moved to a // separate class eventually. int HardwareComposer::ReadVSyncTimestamp(int64_t* timestamp) { const int event_fd = primary_display_vsync_event_fd_.Get(); int ret, error; // The driver returns data in the form "VSYNC=". std::array data; data.fill('\0'); // Seek back to the beginning of the event file. ret = lseek(event_fd, 0, SEEK_SET); if (ret < 0) { error = errno; ALOGE( "HardwareComposer::ReadVSyncTimestamp: Failed to seek vsync event fd: " "%s", strerror(error)); return -error; } // Read the vsync event timestamp. ret = read(event_fd, data.data(), data.size()); if (ret < 0) { error = errno; ALOGE_IF( error != EAGAIN, "HardwareComposer::ReadVSyncTimestamp: Error while reading timestamp: " "%s", strerror(error)); return -error; } ret = sscanf(data.data(), "VSYNC=%" PRIu64, reinterpret_cast(timestamp)); if (ret < 0) { error = errno; ALOGE( "HardwareComposer::ReadVSyncTimestamp: Error while parsing timestamp: " "%s", strerror(error)); return -error; } return 0; } // Blocks until the next vsync event is signaled by the display driver. // TODO(eieio): This is pretty driver specific, this should be moved to a // separate class eventually. int HardwareComposer::BlockUntilVSync() { // Vsync is signaled by POLLPRI on the fb vsync node. return PostThreadPollInterruptible(primary_display_vsync_event_fd_, POLLPRI); } // Waits for the next vsync and returns the timestamp of the vsync event. If // vsync already passed since the last call, returns the latest vsync timestamp // instead of blocking. This method updates the last_vsync_timeout_ in the // process. // // TODO(eieio): This is pretty driver specific, this should be moved to a // separate class eventually. int HardwareComposer::WaitForVSync(int64_t* timestamp) { int error; // Get the current timestamp and decide what to do. while (true) { int64_t current_vsync_timestamp; error = ReadVSyncTimestamp(¤t_vsync_timestamp); if (error < 0 && error != -EAGAIN) return error; if (error == -EAGAIN) { // Vsync was turned off, wait for the next vsync event. error = BlockUntilVSync(); if (error < 0 || error == kPostThreadInterrupted) return error; // Try again to get the timestamp for this new vsync interval. continue; } // Check that we advanced to a later vsync interval. if (TimestampGT(current_vsync_timestamp, last_vsync_timestamp_)) { *timestamp = last_vsync_timestamp_ = current_vsync_timestamp; return 0; } // See how close we are to the next expected vsync. If we're within 1ms, // sleep for 1ms and try again. const int64_t ns_per_frame = display_metrics_.vsync_period_ns; const int64_t threshold_ns = 1000000; // 1ms const int64_t next_vsync_est = last_vsync_timestamp_ + ns_per_frame; const int64_t distance_to_vsync_est = next_vsync_est - GetSystemClockNs(); if (distance_to_vsync_est > threshold_ns) { // Wait for vsync event notification. error = BlockUntilVSync(); if (error < 0 || error == kPostThreadInterrupted) return error; } else { // Sleep for a short time (1 millisecond) before retrying. error = SleepUntil(GetSystemClockNs() + threshold_ns); if (error < 0 || error == kPostThreadInterrupted) return error; } } } int HardwareComposer::SleepUntil(int64_t wakeup_timestamp) { const int timer_fd = vsync_sleep_timer_fd_.Get(); const itimerspec wakeup_itimerspec = { .it_interval = {.tv_sec = 0, .tv_nsec = 0}, .it_value = NsToTimespec(wakeup_timestamp), }; int ret = timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &wakeup_itimerspec, nullptr); int error = errno; if (ret < 0) { ALOGE("HardwareComposer::SleepUntil: Failed to set timerfd: %s", strerror(error)); return -error; } return PostThreadPollInterruptible(vsync_sleep_timer_fd_, POLLIN); } void HardwareComposer::PostThread() { // NOLINTNEXTLINE(runtime/int) prctl(PR_SET_NAME, reinterpret_cast("VrHwcPost"), 0, 0, 0); // Set the scheduler to SCHED_FIFO with high priority. If this fails here // there may have been a startup timing issue between this thread and // performanced. Try again later when this thread becomes active. bool thread_policy_setup = SetThreadPolicy("graphics:high", "/system/performance"); #if ENABLE_BACKLIGHT_BRIGHTNESS // TODO(hendrikw): This isn't required at the moment. It's possible that there // is another method to access this when needed. // Open the backlight brightness control sysfs node. backlight_brightness_fd_ = LocalHandle(kBacklightBrightnessSysFile, O_RDWR); ALOGW_IF(!backlight_brightness_fd_, "HardwareComposer: Failed to open backlight brightness control: %s", strerror(errno)); #endif // ENABLE_BACKLIGHT_BRIGHTNESS // Open the vsync event node for the primary display. // TODO(eieio): Move this into a platform-specific class. primary_display_vsync_event_fd_ = LocalHandle(kPrimaryDisplayVSyncEventFile, O_RDONLY); ALOGE_IF(!primary_display_vsync_event_fd_, "HardwareComposer: Failed to open vsync event node for primary " "display: %s", strerror(errno)); // Open the wait pingpong status node for the primary display. // TODO(eieio): Move this into a platform-specific class. primary_display_wait_pp_fd_ = LocalHandle(kPrimaryDisplayWaitPPEventFile, O_RDONLY); ALOGW_IF( !primary_display_wait_pp_fd_, "HardwareComposer: Failed to open wait_pp node for primary display: %s", strerror(errno)); // Create a timerfd based on CLOCK_MONOTINIC. vsync_sleep_timer_fd_.Reset(timerfd_create(CLOCK_MONOTONIC, 0)); LOG_ALWAYS_FATAL_IF( !vsync_sleep_timer_fd_, "HardwareComposer: Failed to create vsync sleep timerfd: %s", strerror(errno)); const int64_t ns_per_frame = display_metrics_.vsync_period_ns; const int64_t photon_offset_ns = GetPosePredictionTimeOffset(ns_per_frame); // TODO(jbates) Query vblank time from device, when such an API is available. // This value (6.3%) was measured on A00 in low persistence mode. int64_t vblank_ns = ns_per_frame * 63 / 1000; int64_t right_eye_photon_offset_ns = (ns_per_frame - vblank_ns) / 2; // Check property for overriding right eye offset value. right_eye_photon_offset_ns = property_get_int64(kRightEyeOffsetProperty, right_eye_photon_offset_ns); bool was_running = false; while (1) { ATRACE_NAME("HardwareComposer::PostThread"); while (post_thread_quiescent_) { std::unique_lock lock(post_thread_mutex_); ALOGI("HardwareComposer::PostThread: Entering quiescent state."); // Tear down resources. OnPostThreadPaused(); was_running = false; post_thread_resumed_ = false; post_thread_ready_.notify_all(); if (post_thread_state_ & PostThreadState::Quit) { ALOGI("HardwareComposer::PostThread: Quitting."); return; } post_thread_wait_.wait(lock, [this] { return !post_thread_quiescent_; }); post_thread_resumed_ = true; post_thread_ready_.notify_all(); ALOGI("HardwareComposer::PostThread: Exiting quiescent state."); } if (!was_running) { // Setup resources. OnPostThreadResumed(); was_running = true; // Try to setup the scheduler policy if it failed during startup. Only // attempt to do this on transitions from inactive to active to avoid // spamming the system with RPCs and log messages. if (!thread_policy_setup) { thread_policy_setup = SetThreadPolicy("graphics:high", "/system/performance"); } } int64_t vsync_timestamp = 0; { std::array buf; snprintf(buf.data(), buf.size(), "wait_vsync|vsync=%d|", vsync_count_ + 1); ATRACE_NAME(buf.data()); const int error = WaitForVSync(&vsync_timestamp); ALOGE_IF( error < 0, "HardwareComposer::PostThread: Failed to wait for vsync event: %s", strerror(-error)); // Don't bother processing this frame if a pause was requested if (error == kPostThreadInterrupted) continue; } ++vsync_count_; if (pose_client_) { // Signal the pose service with vsync info. // Display timestamp is in the middle of scanout. privateDvrPoseNotifyVsync(pose_client_, vsync_count_, vsync_timestamp + photon_offset_ns, ns_per_frame, right_eye_photon_offset_ns); } const bool layer_config_changed = UpdateLayerConfig(); // Signal all of the vsync clients. Because absolute time is used for the // wakeup time below, this can take a little time if necessary. if (vsync_callback_) vsync_callback_(HWC_DISPLAY_PRIMARY, vsync_timestamp, /*frame_time_estimate*/ 0, vsync_count_); { // Sleep until shortly before vsync. ATRACE_NAME("sleep"); const int64_t display_time_est_ns = vsync_timestamp + ns_per_frame; const int64_t now_ns = GetSystemClockNs(); const int64_t sleep_time_ns = display_time_est_ns - now_ns - kFramePostOffsetNs; const int64_t wakeup_time_ns = display_time_est_ns - kFramePostOffsetNs; ATRACE_INT64("sleep_time_ns", sleep_time_ns); if (sleep_time_ns > 0) { int error = SleepUntil(wakeup_time_ns); ALOGE_IF(error < 0, "HardwareComposer::PostThread: Failed to sleep: %s", strerror(-error)); if (error == kPostThreadInterrupted) { if (layer_config_changed) { // If the layer config changed we need to validateDisplay() even if // we're going to drop the frame, to flush the Composer object's // internal command buffer and apply our layer changes. Validate(HWC_DISPLAY_PRIMARY); } continue; } } } PostLayers(); } } // Checks for changes in the surface stack and updates the layer config to // accomodate the new stack. bool HardwareComposer::UpdateLayerConfig() { std::vector> surfaces; { std::unique_lock lock(post_thread_mutex_); if (pending_surfaces_.empty()) return false; surfaces = std::move(pending_surfaces_); } ATRACE_NAME("UpdateLayerConfig_HwLayers"); display_surfaces_.clear(); Layer* target_layer; size_t layer_index; for (layer_index = 0; layer_index < std::min(surfaces.size(), kMaxHardwareLayers); layer_index++) { // The bottom layer is opaque, other layers blend. HWC::BlendMode blending = layer_index == 0 ? HWC::BlendMode::None : HWC::BlendMode::Coverage; layers_[layer_index].Setup(surfaces[layer_index], blending, display_transform_, HWC::Composition::Device, layer_index); display_surfaces_.push_back(surfaces[layer_index]); } // Clear unused layers. for (size_t i = layer_index; i < kMaxHardwareLayers; i++) layers_[i].Reset(); active_layer_count_ = layer_index; ALOGD_IF(TRACE, "HardwareComposer::UpdateLayerConfig: %zd active layers", active_layer_count_); // Any surfaces left over could not be assigned a hardware layer and will // not be displayed. ALOGW_IF(surfaces.size() != display_surfaces_.size(), "HardwareComposer::UpdateLayerConfig: More surfaces than layers: " "pending_surfaces=%zu display_surfaces=%zu", surfaces.size(), display_surfaces_.size()); return true; } void HardwareComposer::SetVSyncCallback(VSyncCallback callback) { vsync_callback_ = callback; } void HardwareComposer::HwcRefresh(hwc2_callback_data_t /*data*/, hwc2_display_t /*display*/) { // TODO(eieio): implement invalidate callbacks. } void HardwareComposer::HwcVSync(hwc2_callback_data_t /*data*/, hwc2_display_t /*display*/, int64_t /*timestamp*/) { ATRACE_NAME(__PRETTY_FUNCTION__); // Intentionally empty. HWC may require a callback to be set to enable vsync // signals. We bypass this callback thread by monitoring the vsync event // directly, but signals still need to be enabled. } void HardwareComposer::HwcHotplug(hwc2_callback_data_t /*callbackData*/, hwc2_display_t /*display*/, hwc2_connection_t /*connected*/) { // TODO(eieio): implement display hotplug callbacks. } void HardwareComposer::OnHardwareComposerRefresh() { // TODO(steventhomas): Handle refresh. } void HardwareComposer::SetBacklightBrightness(int brightness) { if (backlight_brightness_fd_) { std::array text; const int length = snprintf(text.data(), text.size(), "%d", brightness); write(backlight_brightness_fd_.Get(), text.data(), length); } } void Layer::InitializeGlobals(Hwc2::Composer* hwc2_hidl, const HWCDisplayMetrics* metrics) { hwc2_hidl_ = hwc2_hidl; display_metrics_ = metrics; } void Layer::Reset() { if (hwc2_hidl_ != nullptr && hardware_composer_layer_) { hwc2_hidl_->destroyLayer(HWC_DISPLAY_PRIMARY, hardware_composer_layer_); hardware_composer_layer_ = 0; } z_order_ = 0; blending_ = HWC::BlendMode::None; transform_ = HWC::Transform::None; composition_type_ = HWC::Composition::Invalid; target_composition_type_ = composition_type_; source_ = EmptyVariant{}; acquire_fence_.Close(); surface_rect_functions_applied_ = false; } void Layer::Setup(const std::shared_ptr& surface, HWC::BlendMode blending, HWC::Transform transform, HWC::Composition composition_type, size_t z_order) { Reset(); z_order_ = z_order; blending_ = blending; transform_ = transform; composition_type_ = HWC::Composition::Invalid; target_composition_type_ = composition_type; source_ = SourceSurface{surface}; CommonLayerSetup(); } void Layer::Setup(const std::shared_ptr& buffer, HWC::BlendMode blending, HWC::Transform transform, HWC::Composition composition_type, size_t z_order) { Reset(); z_order_ = z_order; blending_ = blending; transform_ = transform; composition_type_ = HWC::Composition::Invalid; target_composition_type_ = composition_type; source_ = SourceBuffer{buffer}; CommonLayerSetup(); } void Layer::UpdateBuffer(const std::shared_ptr& buffer) { if (source_.is()) std::get(source_) = {buffer}; } void Layer::SetBlending(HWC::BlendMode blending) { blending_ = blending; } void Layer::SetZOrder(size_t z_order) { z_order_ = z_order; } IonBuffer* Layer::GetBuffer() { struct Visitor { IonBuffer* operator()(SourceSurface& source) { return source.GetBuffer(); } IonBuffer* operator()(SourceBuffer& source) { return source.GetBuffer(); } IonBuffer* operator()(EmptyVariant) { return nullptr; } }; return source_.Visit(Visitor{}); } void Layer::UpdateLayerSettings() { if (!IsLayerSetup()) { ALOGE( "HardwareComposer::Layer::UpdateLayerSettings: Attempt to update " "unused Layer!"); return; } HWC::Error error; hwc2_display_t display = HWC_DISPLAY_PRIMARY; error = hwc2_hidl_->setLayerCompositionType( display, hardware_composer_layer_, composition_type_.cast()); ALOGE_IF( error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer composition type: %s", error.to_string().c_str()); error = hwc2_hidl_->setLayerBlendMode( display, hardware_composer_layer_, blending_.cast()); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer blend mode: %s", error.to_string().c_str()); // TODO(eieio): Use surface attributes or some other mechanism to control // the layer display frame. error = hwc2_hidl_->setLayerDisplayFrame( display, hardware_composer_layer_, {0, 0, display_metrics_->width, display_metrics_->height}); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer display frame: %s", error.to_string().c_str()); error = hwc2_hidl_->setLayerVisibleRegion( display, hardware_composer_layer_, {{0, 0, display_metrics_->width, display_metrics_->height}}); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer visible region: %s", error.to_string().c_str()); error = hwc2_hidl_->setLayerPlaneAlpha(display, hardware_composer_layer_, 1.0f); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting layer plane alpha: %s", error.to_string().c_str()); error = hwc2_hidl_->setLayerZOrder(display, hardware_composer_layer_, z_order_); ALOGE_IF(error != HWC::Error::None, "Layer::UpdateLayerSettings: Error setting z_ order: %s", error.to_string().c_str()); } void Layer::CommonLayerSetup() { HWC::Error error = hwc2_hidl_->createLayer(HWC_DISPLAY_PRIMARY, &hardware_composer_layer_); ALOGE_IF( error != HWC::Error::None, "Layer::CommonLayerSetup: Failed to create layer on primary display: %s", error.to_string().c_str()); UpdateLayerSettings(); } void Layer::Prepare() { int right, bottom; sp handle; // Acquire the next buffer according to the type of source. IfAnyOf::Call(&source_, [&](auto& source) { std::tie(right, bottom, handle, acquire_fence_) = source.Acquire(); }); // When a layer is first setup there may be some time before the first buffer // arrives. Setup the HWC layer as a solid color to stall for time until the // first buffer arrives. Once the first buffer arrives there will always be a // buffer for the frame even if it is old. if (!handle.get()) { if (composition_type_ == HWC::Composition::Invalid) { composition_type_ = HWC::Composition::SolidColor; hwc2_hidl_->setLayerCompositionType( HWC_DISPLAY_PRIMARY, hardware_composer_layer_, composition_type_.cast()); Hwc2::IComposerClient::Color layer_color = {0, 0, 0, 0}; hwc2_hidl_->setLayerColor(HWC_DISPLAY_PRIMARY, hardware_composer_layer_, layer_color); } else { // The composition type is already set. Nothing else to do until a // buffer arrives. } } else { if (composition_type_ != target_composition_type_) { composition_type_ = target_composition_type_; hwc2_hidl_->setLayerCompositionType( HWC_DISPLAY_PRIMARY, hardware_composer_layer_, composition_type_.cast()); } HWC::Error error{HWC::Error::None}; error = hwc2_hidl_->setLayerBuffer(HWC_DISPLAY_PRIMARY, hardware_composer_layer_, 0, handle, acquire_fence_.Get()); ALOGE_IF(error != HWC::Error::None, "Layer::Prepare: Error setting layer buffer: %s", error.to_string().c_str()); if (!surface_rect_functions_applied_) { const float float_right = right; const float float_bottom = bottom; error = hwc2_hidl_->setLayerSourceCrop(HWC_DISPLAY_PRIMARY, hardware_composer_layer_, {0, 0, float_right, float_bottom}); ALOGE_IF(error != HWC::Error::None, "Layer::Prepare: Error setting layer source crop: %s", error.to_string().c_str()); surface_rect_functions_applied_ = true; } } } void Layer::Finish(int release_fence_fd) { IfAnyOf::Call( &source_, [release_fence_fd](auto& source) { source.Finish(LocalHandle(release_fence_fd)); }); } void Layer::Drop() { acquire_fence_.Close(); } } // namespace dvr } // namespace android