#ifndef ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_ #define ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_ #include #include "DisplayHardware/ComposerHal.h" #include "hwc_types.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acquired_buffer.h" #include "display_surface.h" // Hardware composer HAL doesn't define HWC_TRANSFORM_NONE as of this writing. #ifndef HWC_TRANSFORM_NONE #define HWC_TRANSFORM_NONE static_cast(0) #endif namespace android { namespace dvr { // Basic display metrics for physical displays. Dimensions and densities are // relative to the physical display orientation, which may be different from the // logical display orientation exposed to applications. struct HWCDisplayMetrics { int width; int height; struct { int x; int y; } dpi; int vsync_period_ns; }; // Layer represents the connection between a hardware composer layer and the // source supplying buffers for the layer's contents. class Layer { public: Layer() {} // Sets up the global state used by all Layer instances. This must be called // before using any Layer methods. static void InitializeGlobals(Hwc2::Composer* hwc2_hidl, const HWCDisplayMetrics* metrics); // Releases any shared pointers and fence handles held by this instance. void Reset(); // Sets up the layer to use a display surface as its content source. The Layer // automatically handles ACQUIRE/RELEASE phases for the surface's buffer train // every frame. // // |blending| receives HWC_BLENDING_* values. // |transform| receives HWC_TRANSFORM_* values. // |composition_type| receives either HWC_FRAMEBUFFER for most layers or // HWC_FRAMEBUFFER_TARGET (unless you know what you are doing). // |index| is the index of this surface in the DirectDisplaySurface array. void Setup(const std::shared_ptr& surface, HWC::BlendMode blending, HWC::Transform transform, HWC::Composition composition_type, size_t z_roder); // Sets up the layer to use a direct buffer as its content source. No special // handling of the buffer is performed; responsibility for updating or // changing the buffer each frame is on the caller. // // |blending| receives HWC_BLENDING_* values. // |transform| receives HWC_TRANSFORM_* values. // |composition_type| receives either HWC_FRAMEBUFFER for most layers or // HWC_FRAMEBUFFER_TARGET (unless you know what you are doing). void Setup(const std::shared_ptr& buffer, HWC::BlendMode blending, HWC::Transform transform, HWC::Composition composition_type, size_t z_order); // Layers that use a direct IonBuffer should call this each frame to update // which buffer will be used for the next PostLayers. void UpdateBuffer(const std::shared_ptr& buffer); // Sets up the hardware composer layer for the next frame. When the layer is // associated with a display surface, this method automatically ACQUIRES a new // buffer if one is available. void Prepare(); // After calling prepare, if this frame is to be dropped instead of passing // along to the HWC, call Drop to close the contained fence(s). void Drop(); // Performs fence bookkeeping after the frame has been posted to hardware // composer. void Finish(int release_fence_fd); // Sets the blending for the layer. |blending| receives HWC_BLENDING_* values. void SetBlending(HWC::BlendMode blending); // Sets the z-order of this layer void SetZOrder(size_t z_order); // Gets the current IonBuffer associated with this layer. Ownership of the // buffer DOES NOT pass to the caller and the pointer is not guaranteed to // remain valid across calls to Layer::Setup(), Layer::Prepare(), or // Layer::Reset(). YOU HAVE BEEN WARNED. IonBuffer* GetBuffer(); HWC::Composition GetCompositionType() const { return composition_type_; } HWC::Layer GetLayerHandle() const { return hardware_composer_layer_; } bool IsLayerSetup() const { return !source_.empty(); } // Applies all of the settings to this layer using the hwc functions void UpdateLayerSettings(); int GetSurfaceId() const { int surface_id = -1; pdx::rpc::IfAnyOf::Call( &source_, [&surface_id](const SourceSurface& surface_source) { surface_id = surface_source.surface->surface_id(); }); return surface_id; } private: void CommonLayerSetup(); static Hwc2::Composer* hwc2_hidl_; static const HWCDisplayMetrics* display_metrics_; // The hardware composer layer and metrics to use during the prepare cycle. hwc2_layer_t hardware_composer_layer_ = 0; // Layer properties used to setup the hardware composer layer during the // Prepare phase. size_t z_order_ = 0; HWC::BlendMode blending_ = HWC::BlendMode::None; HWC::Transform transform_ = HWC::Transform::None; HWC::Composition composition_type_ = HWC::Composition::Invalid; HWC::Composition target_composition_type_ = HWC::Composition::Device; // State when the layer is connected to a surface. Provides the same interface // as SourceBuffer to simplify internal use by Layer. struct SourceSurface { std::shared_ptr surface; AcquiredBuffer acquired_buffer; pdx::LocalHandle release_fence; SourceSurface(const std::shared_ptr& surface) : surface(surface) {} // Attempts to acquire a new buffer from the surface and return a tuple with // width, height, buffer handle, and fence. If a new buffer is not available // the previous buffer is returned or an empty value if no buffer has ever // been posted. When a new buffer is acquired the previous buffer's release // fence is passed out automatically. std::tuple, pdx::LocalHandle> Acquire() { if (surface->IsBufferAvailable()) { acquired_buffer.Release(std::move(release_fence)); acquired_buffer = surface->AcquireCurrentBuffer(); ATRACE_ASYNC_END("BufferPost", acquired_buffer.buffer()->id()); } if (!acquired_buffer.IsEmpty()) { return std::make_tuple(acquired_buffer.buffer()->width(), acquired_buffer.buffer()->height(), acquired_buffer.buffer()->buffer()->buffer(), acquired_buffer.ClaimAcquireFence()); } else { return std::make_tuple(0, 0, nullptr, pdx::LocalHandle{}); } } void Finish(pdx::LocalHandle fence) { release_fence = std::move(fence); } // Gets a pointer to the current acquired buffer or returns nullptr if there // isn't one. IonBuffer* GetBuffer() { if (acquired_buffer.IsAvailable()) return acquired_buffer.buffer()->buffer(); else return nullptr; } // Returns the surface id of the surface. int GetSurfaceId() { return surface->surface_id(); } }; // State when the layer is connected to a buffer. Provides the same interface // as SourceSurface to simplify internal use by Layer. struct SourceBuffer { std::shared_ptr buffer; std::tuple, pdx::LocalHandle> Acquire() { if (buffer) return std::make_tuple(buffer->width(), buffer->height(), buffer->buffer(), pdx::LocalHandle{}); else return std::make_tuple(0, 0, nullptr, pdx::LocalHandle{}); } void Finish(pdx::LocalHandle /*fence*/) {} IonBuffer* GetBuffer() { return buffer.get(); } int GetSurfaceId() const { return -1; } }; // The underlying hardware composer layer is supplied buffers either from a // surface buffer train or from a buffer directly. pdx::rpc::Variant source_; pdx::LocalHandle acquire_fence_; bool surface_rect_functions_applied_ = false; Layer(const Layer&) = delete; void operator=(const Layer&) = delete; }; // HardwareComposer encapsulates the hardware composer HAL, exposing a // simplified API to post buffers to the display. // // HardwareComposer is accessed by both the vr flinger dispatcher thread and the // surface flinger main thread, in addition to internally running a separate // thread for compositing/EDS and posting layers to the HAL. When changing how // variables are used or adding new state think carefully about which threads // will access the state and whether it needs to be synchronized. class HardwareComposer { public: // Type for vsync callback. using VSyncCallback = std::function; using RequestDisplayCallback = std::function; // Since there is no universal way to query the number of hardware layers, // just set it to 4 for now. static constexpr size_t kMaxHardwareLayers = 4; HardwareComposer(); HardwareComposer(Hwc2::Composer* hidl, RequestDisplayCallback request_display_callback); ~HardwareComposer(); bool Initialize(); bool IsInitialized() const { return initialized_; } // Start the post thread if there's work to do (i.e. visible layers). This // should only be called from surface flinger's main thread. void Enable(); // Pause the post thread, blocking until the post thread has signaled that // it's paused. This should only be called from surface flinger's main thread. void Disable(); // Get the HMD display metrics for the current display. display::Metrics GetHmdDisplayMetrics() const; HWC::Error GetDisplayAttribute(hwc2_display_t display, hwc2_config_t config, hwc2_attribute_t attributes, int32_t* out_value) const; HWC::Error GetDisplayMetrics(hwc2_display_t display, hwc2_config_t config, HWCDisplayMetrics* out_metrics) const; std::string Dump(); void SetVSyncCallback(VSyncCallback callback); // Metrics of the logical display, which is always landscape. int DisplayWidth() const { return display_metrics_.width; } int DisplayHeight() const { return display_metrics_.height; } HWCDisplayMetrics display_metrics() const { return display_metrics_; } // Metrics of the native display, which depends on the specific hardware // implementation of the display. HWCDisplayMetrics native_display_metrics() const { return native_display_metrics_; } // Sets the display surfaces to compose the hardware layer stack. void SetDisplaySurfaces( std::vector> surfaces); void OnHardwareComposerRefresh(); private: int32_t EnableVsync(bool enabled); class ComposerCallback : public Hwc2::IComposerCallback { public: ComposerCallback() {} hardware::Return onHotplug(Hwc2::Display /*display*/, Connection /*connected*/) override { // TODO(skiazyk): depending on how the server is implemented, we might // have to set it up to synchronize with receiving this event, as it can // potentially be a critical event for setting up state within the // hwc2 module. That is, we (technically) should not call any other hwc // methods until this method has been called after registering the // callbacks. return hardware::Void(); } hardware::Return onRefresh(Hwc2::Display /*display*/) override { return hardware::Void(); } hardware::Return onVsync(Hwc2::Display /*display*/, int64_t /*timestamp*/) override { return hardware::Void(); } }; HWC::Error Validate(hwc2_display_t display); HWC::Error Present(hwc2_display_t display); void SetBacklightBrightness(int brightness); void PostLayers(); void PostThread(); // The post thread has two controlling states: // 1. Idle: no work to do (no visible surfaces). // 2. Suspended: explicitly halted (system is not in VR mode). // When either #1 or #2 is true then the post thread is quiescent, otherwise // it is active. using PostThreadStateType = uint32_t; struct PostThreadState { enum : PostThreadStateType { Active = 0, Idle = (1 << 0), Suspended = (1 << 1), Quit = (1 << 2), }; }; void UpdatePostThreadState(uint32_t state, bool suspend); // Blocks until either event_fd becomes readable, or we're interrupted by a // control thread. Any errors are returned as negative errno values. If we're // interrupted, kPostThreadInterrupted will be returned. int PostThreadPollInterruptible(const pdx::LocalHandle& event_fd, int requested_events); // BlockUntilVSync, WaitForVSync, and SleepUntil are all blocking calls made // on the post thread that can be interrupted by a control thread. If // interrupted, these calls return kPostThreadInterrupted. int ReadWaitPPState(); int BlockUntilVSync(); int ReadVSyncTimestamp(int64_t* timestamp); int WaitForVSync(int64_t* timestamp); int SleepUntil(int64_t wakeup_timestamp); bool IsFramePendingInDriver() { return ReadWaitPPState() == 1; } // Reconfigures the layer stack if the display surfaces changed since the last // frame. Called only from the post thread. bool UpdateLayerConfig(); // Called on the post thread when the post thread is resumed. void OnPostThreadResumed(); // Called on the post thread when the post thread is paused or quits. void OnPostThreadPaused(); bool initialized_; // Hardware composer HAL device from SurfaceFlinger. VrFlinger does not own // this pointer. Hwc2::Composer* hwc2_hidl_; RequestDisplayCallback request_display_callback_; sp callbacks_; // Display metrics of the physical display. HWCDisplayMetrics native_display_metrics_; // Display metrics of the logical display, adjusted so that orientation is // landscape. HWCDisplayMetrics display_metrics_; // Transform required to get from native to logical display orientation. HWC::Transform display_transform_ = HWC::Transform::None; // Pending surface list. Set by the display service when DirectSurfaces are // added, removed, or change visibility. Written by the message dispatch // thread and read by the post thread. std::vector> pending_surfaces_; // The surfaces displayed by the post thread. Used exclusively by the post // thread. std::vector> display_surfaces_; // Layer array for handling buffer flow into hardware composer layers. std::array layers_; size_t active_layer_count_ = 0; // Handler to hook vsync events outside of this class. VSyncCallback vsync_callback_; // The layer posting thread. This thread wakes up a short time before vsync to // hand buffers to hardware composer. std::thread post_thread_; // Post thread state machine and synchronization primitives. PostThreadStateType post_thread_state_{PostThreadState::Idle}; std::atomic post_thread_quiescent_{true}; bool post_thread_resumed_{false}; pdx::LocalHandle post_thread_event_fd_; std::mutex post_thread_mutex_; std::condition_variable post_thread_wait_; std::condition_variable post_thread_ready_; // Backlight LED brightness sysfs node. pdx::LocalHandle backlight_brightness_fd_; // Primary display vsync event sysfs node. pdx::LocalHandle primary_display_vsync_event_fd_; // Primary display wait_pingpong state sysfs node. pdx::LocalHandle primary_display_wait_pp_fd_; // VSync sleep timerfd. pdx::LocalHandle vsync_sleep_timer_fd_; // The timestamp of the last vsync. int64_t last_vsync_timestamp_ = 0; // Vsync count since display on. uint32_t vsync_count_ = 0; // Counter tracking the number of skipped frames. int frame_skip_count_ = 0; // Fd array for tracking retire fences that are returned by hwc. This allows // us to detect when the display driver begins queuing frames. std::vector retire_fence_fds_; // Pose client for frame count notifications. Pose client predicts poses // out to display frame boundaries, so we need to tell it about vsyncs. DvrPose* pose_client_ = nullptr; static constexpr int kPostThreadInterrupted = 1; static void HwcRefresh(hwc2_callback_data_t data, hwc2_display_t display); static void HwcVSync(hwc2_callback_data_t data, hwc2_display_t display, int64_t timestamp); static void HwcHotplug(hwc2_callback_data_t callbackData, hwc2_display_t display, hwc2_connection_t connected); HardwareComposer(const HardwareComposer&) = delete; void operator=(const HardwareComposer&) = delete; }; } // namespace dvr } // namespace android #endif // ANDROID_DVR_SERVICES_DISPLAYD_HARDWARE_COMPOSER_H_