• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/gdb-jit.h"
6 
7 #include <memory>
8 
9 #include "src/base/bits.h"
10 #include "src/base/platform/platform.h"
11 #include "src/bootstrapper.h"
12 #include "src/frames-inl.h"
13 #include "src/frames.h"
14 #include "src/global-handles.h"
15 #include "src/messages.h"
16 #include "src/objects.h"
17 #include "src/ostreams.h"
18 #include "src/snapshot/natives.h"
19 #include "src/splay-tree-inl.h"
20 
21 namespace v8 {
22 namespace internal {
23 namespace GDBJITInterface {
24 
25 #ifdef ENABLE_GDB_JIT_INTERFACE
26 
27 #ifdef __APPLE__
28 #define __MACH_O
29 class MachO;
30 class MachOSection;
31 typedef MachO DebugObject;
32 typedef MachOSection DebugSection;
33 #else
34 #define __ELF
35 class ELF;
36 class ELFSection;
37 typedef ELF DebugObject;
38 typedef ELFSection DebugSection;
39 #endif
40 
41 class Writer BASE_EMBEDDED {
42  public:
Writer(DebugObject * debug_object)43   explicit Writer(DebugObject* debug_object)
44       : debug_object_(debug_object),
45         position_(0),
46         capacity_(1024),
47         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
48   }
49 
~Writer()50   ~Writer() {
51     free(buffer_);
52   }
53 
position() const54   uintptr_t position() const {
55     return position_;
56   }
57 
58   template<typename T>
59   class Slot {
60    public:
Slot(Writer * w,uintptr_t offset)61     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
62 
operator ->()63     T* operator-> () {
64       return w_->RawSlotAt<T>(offset_);
65     }
66 
set(const T & value)67     void set(const T& value) {
68       *w_->RawSlotAt<T>(offset_) = value;
69     }
70 
at(int i)71     Slot<T> at(int i) {
72       return Slot<T>(w_, offset_ + sizeof(T) * i);
73     }
74 
75    private:
76     Writer* w_;
77     uintptr_t offset_;
78   };
79 
80   template<typename T>
Write(const T & val)81   void Write(const T& val) {
82     Ensure(position_ + sizeof(T));
83     *RawSlotAt<T>(position_) = val;
84     position_ += sizeof(T);
85   }
86 
87   template<typename T>
SlotAt(uintptr_t offset)88   Slot<T> SlotAt(uintptr_t offset) {
89     Ensure(offset + sizeof(T));
90     return Slot<T>(this, offset);
91   }
92 
93   template<typename T>
CreateSlotHere()94   Slot<T> CreateSlotHere() {
95     return CreateSlotsHere<T>(1);
96   }
97 
98   template<typename T>
CreateSlotsHere(uint32_t count)99   Slot<T> CreateSlotsHere(uint32_t count) {
100     uintptr_t slot_position = position_;
101     position_ += sizeof(T) * count;
102     Ensure(position_);
103     return SlotAt<T>(slot_position);
104   }
105 
Ensure(uintptr_t pos)106   void Ensure(uintptr_t pos) {
107     if (capacity_ < pos) {
108       while (capacity_ < pos) capacity_ *= 2;
109       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
110     }
111   }
112 
debug_object()113   DebugObject* debug_object() { return debug_object_; }
114 
buffer()115   byte* buffer() { return buffer_; }
116 
Align(uintptr_t align)117   void Align(uintptr_t align) {
118     uintptr_t delta = position_ % align;
119     if (delta == 0) return;
120     uintptr_t padding = align - delta;
121     Ensure(position_ += padding);
122     DCHECK((position_ % align) == 0);
123   }
124 
WriteULEB128(uintptr_t value)125   void WriteULEB128(uintptr_t value) {
126     do {
127       uint8_t byte = value & 0x7F;
128       value >>= 7;
129       if (value != 0) byte |= 0x80;
130       Write<uint8_t>(byte);
131     } while (value != 0);
132   }
133 
WriteSLEB128(intptr_t value)134   void WriteSLEB128(intptr_t value) {
135     bool more = true;
136     while (more) {
137       int8_t byte = value & 0x7F;
138       bool byte_sign = byte & 0x40;
139       value >>= 7;
140 
141       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
142         more = false;
143       } else {
144         byte |= 0x80;
145       }
146 
147       Write<int8_t>(byte);
148     }
149   }
150 
WriteString(const char * str)151   void WriteString(const char* str) {
152     do {
153       Write<char>(*str);
154     } while (*str++);
155   }
156 
157  private:
158   template<typename T> friend class Slot;
159 
160   template<typename T>
RawSlotAt(uintptr_t offset)161   T* RawSlotAt(uintptr_t offset) {
162     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
163     return reinterpret_cast<T*>(&buffer_[offset]);
164   }
165 
166   DebugObject* debug_object_;
167   uintptr_t position_;
168   uintptr_t capacity_;
169   byte* buffer_;
170 };
171 
172 class ELFStringTable;
173 
174 template<typename THeader>
175 class DebugSectionBase : public ZoneObject {
176  public:
~DebugSectionBase()177   virtual ~DebugSectionBase() { }
178 
WriteBody(Writer::Slot<THeader> header,Writer * writer)179   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
180     uintptr_t start = writer->position();
181     if (WriteBodyInternal(writer)) {
182       uintptr_t end = writer->position();
183       header->offset = static_cast<uint32_t>(start);
184 #if defined(__MACH_O)
185       header->addr = 0;
186 #endif
187       header->size = end - start;
188     }
189   }
190 
WriteBodyInternal(Writer * writer)191   virtual bool WriteBodyInternal(Writer* writer) {
192     return false;
193   }
194 
195   typedef THeader Header;
196 };
197 
198 
199 struct MachOSectionHeader {
200   char sectname[16];
201   char segname[16];
202 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
203   uint32_t addr;
204   uint32_t size;
205 #else
206   uint64_t addr;
207   uint64_t size;
208 #endif
209   uint32_t offset;
210   uint32_t align;
211   uint32_t reloff;
212   uint32_t nreloc;
213   uint32_t flags;
214   uint32_t reserved1;
215   uint32_t reserved2;
216 };
217 
218 
219 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
220  public:
221   enum Type {
222     S_REGULAR = 0x0u,
223     S_ATTR_COALESCED = 0xbu,
224     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
225     S_ATTR_DEBUG = 0x02000000u,
226     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
227   };
228 
MachOSection(const char * name,const char * segment,uint32_t align,uint32_t flags)229   MachOSection(const char* name, const char* segment, uint32_t align,
230                uint32_t flags)
231       : name_(name), segment_(segment), align_(align), flags_(flags) {
232     if (align_ != 0) {
233       DCHECK(base::bits::IsPowerOfTwo32(align));
234       align_ = WhichPowerOf2(align_);
235     }
236   }
237 
~MachOSection()238   virtual ~MachOSection() { }
239 
PopulateHeader(Writer::Slot<Header> header)240   virtual void PopulateHeader(Writer::Slot<Header> header) {
241     header->addr = 0;
242     header->size = 0;
243     header->offset = 0;
244     header->align = align_;
245     header->reloff = 0;
246     header->nreloc = 0;
247     header->flags = flags_;
248     header->reserved1 = 0;
249     header->reserved2 = 0;
250     memset(header->sectname, 0, sizeof(header->sectname));
251     memset(header->segname, 0, sizeof(header->segname));
252     DCHECK(strlen(name_) < sizeof(header->sectname));
253     DCHECK(strlen(segment_) < sizeof(header->segname));
254     strncpy(header->sectname, name_, sizeof(header->sectname));
255     strncpy(header->segname, segment_, sizeof(header->segname));
256   }
257 
258  private:
259   const char* name_;
260   const char* segment_;
261   uint32_t align_;
262   uint32_t flags_;
263 };
264 
265 
266 struct ELFSectionHeader {
267   uint32_t name;
268   uint32_t type;
269   uintptr_t flags;
270   uintptr_t address;
271   uintptr_t offset;
272   uintptr_t size;
273   uint32_t link;
274   uint32_t info;
275   uintptr_t alignment;
276   uintptr_t entry_size;
277 };
278 
279 
280 #if defined(__ELF)
281 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
282  public:
283   enum Type {
284     TYPE_NULL = 0,
285     TYPE_PROGBITS = 1,
286     TYPE_SYMTAB = 2,
287     TYPE_STRTAB = 3,
288     TYPE_RELA = 4,
289     TYPE_HASH = 5,
290     TYPE_DYNAMIC = 6,
291     TYPE_NOTE = 7,
292     TYPE_NOBITS = 8,
293     TYPE_REL = 9,
294     TYPE_SHLIB = 10,
295     TYPE_DYNSYM = 11,
296     TYPE_LOPROC = 0x70000000,
297     TYPE_X86_64_UNWIND = 0x70000001,
298     TYPE_HIPROC = 0x7fffffff,
299     TYPE_LOUSER = 0x80000000,
300     TYPE_HIUSER = 0xffffffff
301   };
302 
303   enum Flags {
304     FLAG_WRITE = 1,
305     FLAG_ALLOC = 2,
306     FLAG_EXEC = 4
307   };
308 
309   enum SpecialIndexes {
310     INDEX_ABSOLUTE = 0xfff1
311   };
312 
ELFSection(const char * name,Type type,uintptr_t align)313   ELFSection(const char* name, Type type, uintptr_t align)
314       : name_(name), type_(type), align_(align) { }
315 
~ELFSection()316   virtual ~ELFSection() { }
317 
318   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
319 
WriteBody(Writer::Slot<Header> header,Writer * w)320   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
321     uintptr_t start = w->position();
322     if (WriteBodyInternal(w)) {
323       uintptr_t end = w->position();
324       header->offset = start;
325       header->size = end - start;
326     }
327   }
328 
WriteBodyInternal(Writer * w)329   virtual bool WriteBodyInternal(Writer* w) {
330     return false;
331   }
332 
index() const333   uint16_t index() const { return index_; }
set_index(uint16_t index)334   void set_index(uint16_t index) { index_ = index; }
335 
336  protected:
PopulateHeader(Writer::Slot<Header> header)337   virtual void PopulateHeader(Writer::Slot<Header> header) {
338     header->flags = 0;
339     header->address = 0;
340     header->offset = 0;
341     header->size = 0;
342     header->link = 0;
343     header->info = 0;
344     header->entry_size = 0;
345   }
346 
347  private:
348   const char* name_;
349   Type type_;
350   uintptr_t align_;
351   uint16_t index_;
352 };
353 #endif  // defined(__ELF)
354 
355 
356 #if defined(__MACH_O)
357 class MachOTextSection : public MachOSection {
358  public:
MachOTextSection(uint32_t align,uintptr_t addr,uintptr_t size)359   MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
360       : MachOSection("__text", "__TEXT", align,
361                      MachOSection::S_REGULAR |
362                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
363                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
364         addr_(addr),
365         size_(size) {}
366 
367  protected:
PopulateHeader(Writer::Slot<Header> header)368   virtual void PopulateHeader(Writer::Slot<Header> header) {
369     MachOSection::PopulateHeader(header);
370     header->addr = addr_;
371     header->size = size_;
372   }
373 
374  private:
375   uintptr_t addr_;
376   uintptr_t size_;
377 };
378 #endif  // defined(__MACH_O)
379 
380 
381 #if defined(__ELF)
382 class FullHeaderELFSection : public ELFSection {
383  public:
FullHeaderELFSection(const char * name,Type type,uintptr_t align,uintptr_t addr,uintptr_t offset,uintptr_t size,uintptr_t flags)384   FullHeaderELFSection(const char* name,
385                        Type type,
386                        uintptr_t align,
387                        uintptr_t addr,
388                        uintptr_t offset,
389                        uintptr_t size,
390                        uintptr_t flags)
391       : ELFSection(name, type, align),
392         addr_(addr),
393         offset_(offset),
394         size_(size),
395         flags_(flags) { }
396 
397  protected:
PopulateHeader(Writer::Slot<Header> header)398   virtual void PopulateHeader(Writer::Slot<Header> header) {
399     ELFSection::PopulateHeader(header);
400     header->address = addr_;
401     header->offset = offset_;
402     header->size = size_;
403     header->flags = flags_;
404   }
405 
406  private:
407   uintptr_t addr_;
408   uintptr_t offset_;
409   uintptr_t size_;
410   uintptr_t flags_;
411 };
412 
413 
414 class ELFStringTable : public ELFSection {
415  public:
ELFStringTable(const char * name)416   explicit ELFStringTable(const char* name)
417       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
418   }
419 
Add(const char * str)420   uintptr_t Add(const char* str) {
421     if (*str == '\0') return 0;
422 
423     uintptr_t offset = size_;
424     WriteString(str);
425     return offset;
426   }
427 
AttachWriter(Writer * w)428   void AttachWriter(Writer* w) {
429     writer_ = w;
430     offset_ = writer_->position();
431 
432     // First entry in the string table should be an empty string.
433     WriteString("");
434   }
435 
DetachWriter()436   void DetachWriter() {
437     writer_ = NULL;
438   }
439 
WriteBody(Writer::Slot<Header> header,Writer * w)440   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
441     DCHECK(writer_ == NULL);
442     header->offset = offset_;
443     header->size = size_;
444   }
445 
446  private:
WriteString(const char * str)447   void WriteString(const char* str) {
448     uintptr_t written = 0;
449     do {
450       writer_->Write(*str);
451       written++;
452     } while (*str++);
453     size_ += written;
454   }
455 
456   Writer* writer_;
457 
458   uintptr_t offset_;
459   uintptr_t size_;
460 };
461 
462 
PopulateHeader(Writer::Slot<ELFSection::Header> header,ELFStringTable * strtab)463 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
464                                 ELFStringTable* strtab) {
465   header->name = static_cast<uint32_t>(strtab->Add(name_));
466   header->type = type_;
467   header->alignment = align_;
468   PopulateHeader(header);
469 }
470 #endif  // defined(__ELF)
471 
472 
473 #if defined(__MACH_O)
474 class MachO BASE_EMBEDDED {
475  public:
MachO(Zone * zone)476   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
477 
AddSection(MachOSection * section)478   uint32_t AddSection(MachOSection* section) {
479     sections_.Add(section, zone_);
480     return sections_.length() - 1;
481   }
482 
Write(Writer * w,uintptr_t code_start,uintptr_t code_size)483   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
484     Writer::Slot<MachOHeader> header = WriteHeader(w);
485     uintptr_t load_command_start = w->position();
486     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
487                                                                 code_start,
488                                                                 code_size);
489     WriteSections(w, cmd, header, load_command_start);
490   }
491 
492  private:
493   struct MachOHeader {
494     uint32_t magic;
495     uint32_t cputype;
496     uint32_t cpusubtype;
497     uint32_t filetype;
498     uint32_t ncmds;
499     uint32_t sizeofcmds;
500     uint32_t flags;
501 #if V8_TARGET_ARCH_X64
502     uint32_t reserved;
503 #endif
504   };
505 
506   struct MachOSegmentCommand {
507     uint32_t cmd;
508     uint32_t cmdsize;
509     char segname[16];
510 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
511     uint32_t vmaddr;
512     uint32_t vmsize;
513     uint32_t fileoff;
514     uint32_t filesize;
515 #else
516     uint64_t vmaddr;
517     uint64_t vmsize;
518     uint64_t fileoff;
519     uint64_t filesize;
520 #endif
521     uint32_t maxprot;
522     uint32_t initprot;
523     uint32_t nsects;
524     uint32_t flags;
525   };
526 
527   enum MachOLoadCommandCmd {
528     LC_SEGMENT_32 = 0x00000001u,
529     LC_SEGMENT_64 = 0x00000019u
530   };
531 
532 
WriteHeader(Writer * w)533   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
534     DCHECK(w->position() == 0);
535     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
536 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
537     header->magic = 0xFEEDFACEu;
538     header->cputype = 7;  // i386
539     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
540 #elif V8_TARGET_ARCH_X64
541     header->magic = 0xFEEDFACFu;
542     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
543     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
544     header->reserved = 0;
545 #else
546 #error Unsupported target architecture.
547 #endif
548     header->filetype = 0x1;  // MH_OBJECT
549     header->ncmds = 1;
550     header->sizeofcmds = 0;
551     header->flags = 0;
552     return header;
553   }
554 
555 
WriteSegmentCommand(Writer * w,uintptr_t code_start,uintptr_t code_size)556   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
557                                                         uintptr_t code_start,
558                                                         uintptr_t code_size) {
559     Writer::Slot<MachOSegmentCommand> cmd =
560         w->CreateSlotHere<MachOSegmentCommand>();
561 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
562     cmd->cmd = LC_SEGMENT_32;
563 #else
564     cmd->cmd = LC_SEGMENT_64;
565 #endif
566     cmd->vmaddr = code_start;
567     cmd->vmsize = code_size;
568     cmd->fileoff = 0;
569     cmd->filesize = 0;
570     cmd->maxprot = 7;
571     cmd->initprot = 7;
572     cmd->flags = 0;
573     cmd->nsects = sections_.length();
574     memset(cmd->segname, 0, 16);
575     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
576         cmd->nsects;
577     return cmd;
578   }
579 
580 
WriteSections(Writer * w,Writer::Slot<MachOSegmentCommand> cmd,Writer::Slot<MachOHeader> header,uintptr_t load_command_start)581   void WriteSections(Writer* w,
582                      Writer::Slot<MachOSegmentCommand> cmd,
583                      Writer::Slot<MachOHeader> header,
584                      uintptr_t load_command_start) {
585     Writer::Slot<MachOSection::Header> headers =
586         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
587     cmd->fileoff = w->position();
588     header->sizeofcmds =
589         static_cast<uint32_t>(w->position() - load_command_start);
590     for (int section = 0; section < sections_.length(); ++section) {
591       sections_[section]->PopulateHeader(headers.at(section));
592       sections_[section]->WriteBody(headers.at(section), w);
593     }
594     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
595   }
596 
597   Zone* zone_;
598   ZoneList<MachOSection*> sections_;
599 };
600 #endif  // defined(__MACH_O)
601 
602 
603 #if defined(__ELF)
604 class ELF BASE_EMBEDDED {
605  public:
ELF(Zone * zone)606   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
607     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
608     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
609   }
610 
Write(Writer * w)611   void Write(Writer* w) {
612     WriteHeader(w);
613     WriteSectionTable(w);
614     WriteSections(w);
615   }
616 
SectionAt(uint32_t index)617   ELFSection* SectionAt(uint32_t index) {
618     return sections_[index];
619   }
620 
AddSection(ELFSection * section)621   uint32_t AddSection(ELFSection* section) {
622     sections_.Add(section, zone_);
623     section->set_index(sections_.length() - 1);
624     return sections_.length() - 1;
625   }
626 
627  private:
628   struct ELFHeader {
629     uint8_t ident[16];
630     uint16_t type;
631     uint16_t machine;
632     uint32_t version;
633     uintptr_t entry;
634     uintptr_t pht_offset;
635     uintptr_t sht_offset;
636     uint32_t flags;
637     uint16_t header_size;
638     uint16_t pht_entry_size;
639     uint16_t pht_entry_num;
640     uint16_t sht_entry_size;
641     uint16_t sht_entry_num;
642     uint16_t sht_strtab_index;
643   };
644 
645 
WriteHeader(Writer * w)646   void WriteHeader(Writer* w) {
647     DCHECK(w->position() == 0);
648     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
649 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
650      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
651     const uint8_t ident[16] =
652         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
653 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
654     (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
655     const uint8_t ident[16] =
656         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
657 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
658     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0,
659                                0,    0,   0,   0,   0, 0, 0, 0};
660 #elif V8_TARGET_ARCH_S390X
661     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 3,
662                                0,    0,   0,   0,   0, 0, 0, 0};
663 #elif V8_TARGET_ARCH_S390
664     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 1, 2, 1, 3,
665                                0,    0,   0,   0,   0, 0, 0, 0};
666 #else
667 #error Unsupported target architecture.
668 #endif
669     memcpy(header->ident, ident, 16);
670     header->type = 1;
671 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
672     header->machine = 3;
673 #elif V8_TARGET_ARCH_X64
674     // Processor identification value for x64 is 62 as defined in
675     //    System V ABI, AMD64 Supplement
676     //    http://www.x86-64.org/documentation/abi.pdf
677     header->machine = 62;
678 #elif V8_TARGET_ARCH_ARM
679     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
680     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
681     header->machine = 40;
682 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
683     // Set to EM_PPC64, defined as 21, in Power ABI,
684     // Join the next 4 lines, omitting the spaces and double-slashes.
685     // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
686     // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
687     // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
688     // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
689     header->machine = 21;
690 #elif V8_TARGET_ARCH_S390
691     // Processor identification value is 22 (EM_S390) as defined in the ABI:
692     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
693     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
694     header->machine = 22;
695 #else
696 #error Unsupported target architecture.
697 #endif
698     header->version = 1;
699     header->entry = 0;
700     header->pht_offset = 0;
701     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
702     header->flags = 0;
703     header->header_size = sizeof(ELFHeader);
704     header->pht_entry_size = 0;
705     header->pht_entry_num = 0;
706     header->sht_entry_size = sizeof(ELFSection::Header);
707     header->sht_entry_num = sections_.length();
708     header->sht_strtab_index = 1;
709   }
710 
WriteSectionTable(Writer * w)711   void WriteSectionTable(Writer* w) {
712     // Section headers table immediately follows file header.
713     DCHECK(w->position() == sizeof(ELFHeader));
714 
715     Writer::Slot<ELFSection::Header> headers =
716         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
717 
718     // String table for section table is the first section.
719     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
720     strtab->AttachWriter(w);
721     for (int i = 0, length = sections_.length();
722          i < length;
723          i++) {
724       sections_[i]->PopulateHeader(headers.at(i), strtab);
725     }
726     strtab->DetachWriter();
727   }
728 
SectionHeaderPosition(uint32_t section_index)729   int SectionHeaderPosition(uint32_t section_index) {
730     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
731   }
732 
WriteSections(Writer * w)733   void WriteSections(Writer* w) {
734     Writer::Slot<ELFSection::Header> headers =
735         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
736 
737     for (int i = 0, length = sections_.length();
738          i < length;
739          i++) {
740       sections_[i]->WriteBody(headers.at(i), w);
741     }
742   }
743 
744   Zone* zone_;
745   ZoneList<ELFSection*> sections_;
746 };
747 
748 
749 class ELFSymbol BASE_EMBEDDED {
750  public:
751   enum Type {
752     TYPE_NOTYPE = 0,
753     TYPE_OBJECT = 1,
754     TYPE_FUNC = 2,
755     TYPE_SECTION = 3,
756     TYPE_FILE = 4,
757     TYPE_LOPROC = 13,
758     TYPE_HIPROC = 15
759   };
760 
761   enum Binding {
762     BIND_LOCAL = 0,
763     BIND_GLOBAL = 1,
764     BIND_WEAK = 2,
765     BIND_LOPROC = 13,
766     BIND_HIPROC = 15
767   };
768 
ELFSymbol(const char * name,uintptr_t value,uintptr_t size,Binding binding,Type type,uint16_t section)769   ELFSymbol(const char* name,
770             uintptr_t value,
771             uintptr_t size,
772             Binding binding,
773             Type type,
774             uint16_t section)
775       : name(name),
776         value(value),
777         size(size),
778         info((binding << 4) | type),
779         other(0),
780         section(section) {
781   }
782 
binding() const783   Binding binding() const {
784     return static_cast<Binding>(info >> 4);
785   }
786 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
787      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) ||                   \
788      (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
789   struct SerializedLayout {
SerializedLayoutv8::internal::GDBJITInterface::BASE_EMBEDDED::SerializedLayout790     SerializedLayout(uint32_t name,
791                      uintptr_t value,
792                      uintptr_t size,
793                      Binding binding,
794                      Type type,
795                      uint16_t section)
796         : name(name),
797           value(value),
798           size(size),
799           info((binding << 4) | type),
800           other(0),
801           section(section) {
802     }
803 
804     uint32_t name;
805     uintptr_t value;
806     uintptr_t size;
807     uint8_t info;
808     uint8_t other;
809     uint16_t section;
810   };
811 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
812     (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X
813   struct SerializedLayout {
SerializedLayoutv8::internal::GDBJITInterface::BASE_EMBEDDED::SerializedLayout814     SerializedLayout(uint32_t name,
815                      uintptr_t value,
816                      uintptr_t size,
817                      Binding binding,
818                      Type type,
819                      uint16_t section)
820         : name(name),
821           info((binding << 4) | type),
822           other(0),
823           section(section),
824           value(value),
825           size(size) {
826     }
827 
828     uint32_t name;
829     uint8_t info;
830     uint8_t other;
831     uint16_t section;
832     uintptr_t value;
833     uintptr_t size;
834   };
835 #endif
836 
Write(Writer::Slot<SerializedLayout> s,ELFStringTable * t)837   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
838     // Convert symbol names from strings to indexes in the string table.
839     s->name = static_cast<uint32_t>(t->Add(name));
840     s->value = value;
841     s->size = size;
842     s->info = info;
843     s->other = other;
844     s->section = section;
845   }
846 
847  private:
848   const char* name;
849   uintptr_t value;
850   uintptr_t size;
851   uint8_t info;
852   uint8_t other;
853   uint16_t section;
854 };
855 
856 
857 class ELFSymbolTable : public ELFSection {
858  public:
ELFSymbolTable(const char * name,Zone * zone)859   ELFSymbolTable(const char* name, Zone* zone)
860       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
861         locals_(1, zone),
862         globals_(1, zone) {
863   }
864 
WriteBody(Writer::Slot<Header> header,Writer * w)865   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
866     w->Align(header->alignment);
867     int total_symbols = locals_.length() + globals_.length() + 1;
868     header->offset = w->position();
869 
870     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
871         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
872 
873     header->size = w->position() - header->offset;
874 
875     // String table for this symbol table should follow it in the section table.
876     ELFStringTable* strtab =
877         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
878     strtab->AttachWriter(w);
879     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
880                                                   0,
881                                                   0,
882                                                   ELFSymbol::BIND_LOCAL,
883                                                   ELFSymbol::TYPE_NOTYPE,
884                                                   0));
885     WriteSymbolsList(&locals_, symbols.at(1), strtab);
886     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
887     strtab->DetachWriter();
888   }
889 
Add(const ELFSymbol & symbol,Zone * zone)890   void Add(const ELFSymbol& symbol, Zone* zone) {
891     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
892       locals_.Add(symbol, zone);
893     } else {
894       globals_.Add(symbol, zone);
895     }
896   }
897 
898  protected:
PopulateHeader(Writer::Slot<Header> header)899   virtual void PopulateHeader(Writer::Slot<Header> header) {
900     ELFSection::PopulateHeader(header);
901     // We are assuming that string table will follow symbol table.
902     header->link = index() + 1;
903     header->info = locals_.length() + 1;
904     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
905   }
906 
907  private:
WriteSymbolsList(const ZoneList<ELFSymbol> * src,Writer::Slot<ELFSymbol::SerializedLayout> dst,ELFStringTable * strtab)908   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
909                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
910                         ELFStringTable* strtab) {
911     for (int i = 0, len = src->length();
912          i < len;
913          i++) {
914       src->at(i).Write(dst.at(i), strtab);
915     }
916   }
917 
918   ZoneList<ELFSymbol> locals_;
919   ZoneList<ELFSymbol> globals_;
920 };
921 #endif  // defined(__ELF)
922 
923 
924 class LineInfo : public Malloced {
925  public:
LineInfo()926   LineInfo() : pc_info_(10) {}
927 
SetPosition(intptr_t pc,int pos,bool is_statement)928   void SetPosition(intptr_t pc, int pos, bool is_statement) {
929     AddPCInfo(PCInfo(pc, pos, is_statement));
930   }
931 
932   struct PCInfo {
PCInfov8::internal::GDBJITInterface::LineInfo::PCInfo933     PCInfo(intptr_t pc, int pos, bool is_statement)
934         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
935 
936     intptr_t pc_;
937     int pos_;
938     bool is_statement_;
939   };
940 
pc_info()941   List<PCInfo>* pc_info() { return &pc_info_; }
942 
943  private:
AddPCInfo(const PCInfo & pc_info)944   void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
945 
946   List<PCInfo> pc_info_;
947 };
948 
949 
950 class CodeDescription BASE_EMBEDDED {
951  public:
952 #if V8_TARGET_ARCH_X64
953   enum StackState {
954     POST_RBP_PUSH,
955     POST_RBP_SET,
956     POST_RBP_POP,
957     STACK_STATE_MAX
958   };
959 #endif
960 
CodeDescription(const char * name,Code * code,SharedFunctionInfo * shared,LineInfo * lineinfo)961   CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
962                   LineInfo* lineinfo)
963       : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
964 
name() const965   const char* name() const {
966     return name_;
967   }
968 
lineinfo() const969   LineInfo* lineinfo() const { return lineinfo_; }
970 
is_function() const971   bool is_function() const {
972     Code::Kind kind = code_->kind();
973     return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
974   }
975 
has_scope_info() const976   bool has_scope_info() const { return shared_info_ != NULL; }
977 
scope_info() const978   ScopeInfo* scope_info() const {
979     DCHECK(has_scope_info());
980     return shared_info_->scope_info();
981   }
982 
CodeStart() const983   uintptr_t CodeStart() const {
984     return reinterpret_cast<uintptr_t>(code_->instruction_start());
985   }
986 
CodeEnd() const987   uintptr_t CodeEnd() const {
988     return reinterpret_cast<uintptr_t>(code_->instruction_end());
989   }
990 
CodeSize() const991   uintptr_t CodeSize() const {
992     return CodeEnd() - CodeStart();
993   }
994 
has_script()995   bool has_script() {
996     return shared_info_ != NULL && shared_info_->script()->IsScript();
997   }
998 
script()999   Script* script() { return Script::cast(shared_info_->script()); }
1000 
IsLineInfoAvailable()1001   bool IsLineInfoAvailable() {
1002     return has_script() && script()->source()->IsString() &&
1003            script()->HasValidSource() && script()->name()->IsString() &&
1004            lineinfo_ != NULL;
1005   }
1006 
1007 #if V8_TARGET_ARCH_X64
GetStackStateStartAddress(StackState state) const1008   uintptr_t GetStackStateStartAddress(StackState state) const {
1009     DCHECK(state < STACK_STATE_MAX);
1010     return stack_state_start_addresses_[state];
1011   }
1012 
SetStackStateStartAddress(StackState state,uintptr_t addr)1013   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
1014     DCHECK(state < STACK_STATE_MAX);
1015     stack_state_start_addresses_[state] = addr;
1016   }
1017 #endif
1018 
GetFilename()1019   std::unique_ptr<char[]> GetFilename() {
1020     return String::cast(script()->name())->ToCString();
1021   }
1022 
GetScriptLineNumber(int pos)1023   int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
1024 
1025 
1026  private:
1027   const char* name_;
1028   Code* code_;
1029   SharedFunctionInfo* shared_info_;
1030   LineInfo* lineinfo_;
1031 #if V8_TARGET_ARCH_X64
1032   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
1033 #endif
1034 };
1035 
1036 #if defined(__ELF)
CreateSymbolsTable(CodeDescription * desc,Zone * zone,ELF * elf,int text_section_index)1037 static void CreateSymbolsTable(CodeDescription* desc,
1038                                Zone* zone,
1039                                ELF* elf,
1040                                int text_section_index) {
1041   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1042   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1043 
1044   // Symbol table should be followed by the linked string table.
1045   elf->AddSection(symtab);
1046   elf->AddSection(strtab);
1047 
1048   symtab->Add(ELFSymbol("V8 Code",
1049                         0,
1050                         0,
1051                         ELFSymbol::BIND_LOCAL,
1052                         ELFSymbol::TYPE_FILE,
1053                         ELFSection::INDEX_ABSOLUTE),
1054               zone);
1055 
1056   symtab->Add(ELFSymbol(desc->name(),
1057                         0,
1058                         desc->CodeSize(),
1059                         ELFSymbol::BIND_GLOBAL,
1060                         ELFSymbol::TYPE_FUNC,
1061                         text_section_index),
1062               zone);
1063 }
1064 #endif  // defined(__ELF)
1065 
1066 
1067 class DebugInfoSection : public DebugSection {
1068  public:
DebugInfoSection(CodeDescription * desc)1069   explicit DebugInfoSection(CodeDescription* desc)
1070 #if defined(__ELF)
1071       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
1072 #else
1073       : MachOSection("__debug_info",
1074                      "__DWARF",
1075                      1,
1076                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1077 #endif
1078         desc_(desc) { }
1079 
1080   // DWARF2 standard
1081   enum DWARF2LocationOp {
1082     DW_OP_reg0 = 0x50,
1083     DW_OP_reg1 = 0x51,
1084     DW_OP_reg2 = 0x52,
1085     DW_OP_reg3 = 0x53,
1086     DW_OP_reg4 = 0x54,
1087     DW_OP_reg5 = 0x55,
1088     DW_OP_reg6 = 0x56,
1089     DW_OP_reg7 = 0x57,
1090     DW_OP_reg8 = 0x58,
1091     DW_OP_reg9 = 0x59,
1092     DW_OP_reg10 = 0x5a,
1093     DW_OP_reg11 = 0x5b,
1094     DW_OP_reg12 = 0x5c,
1095     DW_OP_reg13 = 0x5d,
1096     DW_OP_reg14 = 0x5e,
1097     DW_OP_reg15 = 0x5f,
1098     DW_OP_reg16 = 0x60,
1099     DW_OP_reg17 = 0x61,
1100     DW_OP_reg18 = 0x62,
1101     DW_OP_reg19 = 0x63,
1102     DW_OP_reg20 = 0x64,
1103     DW_OP_reg21 = 0x65,
1104     DW_OP_reg22 = 0x66,
1105     DW_OP_reg23 = 0x67,
1106     DW_OP_reg24 = 0x68,
1107     DW_OP_reg25 = 0x69,
1108     DW_OP_reg26 = 0x6a,
1109     DW_OP_reg27 = 0x6b,
1110     DW_OP_reg28 = 0x6c,
1111     DW_OP_reg29 = 0x6d,
1112     DW_OP_reg30 = 0x6e,
1113     DW_OP_reg31 = 0x6f,
1114     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
1115   };
1116 
1117   enum DWARF2Encoding {
1118     DW_ATE_ADDRESS = 0x1,
1119     DW_ATE_SIGNED = 0x5
1120   };
1121 
WriteBodyInternal(Writer * w)1122   bool WriteBodyInternal(Writer* w) {
1123     uintptr_t cu_start = w->position();
1124     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
1125     uintptr_t start = w->position();
1126     w->Write<uint16_t>(2);  // DWARF version.
1127     w->Write<uint32_t>(0);  // Abbreviation table offset.
1128     w->Write<uint8_t>(sizeof(intptr_t));
1129 
1130     w->WriteULEB128(1);  // Abbreviation code.
1131     w->WriteString(desc_->GetFilename().get());
1132     w->Write<intptr_t>(desc_->CodeStart());
1133     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1134     w->Write<uint32_t>(0);
1135 
1136     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
1137     w->WriteULEB128(3);
1138     w->Write<uint8_t>(kPointerSize);
1139     w->WriteString("v8value");
1140 
1141     if (desc_->has_scope_info()) {
1142       ScopeInfo* scope = desc_->scope_info();
1143       w->WriteULEB128(2);
1144       w->WriteString(desc_->name());
1145       w->Write<intptr_t>(desc_->CodeStart());
1146       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1147       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
1148       uintptr_t fb_block_start = w->position();
1149 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
1150       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1151 #elif V8_TARGET_ARCH_X64
1152       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1153 #elif V8_TARGET_ARCH_ARM
1154       UNIMPLEMENTED();
1155 #elif V8_TARGET_ARCH_MIPS
1156       UNIMPLEMENTED();
1157 #elif V8_TARGET_ARCH_MIPS64
1158       UNIMPLEMENTED();
1159 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
1160       w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
1161 #elif V8_TARGET_ARCH_S390
1162       w->Write<uint8_t>(DW_OP_reg11);  // The frame pointer's here on S390.
1163 #else
1164 #error Unsupported target architecture.
1165 #endif
1166       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
1167 
1168       int params = scope->ParameterCount();
1169       int slots = scope->StackLocalCount();
1170       int context_slots = scope->ContextLocalCount();
1171       // The real slot ID is internal_slots + context_slot_id.
1172       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1173       int locals = scope->StackLocalCount();
1174       int current_abbreviation = 4;
1175 
1176       for (int param = 0; param < params; ++param) {
1177         w->WriteULEB128(current_abbreviation++);
1178         w->WriteString(
1179             scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
1180         w->Write<uint32_t>(ty_offset);
1181         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1182         uintptr_t block_start = w->position();
1183         w->Write<uint8_t>(DW_OP_fbreg);
1184         w->WriteSLEB128(
1185           JavaScriptFrameConstants::kLastParameterOffset +
1186               kPointerSize * (params - param - 1));
1187         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1188       }
1189 
1190       EmbeddedVector<char, 256> buffer;
1191       StringBuilder builder(buffer.start(), buffer.length());
1192 
1193       for (int slot = 0; slot < slots; ++slot) {
1194         w->WriteULEB128(current_abbreviation++);
1195         builder.Reset();
1196         builder.AddFormatted("slot%d", slot);
1197         w->WriteString(builder.Finalize());
1198       }
1199 
1200       // See contexts.h for more information.
1201       DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
1202       DCHECK(Context::CLOSURE_INDEX == 0);
1203       DCHECK(Context::PREVIOUS_INDEX == 1);
1204       DCHECK(Context::EXTENSION_INDEX == 2);
1205       DCHECK(Context::NATIVE_CONTEXT_INDEX == 3);
1206       w->WriteULEB128(current_abbreviation++);
1207       w->WriteString(".closure");
1208       w->WriteULEB128(current_abbreviation++);
1209       w->WriteString(".previous");
1210       w->WriteULEB128(current_abbreviation++);
1211       w->WriteString(".extension");
1212       w->WriteULEB128(current_abbreviation++);
1213       w->WriteString(".native_context");
1214 
1215       for (int context_slot = 0;
1216            context_slot < context_slots;
1217            ++context_slot) {
1218         w->WriteULEB128(current_abbreviation++);
1219         builder.Reset();
1220         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
1221         w->WriteString(builder.Finalize());
1222       }
1223 
1224       for (int local = 0; local < locals; ++local) {
1225         w->WriteULEB128(current_abbreviation++);
1226         w->WriteString(
1227             scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
1228         w->Write<uint32_t>(ty_offset);
1229         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1230         uintptr_t block_start = w->position();
1231         w->Write<uint8_t>(DW_OP_fbreg);
1232         w->WriteSLEB128(
1233           JavaScriptFrameConstants::kLocal0Offset -
1234               kPointerSize * local);
1235         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1236       }
1237 
1238       {
1239         w->WriteULEB128(current_abbreviation++);
1240         w->WriteString("__function");
1241         w->Write<uint32_t>(ty_offset);
1242         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1243         uintptr_t block_start = w->position();
1244         w->Write<uint8_t>(DW_OP_fbreg);
1245         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
1246         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1247       }
1248 
1249       {
1250         w->WriteULEB128(current_abbreviation++);
1251         w->WriteString("__context");
1252         w->Write<uint32_t>(ty_offset);
1253         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1254         uintptr_t block_start = w->position();
1255         w->Write<uint8_t>(DW_OP_fbreg);
1256         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
1257         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1258       }
1259 
1260       w->WriteULEB128(0);  // Terminate the sub program.
1261     }
1262 
1263     w->WriteULEB128(0);  // Terminate the compile unit.
1264     size.set(static_cast<uint32_t>(w->position() - start));
1265     return true;
1266   }
1267 
1268  private:
1269   CodeDescription* desc_;
1270 };
1271 
1272 
1273 class DebugAbbrevSection : public DebugSection {
1274  public:
DebugAbbrevSection(CodeDescription * desc)1275   explicit DebugAbbrevSection(CodeDescription* desc)
1276 #ifdef __ELF
1277       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
1278 #else
1279       : MachOSection("__debug_abbrev",
1280                      "__DWARF",
1281                      1,
1282                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1283 #endif
1284         desc_(desc) { }
1285 
1286   // DWARF2 standard, figure 14.
1287   enum DWARF2Tags {
1288     DW_TAG_FORMAL_PARAMETER = 0x05,
1289     DW_TAG_POINTER_TYPE = 0xf,
1290     DW_TAG_COMPILE_UNIT = 0x11,
1291     DW_TAG_STRUCTURE_TYPE = 0x13,
1292     DW_TAG_BASE_TYPE = 0x24,
1293     DW_TAG_SUBPROGRAM = 0x2e,
1294     DW_TAG_VARIABLE = 0x34
1295   };
1296 
1297   // DWARF2 standard, figure 16.
1298   enum DWARF2ChildrenDetermination {
1299     DW_CHILDREN_NO = 0,
1300     DW_CHILDREN_YES = 1
1301   };
1302 
1303   // DWARF standard, figure 17.
1304   enum DWARF2Attribute {
1305     DW_AT_LOCATION = 0x2,
1306     DW_AT_NAME = 0x3,
1307     DW_AT_BYTE_SIZE = 0xb,
1308     DW_AT_STMT_LIST = 0x10,
1309     DW_AT_LOW_PC = 0x11,
1310     DW_AT_HIGH_PC = 0x12,
1311     DW_AT_ENCODING = 0x3e,
1312     DW_AT_FRAME_BASE = 0x40,
1313     DW_AT_TYPE = 0x49
1314   };
1315 
1316   // DWARF2 standard, figure 19.
1317   enum DWARF2AttributeForm {
1318     DW_FORM_ADDR = 0x1,
1319     DW_FORM_BLOCK4 = 0x4,
1320     DW_FORM_STRING = 0x8,
1321     DW_FORM_DATA4 = 0x6,
1322     DW_FORM_BLOCK = 0x9,
1323     DW_FORM_DATA1 = 0xb,
1324     DW_FORM_FLAG = 0xc,
1325     DW_FORM_REF4 = 0x13
1326   };
1327 
WriteVariableAbbreviation(Writer * w,int abbreviation_code,bool has_value,bool is_parameter)1328   void WriteVariableAbbreviation(Writer* w,
1329                                  int abbreviation_code,
1330                                  bool has_value,
1331                                  bool is_parameter) {
1332     w->WriteULEB128(abbreviation_code);
1333     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
1334     w->Write<uint8_t>(DW_CHILDREN_NO);
1335     w->WriteULEB128(DW_AT_NAME);
1336     w->WriteULEB128(DW_FORM_STRING);
1337     if (has_value) {
1338       w->WriteULEB128(DW_AT_TYPE);
1339       w->WriteULEB128(DW_FORM_REF4);
1340       w->WriteULEB128(DW_AT_LOCATION);
1341       w->WriteULEB128(DW_FORM_BLOCK4);
1342     }
1343     w->WriteULEB128(0);
1344     w->WriteULEB128(0);
1345   }
1346 
WriteBodyInternal(Writer * w)1347   bool WriteBodyInternal(Writer* w) {
1348     int current_abbreviation = 1;
1349     bool extra_info = desc_->has_scope_info();
1350     DCHECK(desc_->IsLineInfoAvailable());
1351     w->WriteULEB128(current_abbreviation++);
1352     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1353     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1354     w->WriteULEB128(DW_AT_NAME);
1355     w->WriteULEB128(DW_FORM_STRING);
1356     w->WriteULEB128(DW_AT_LOW_PC);
1357     w->WriteULEB128(DW_FORM_ADDR);
1358     w->WriteULEB128(DW_AT_HIGH_PC);
1359     w->WriteULEB128(DW_FORM_ADDR);
1360     w->WriteULEB128(DW_AT_STMT_LIST);
1361     w->WriteULEB128(DW_FORM_DATA4);
1362     w->WriteULEB128(0);
1363     w->WriteULEB128(0);
1364 
1365     if (extra_info) {
1366       ScopeInfo* scope = desc_->scope_info();
1367       int params = scope->ParameterCount();
1368       int slots = scope->StackLocalCount();
1369       int context_slots = scope->ContextLocalCount();
1370       // The real slot ID is internal_slots + context_slot_id.
1371       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1372       int locals = scope->StackLocalCount();
1373       // Total children is params + slots + context_slots + internal_slots +
1374       // locals + 2 (__function and __context).
1375 
1376       // The extra duplication below seems to be necessary to keep
1377       // gdb from getting upset on OSX.
1378       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
1379       w->WriteULEB128(DW_TAG_SUBPROGRAM);
1380       w->Write<uint8_t>(DW_CHILDREN_YES);
1381       w->WriteULEB128(DW_AT_NAME);
1382       w->WriteULEB128(DW_FORM_STRING);
1383       w->WriteULEB128(DW_AT_LOW_PC);
1384       w->WriteULEB128(DW_FORM_ADDR);
1385       w->WriteULEB128(DW_AT_HIGH_PC);
1386       w->WriteULEB128(DW_FORM_ADDR);
1387       w->WriteULEB128(DW_AT_FRAME_BASE);
1388       w->WriteULEB128(DW_FORM_BLOCK4);
1389       w->WriteULEB128(0);
1390       w->WriteULEB128(0);
1391 
1392       w->WriteULEB128(current_abbreviation++);
1393       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
1394       w->Write<uint8_t>(DW_CHILDREN_NO);
1395       w->WriteULEB128(DW_AT_BYTE_SIZE);
1396       w->WriteULEB128(DW_FORM_DATA1);
1397       w->WriteULEB128(DW_AT_NAME);
1398       w->WriteULEB128(DW_FORM_STRING);
1399       w->WriteULEB128(0);
1400       w->WriteULEB128(0);
1401 
1402       for (int param = 0; param < params; ++param) {
1403         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
1404       }
1405 
1406       for (int slot = 0; slot < slots; ++slot) {
1407         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1408       }
1409 
1410       for (int internal_slot = 0;
1411            internal_slot < internal_slots;
1412            ++internal_slot) {
1413         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1414       }
1415 
1416       for (int context_slot = 0;
1417            context_slot < context_slots;
1418            ++context_slot) {
1419         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1420       }
1421 
1422       for (int local = 0; local < locals; ++local) {
1423         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1424       }
1425 
1426       // The function.
1427       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1428 
1429       // The context.
1430       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1431 
1432       w->WriteULEB128(0);  // Terminate the sibling list.
1433     }
1434 
1435     w->WriteULEB128(0);  // Terminate the table.
1436     return true;
1437   }
1438 
1439  private:
1440   CodeDescription* desc_;
1441 };
1442 
1443 
1444 class DebugLineSection : public DebugSection {
1445  public:
DebugLineSection(CodeDescription * desc)1446   explicit DebugLineSection(CodeDescription* desc)
1447 #ifdef __ELF
1448       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1449 #else
1450       : MachOSection("__debug_line",
1451                      "__DWARF",
1452                      1,
1453                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1454 #endif
1455         desc_(desc) { }
1456 
1457   // DWARF2 standard, figure 34.
1458   enum DWARF2Opcodes {
1459     DW_LNS_COPY = 1,
1460     DW_LNS_ADVANCE_PC = 2,
1461     DW_LNS_ADVANCE_LINE = 3,
1462     DW_LNS_SET_FILE = 4,
1463     DW_LNS_SET_COLUMN = 5,
1464     DW_LNS_NEGATE_STMT = 6
1465   };
1466 
1467   // DWARF2 standard, figure 35.
1468   enum DWARF2ExtendedOpcode {
1469     DW_LNE_END_SEQUENCE = 1,
1470     DW_LNE_SET_ADDRESS = 2,
1471     DW_LNE_DEFINE_FILE = 3
1472   };
1473 
WriteBodyInternal(Writer * w)1474   bool WriteBodyInternal(Writer* w) {
1475     // Write prologue.
1476     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
1477     uintptr_t start = w->position();
1478 
1479     // Used for special opcodes
1480     const int8_t line_base = 1;
1481     const uint8_t line_range = 7;
1482     const int8_t max_line_incr = (line_base + line_range - 1);
1483     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
1484 
1485     w->Write<uint16_t>(2);  // Field version.
1486     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
1487     uintptr_t prologue_start = w->position();
1488     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
1489     w->Write<uint8_t>(1);  // Field default_is_stmt.
1490     w->Write<int8_t>(line_base);  // Field line_base.
1491     w->Write<uint8_t>(line_range);  // Field line_range.
1492     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1493     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
1494     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
1495     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
1496     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
1497     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
1498     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
1499     w->Write<uint8_t>(0);  // Empty include_directories sequence.
1500     w->WriteString(desc_->GetFilename().get());  // File name.
1501     w->WriteULEB128(0);  // Current directory.
1502     w->WriteULEB128(0);  // Unknown modification time.
1503     w->WriteULEB128(0);  // Unknown file size.
1504     w->Write<uint8_t>(0);
1505     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
1506 
1507     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1508     w->Write<intptr_t>(desc_->CodeStart());
1509     w->Write<uint8_t>(DW_LNS_COPY);
1510 
1511     intptr_t pc = 0;
1512     intptr_t line = 1;
1513     bool is_statement = true;
1514 
1515     List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1516     pc_info->Sort(&ComparePCInfo);
1517 
1518     int pc_info_length = pc_info->length();
1519     for (int i = 0; i < pc_info_length; i++) {
1520       LineInfo::PCInfo* info = &pc_info->at(i);
1521       DCHECK(info->pc_ >= pc);
1522 
1523       // Reduce bloating in the debug line table by removing duplicate line
1524       // entries (per DWARF2 standard).
1525       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
1526       if (new_line == line) {
1527         continue;
1528       }
1529 
1530       // Mark statement boundaries.  For a better debugging experience, mark
1531       // the last pc address in the function as a statement (e.g. "}"), so that
1532       // a user can see the result of the last line executed in the function,
1533       // should control reach the end.
1534       if ((i+1) == pc_info_length) {
1535         if (!is_statement) {
1536           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1537         }
1538       } else if (is_statement != info->is_statement_) {
1539         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1540         is_statement = !is_statement;
1541       }
1542 
1543       // Generate special opcodes, if possible.  This results in more compact
1544       // debug line tables.  See the DWARF 2.0 standard to learn more about
1545       // special opcodes.
1546       uintptr_t pc_diff = info->pc_ - pc;
1547       intptr_t line_diff = new_line - line;
1548 
1549       // Compute special opcode (see DWARF 2.0 standard)
1550       intptr_t special_opcode = (line_diff - line_base) +
1551                                 (line_range * pc_diff) + opcode_base;
1552 
1553       // If special_opcode is less than or equal to 255, it can be used as a
1554       // special opcode.  If line_diff is larger than the max line increment
1555       // allowed for a special opcode, or if line_diff is less than the minimum
1556       // line that can be added to the line register (i.e. line_base), then
1557       // special_opcode can't be used.
1558       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
1559           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
1560         w->Write<uint8_t>(special_opcode);
1561       } else {
1562         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1563         w->WriteSLEB128(pc_diff);
1564         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
1565         w->WriteSLEB128(line_diff);
1566         w->Write<uint8_t>(DW_LNS_COPY);
1567       }
1568 
1569       // Increment the pc and line operands.
1570       pc += pc_diff;
1571       line += line_diff;
1572     }
1573     // Advance the pc to the end of the routine, since the end sequence opcode
1574     // requires this.
1575     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1576     w->WriteSLEB128(desc_->CodeSize() - pc);
1577     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
1578     total_length.set(static_cast<uint32_t>(w->position() - start));
1579     return true;
1580   }
1581 
1582  private:
WriteExtendedOpcode(Writer * w,DWARF2ExtendedOpcode op,size_t operands_size)1583   void WriteExtendedOpcode(Writer* w,
1584                            DWARF2ExtendedOpcode op,
1585                            size_t operands_size) {
1586     w->Write<uint8_t>(0);
1587     w->WriteULEB128(operands_size + 1);
1588     w->Write<uint8_t>(op);
1589   }
1590 
ComparePCInfo(const LineInfo::PCInfo * a,const LineInfo::PCInfo * b)1591   static int ComparePCInfo(const LineInfo::PCInfo* a,
1592                            const LineInfo::PCInfo* b) {
1593     if (a->pc_ == b->pc_) {
1594       if (a->is_statement_ != b->is_statement_) {
1595         return b->is_statement_ ? +1 : -1;
1596       }
1597       return 0;
1598     } else if (a->pc_ > b->pc_) {
1599       return +1;
1600     } else {
1601       return -1;
1602     }
1603   }
1604 
1605   CodeDescription* desc_;
1606 };
1607 
1608 
1609 #if V8_TARGET_ARCH_X64
1610 
1611 class UnwindInfoSection : public DebugSection {
1612  public:
1613   explicit UnwindInfoSection(CodeDescription* desc);
1614   virtual bool WriteBodyInternal(Writer* w);
1615 
1616   int WriteCIE(Writer* w);
1617   void WriteFDE(Writer* w, int);
1618 
1619   void WriteFDEStateOnEntry(Writer* w);
1620   void WriteFDEStateAfterRBPPush(Writer* w);
1621   void WriteFDEStateAfterRBPSet(Writer* w);
1622   void WriteFDEStateAfterRBPPop(Writer* w);
1623 
1624   void WriteLength(Writer* w,
1625                    Writer::Slot<uint32_t>* length_slot,
1626                    int initial_position);
1627 
1628  private:
1629   CodeDescription* desc_;
1630 
1631   // DWARF3 Specification, Table 7.23
1632   enum CFIInstructions {
1633     DW_CFA_ADVANCE_LOC = 0x40,
1634     DW_CFA_OFFSET = 0x80,
1635     DW_CFA_RESTORE = 0xC0,
1636     DW_CFA_NOP = 0x00,
1637     DW_CFA_SET_LOC = 0x01,
1638     DW_CFA_ADVANCE_LOC1 = 0x02,
1639     DW_CFA_ADVANCE_LOC2 = 0x03,
1640     DW_CFA_ADVANCE_LOC4 = 0x04,
1641     DW_CFA_OFFSET_EXTENDED = 0x05,
1642     DW_CFA_RESTORE_EXTENDED = 0x06,
1643     DW_CFA_UNDEFINED = 0x07,
1644     DW_CFA_SAME_VALUE = 0x08,
1645     DW_CFA_REGISTER = 0x09,
1646     DW_CFA_REMEMBER_STATE = 0x0A,
1647     DW_CFA_RESTORE_STATE = 0x0B,
1648     DW_CFA_DEF_CFA = 0x0C,
1649     DW_CFA_DEF_CFA_REGISTER = 0x0D,
1650     DW_CFA_DEF_CFA_OFFSET = 0x0E,
1651 
1652     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1653     DW_CFA_EXPRESSION = 0x10,
1654     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1655     DW_CFA_DEF_CFA_SF = 0x12,
1656     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1657     DW_CFA_VAL_OFFSET = 0x14,
1658     DW_CFA_VAL_OFFSET_SF = 0x15,
1659     DW_CFA_VAL_EXPRESSION = 0x16
1660   };
1661 
1662   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1663   enum RegisterMapping {
1664     // Only the relevant ones have been added to reduce clutter.
1665     AMD64_RBP = 6,
1666     AMD64_RSP = 7,
1667     AMD64_RA = 16
1668   };
1669 
1670   enum CFIConstants {
1671     CIE_ID = 0,
1672     CIE_VERSION = 1,
1673     CODE_ALIGN_FACTOR = 1,
1674     DATA_ALIGN_FACTOR = 1,
1675     RETURN_ADDRESS_REGISTER = AMD64_RA
1676   };
1677 };
1678 
1679 
WriteLength(Writer * w,Writer::Slot<uint32_t> * length_slot,int initial_position)1680 void UnwindInfoSection::WriteLength(Writer* w,
1681                                     Writer::Slot<uint32_t>* length_slot,
1682                                     int initial_position) {
1683   uint32_t align = (w->position() - initial_position) % kPointerSize;
1684 
1685   if (align != 0) {
1686     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1687       w->Write<uint8_t>(DW_CFA_NOP);
1688     }
1689   }
1690 
1691   DCHECK((w->position() - initial_position) % kPointerSize == 0);
1692   length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
1693 }
1694 
1695 
UnwindInfoSection(CodeDescription * desc)1696 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1697 #ifdef __ELF
1698     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
1699 #else
1700     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
1701                    MachOSection::S_REGULAR),
1702 #endif
1703       desc_(desc) { }
1704 
WriteCIE(Writer * w)1705 int UnwindInfoSection::WriteCIE(Writer* w) {
1706   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1707   uint32_t cie_position = static_cast<uint32_t>(w->position());
1708 
1709   // Write out the CIE header. Currently no 'common instructions' are
1710   // emitted onto the CIE; every FDE has its own set of instructions.
1711 
1712   w->Write<uint32_t>(CIE_ID);
1713   w->Write<uint8_t>(CIE_VERSION);
1714   w->Write<uint8_t>(0);  // Null augmentation string.
1715   w->WriteSLEB128(CODE_ALIGN_FACTOR);
1716   w->WriteSLEB128(DATA_ALIGN_FACTOR);
1717   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1718 
1719   WriteLength(w, &cie_length_slot, cie_position);
1720 
1721   return cie_position;
1722 }
1723 
1724 
WriteFDE(Writer * w,int cie_position)1725 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1726   // The only FDE for this function. The CFA is the current RBP.
1727   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1728   int fde_position = static_cast<uint32_t>(w->position());
1729   w->Write<int32_t>(fde_position - cie_position + 4);
1730 
1731   w->Write<uintptr_t>(desc_->CodeStart());
1732   w->Write<uintptr_t>(desc_->CodeSize());
1733 
1734   WriteFDEStateOnEntry(w);
1735   WriteFDEStateAfterRBPPush(w);
1736   WriteFDEStateAfterRBPSet(w);
1737   WriteFDEStateAfterRBPPop(w);
1738 
1739   WriteLength(w, &fde_length_slot, fde_position);
1740 }
1741 
1742 
WriteFDEStateOnEntry(Writer * w)1743 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1744   // The first state, just after the control has been transferred to the the
1745   // function.
1746 
1747   // RBP for this function will be the value of RSP after pushing the RBP
1748   // for the previous function. The previous RBP has not been pushed yet.
1749   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1750   w->WriteULEB128(AMD64_RSP);
1751   w->WriteSLEB128(-kPointerSize);
1752 
1753   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1754   // and hence omitted from the next states.
1755   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1756   w->WriteULEB128(AMD64_RA);
1757   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1758 
1759   // The RBP of the previous function is still in RBP.
1760   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1761   w->WriteULEB128(AMD64_RBP);
1762 
1763   // Last location described by this entry.
1764   w->Write<uint8_t>(DW_CFA_SET_LOC);
1765   w->Write<uint64_t>(
1766       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1767 }
1768 
1769 
WriteFDEStateAfterRBPPush(Writer * w)1770 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1771   // The second state, just after RBP has been pushed.
1772 
1773   // RBP / CFA for this function is now the current RSP, so just set the
1774   // offset from the previous rule (from -8) to 0.
1775   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1776   w->WriteULEB128(0);
1777 
1778   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1779   // in this and the next state, and hence omitted in the next state.
1780   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1781   w->WriteULEB128(AMD64_RBP);
1782   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1783 
1784   // Last location described by this entry.
1785   w->Write<uint8_t>(DW_CFA_SET_LOC);
1786   w->Write<uint64_t>(
1787       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1788 }
1789 
1790 
WriteFDEStateAfterRBPSet(Writer * w)1791 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1792   // The third state, after the RBP has been set.
1793 
1794   // The CFA can now directly be set to RBP.
1795   w->Write<uint8_t>(DW_CFA_DEF_CFA);
1796   w->WriteULEB128(AMD64_RBP);
1797   w->WriteULEB128(0);
1798 
1799   // Last location described by this entry.
1800   w->Write<uint8_t>(DW_CFA_SET_LOC);
1801   w->Write<uint64_t>(
1802       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1803 }
1804 
1805 
WriteFDEStateAfterRBPPop(Writer * w)1806 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1807   // The fourth (final) state. The RBP has been popped (just before issuing a
1808   // return).
1809 
1810   // The CFA can is now calculated in the same way as in the first state.
1811   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1812   w->WriteULEB128(AMD64_RSP);
1813   w->WriteSLEB128(-kPointerSize);
1814 
1815   // The RBP
1816   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1817   w->WriteULEB128(AMD64_RBP);
1818   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1819 
1820   // Last location described by this entry.
1821   w->Write<uint8_t>(DW_CFA_SET_LOC);
1822   w->Write<uint64_t>(desc_->CodeEnd());
1823 }
1824 
1825 
WriteBodyInternal(Writer * w)1826 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1827   uint32_t cie_position = WriteCIE(w);
1828   WriteFDE(w, cie_position);
1829   return true;
1830 }
1831 
1832 
1833 #endif  // V8_TARGET_ARCH_X64
1834 
CreateDWARFSections(CodeDescription * desc,Zone * zone,DebugObject * obj)1835 static void CreateDWARFSections(CodeDescription* desc,
1836                                 Zone* zone,
1837                                 DebugObject* obj) {
1838   if (desc->IsLineInfoAvailable()) {
1839     obj->AddSection(new(zone) DebugInfoSection(desc));
1840     obj->AddSection(new(zone) DebugAbbrevSection(desc));
1841     obj->AddSection(new(zone) DebugLineSection(desc));
1842   }
1843 #if V8_TARGET_ARCH_X64
1844   obj->AddSection(new(zone) UnwindInfoSection(desc));
1845 #endif
1846 }
1847 
1848 
1849 // -------------------------------------------------------------------
1850 // Binary GDB JIT Interface as described in
1851 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1852 extern "C" {
1853   typedef enum {
1854     JIT_NOACTION = 0,
1855     JIT_REGISTER_FN,
1856     JIT_UNREGISTER_FN
1857   } JITAction;
1858 
1859   struct JITCodeEntry {
1860     JITCodeEntry* next_;
1861     JITCodeEntry* prev_;
1862     Address symfile_addr_;
1863     uint64_t symfile_size_;
1864   };
1865 
1866   struct JITDescriptor {
1867     uint32_t version_;
1868     uint32_t action_flag_;
1869     JITCodeEntry* relevant_entry_;
1870     JITCodeEntry* first_entry_;
1871   };
1872 
1873   // GDB will place breakpoint into this function.
1874   // To prevent GCC from inlining or removing it we place noinline attribute
1875   // and inline assembler statement inside.
__jit_debug_register_code()1876   void __attribute__((noinline)) __jit_debug_register_code() {
1877     __asm__("");
1878   }
1879 
1880   // GDB will inspect contents of this descriptor.
1881   // Static initialization is necessary to prevent GDB from seeing
1882   // uninitialized descriptor.
1883   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1884 
1885 #ifdef OBJECT_PRINT
__gdb_print_v8_object(Object * object)1886   void __gdb_print_v8_object(Object* object) {
1887     OFStream os(stdout);
1888     object->Print(os);
1889     os << std::flush;
1890   }
1891 #endif
1892 }
1893 
1894 
CreateCodeEntry(Address symfile_addr,uintptr_t symfile_size)1895 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1896                                      uintptr_t symfile_size) {
1897   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1898       malloc(sizeof(JITCodeEntry) + symfile_size));
1899 
1900   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1901   entry->symfile_size_ = symfile_size;
1902   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1903 
1904   entry->prev_ = entry->next_ = NULL;
1905 
1906   return entry;
1907 }
1908 
1909 
DestroyCodeEntry(JITCodeEntry * entry)1910 static void DestroyCodeEntry(JITCodeEntry* entry) {
1911   free(entry);
1912 }
1913 
1914 
RegisterCodeEntry(JITCodeEntry * entry)1915 static void RegisterCodeEntry(JITCodeEntry* entry) {
1916   entry->next_ = __jit_debug_descriptor.first_entry_;
1917   if (entry->next_ != NULL) entry->next_->prev_ = entry;
1918   __jit_debug_descriptor.first_entry_ =
1919       __jit_debug_descriptor.relevant_entry_ = entry;
1920 
1921   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1922   __jit_debug_register_code();
1923 }
1924 
1925 
UnregisterCodeEntry(JITCodeEntry * entry)1926 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1927   if (entry->prev_ != NULL) {
1928     entry->prev_->next_ = entry->next_;
1929   } else {
1930     __jit_debug_descriptor.first_entry_ = entry->next_;
1931   }
1932 
1933   if (entry->next_ != NULL) {
1934     entry->next_->prev_ = entry->prev_;
1935   }
1936 
1937   __jit_debug_descriptor.relevant_entry_ = entry;
1938   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1939   __jit_debug_register_code();
1940 }
1941 
1942 
CreateELFObject(CodeDescription * desc,Isolate * isolate)1943 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1944 #ifdef __MACH_O
1945   Zone zone(isolate->allocator(), ZONE_NAME);
1946   MachO mach_o(&zone);
1947   Writer w(&mach_o);
1948 
1949   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
1950                                                 desc->CodeStart(),
1951                                                 desc->CodeSize()));
1952 
1953   CreateDWARFSections(desc, &zone, &mach_o);
1954 
1955   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
1956 #else
1957   Zone zone(isolate->allocator(), ZONE_NAME);
1958   ELF elf(&zone);
1959   Writer w(&elf);
1960 
1961   int text_section_index = elf.AddSection(
1962       new(&zone) FullHeaderELFSection(
1963           ".text",
1964           ELFSection::TYPE_NOBITS,
1965           kCodeAlignment,
1966           desc->CodeStart(),
1967           0,
1968           desc->CodeSize(),
1969           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1970 
1971   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1972 
1973   CreateDWARFSections(desc, &zone, &elf);
1974 
1975   elf.Write(&w);
1976 #endif
1977 
1978   return CreateCodeEntry(w.buffer(), w.position());
1979 }
1980 
1981 
1982 struct AddressRange {
1983   Address start;
1984   Address end;
1985 };
1986 
1987 struct SplayTreeConfig {
1988   typedef AddressRange Key;
1989   typedef JITCodeEntry* Value;
1990   static const AddressRange kNoKey;
NoValuev8::internal::GDBJITInterface::SplayTreeConfig1991   static Value NoValue() { return NULL; }
Comparev8::internal::GDBJITInterface::SplayTreeConfig1992   static int Compare(const AddressRange& a, const AddressRange& b) {
1993     // ptrdiff_t probably doesn't fit in an int.
1994     if (a.start < b.start) return -1;
1995     if (a.start == b.start) return 0;
1996     return 1;
1997   }
1998 };
1999 
2000 const AddressRange SplayTreeConfig::kNoKey = {0, 0};
2001 typedef SplayTree<SplayTreeConfig> CodeMap;
2002 
GetCodeMap()2003 static CodeMap* GetCodeMap() {
2004   static CodeMap* code_map = NULL;
2005   if (code_map == NULL) code_map = new CodeMap();
2006   return code_map;
2007 }
2008 
2009 
HashCodeAddress(Address addr)2010 static uint32_t HashCodeAddress(Address addr) {
2011   static const uintptr_t kGoldenRatio = 2654435761u;
2012   uintptr_t offset = OffsetFrom(addr);
2013   return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
2014 }
2015 
GetLineMap()2016 static base::HashMap* GetLineMap() {
2017   static base::HashMap* line_map = NULL;
2018   if (line_map == NULL) {
2019     line_map = new base::HashMap();
2020   }
2021   return line_map;
2022 }
2023 
2024 
PutLineInfo(Address addr,LineInfo * info)2025 static void PutLineInfo(Address addr, LineInfo* info) {
2026   base::HashMap* line_map = GetLineMap();
2027   base::HashMap::Entry* e =
2028       line_map->LookupOrInsert(addr, HashCodeAddress(addr));
2029   if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
2030   e->value = info;
2031 }
2032 
2033 
GetLineInfo(Address addr)2034 static LineInfo* GetLineInfo(Address addr) {
2035   void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
2036   return static_cast<LineInfo*>(value);
2037 }
2038 
2039 
AddUnwindInfo(CodeDescription * desc)2040 static void AddUnwindInfo(CodeDescription* desc) {
2041 #if V8_TARGET_ARCH_X64
2042   if (desc->is_function()) {
2043     // To avoid propagating unwinding information through
2044     // compilation pipeline we use an approximation.
2045     // For most use cases this should not affect usability.
2046     static const int kFramePointerPushOffset = 1;
2047     static const int kFramePointerSetOffset = 4;
2048     static const int kFramePointerPopOffset = -3;
2049 
2050     uintptr_t frame_pointer_push_address =
2051         desc->CodeStart() + kFramePointerPushOffset;
2052 
2053     uintptr_t frame_pointer_set_address =
2054         desc->CodeStart() + kFramePointerSetOffset;
2055 
2056     uintptr_t frame_pointer_pop_address =
2057         desc->CodeEnd() + kFramePointerPopOffset;
2058 
2059     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2060                                     frame_pointer_push_address);
2061     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2062                                     frame_pointer_set_address);
2063     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2064                                     frame_pointer_pop_address);
2065   } else {
2066     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2067                                     desc->CodeStart());
2068     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2069                                     desc->CodeStart());
2070     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2071                                     desc->CodeEnd());
2072   }
2073 #endif  // V8_TARGET_ARCH_X64
2074 }
2075 
2076 
2077 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2078 
2079 
2080 // Remove entries from the splay tree that intersect the given address range,
2081 // and deregister them from GDB.
RemoveJITCodeEntries(CodeMap * map,const AddressRange & range)2082 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
2083   DCHECK(range.start < range.end);
2084   CodeMap::Locator cur;
2085   if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
2086     // Skip entries that are entirely less than the range of interest.
2087     while (cur.key().end <= range.start) {
2088       // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
2089       // than _or equal to_ the given key, so we have to advance our key to get
2090       // the next one.
2091       AddressRange new_key;
2092       new_key.start = cur.key().end;
2093       new_key.end = 0;
2094       if (!map->FindLeastGreaterThan(new_key, &cur)) return;
2095     }
2096     // Evict intersecting ranges.
2097     while (cur.key().start < range.end) {
2098       AddressRange old_range = cur.key();
2099       JITCodeEntry* old_entry = cur.value();
2100 
2101       UnregisterCodeEntry(old_entry);
2102       DestroyCodeEntry(old_entry);
2103 
2104       CHECK(map->Remove(old_range));
2105       if (!map->FindLeastGreaterThan(old_range, &cur)) return;
2106     }
2107   }
2108 }
2109 
2110 
2111 // Insert the entry into the splay tree and register it with GDB.
AddJITCodeEntry(CodeMap * map,const AddressRange & range,JITCodeEntry * entry,bool dump_if_enabled,const char * name_hint)2112 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
2113                             JITCodeEntry* entry, bool dump_if_enabled,
2114                             const char* name_hint) {
2115 #if defined(DEBUG) && !V8_OS_WIN
2116   static int file_num = 0;
2117   if (FLAG_gdbjit_dump && dump_if_enabled) {
2118     static const int kMaxFileNameSize = 64;
2119     char file_name[64];
2120 
2121     SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
2122              (name_hint != NULL) ? name_hint : "", file_num++);
2123     WriteBytes(file_name, entry->symfile_addr_,
2124                static_cast<int>(entry->symfile_size_));
2125   }
2126 #endif
2127 
2128   CodeMap::Locator cur;
2129   CHECK(map->Insert(range, &cur));
2130   cur.set_value(entry);
2131 
2132   RegisterCodeEntry(entry);
2133 }
2134 
2135 
AddCode(const char * name,Code * code,SharedFunctionInfo * shared,LineInfo * lineinfo)2136 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
2137                     LineInfo* lineinfo) {
2138   DisallowHeapAllocation no_gc;
2139 
2140   CodeMap* code_map = GetCodeMap();
2141   AddressRange range;
2142   range.start = code->address();
2143   range.end = code->address() + code->CodeSize();
2144   RemoveJITCodeEntries(code_map, range);
2145 
2146   CodeDescription code_desc(name, code, shared, lineinfo);
2147 
2148   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2149     delete lineinfo;
2150     return;
2151   }
2152 
2153   AddUnwindInfo(&code_desc);
2154   Isolate* isolate = code->GetIsolate();
2155   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2156 
2157   delete lineinfo;
2158 
2159   const char* name_hint = NULL;
2160   bool should_dump = false;
2161   if (FLAG_gdbjit_dump) {
2162     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
2163       name_hint = name;
2164       should_dump = true;
2165     } else if (name != NULL) {
2166       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
2167       should_dump = (name_hint != NULL);
2168     }
2169   }
2170   AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
2171 }
2172 
2173 
EventHandler(const v8::JitCodeEvent * event)2174 void EventHandler(const v8::JitCodeEvent* event) {
2175   if (!FLAG_gdbjit) return;
2176   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2177   switch (event->type) {
2178     case v8::JitCodeEvent::CODE_ADDED: {
2179       Address addr = reinterpret_cast<Address>(event->code_start);
2180       Code* code = Code::GetCodeFromTargetAddress(addr);
2181       LineInfo* lineinfo = GetLineInfo(addr);
2182       EmbeddedVector<char, 256> buffer;
2183       StringBuilder builder(buffer.start(), buffer.length());
2184       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
2185       // It's called UnboundScript in the API but it's a SharedFunctionInfo.
2186       SharedFunctionInfo* shared =
2187           event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
2188       AddCode(builder.Finalize(), code, shared, lineinfo);
2189       break;
2190     }
2191     case v8::JitCodeEvent::CODE_MOVED:
2192       // Enabling the GDB JIT interface should disable code compaction.
2193       UNREACHABLE();
2194       break;
2195     case v8::JitCodeEvent::CODE_REMOVED:
2196       // Do nothing.  Instead, adding code causes eviction of any entry whose
2197       // address range intersects the address range of the added code.
2198       break;
2199     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
2200       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2201       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
2202                              static_cast<int>(event->line_info.pos),
2203                              event->line_info.position_type ==
2204                                  v8::JitCodeEvent::STATEMENT_POSITION);
2205       break;
2206     }
2207     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
2208       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
2209       mutable_event->user_data = new LineInfo();
2210       break;
2211     }
2212     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
2213       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2214       PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
2215       break;
2216     }
2217   }
2218 }
2219 #endif
2220 }  // namespace GDBJITInterface
2221 }  // namespace internal
2222 }  // namespace v8
2223