• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_FACTORY_H_
6 #define V8_FACTORY_H_
7 
8 #include "src/globals.h"
9 #include "src/isolate.h"
10 #include "src/messages.h"
11 #include "src/type-feedback-vector.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 enum FunctionMode {
17   // With prototype.
18   FUNCTION_WITH_WRITEABLE_PROTOTYPE,
19   FUNCTION_WITH_READONLY_PROTOTYPE,
20   // Without prototype.
21   FUNCTION_WITHOUT_PROTOTYPE
22 };
23 
24 // Interface for handle based allocation.
25 class V8_EXPORT_PRIVATE Factory final {
26  public:
27   Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
28                              Handle<Object> to_number, const char* type_of,
29                              byte kind);
30 
31   // Allocates a fixed array initialized with undefined values.
32   Handle<FixedArray> NewFixedArray(int size,
33                                    PretenureFlag pretenure = NOT_TENURED);
34   // Tries allocating a fixed array initialized with undefined values.
35   // In case of an allocation failure (OOM) an empty handle is returned.
36   // The caller has to manually signal an
37   // v8::internal::Heap::FatalProcessOutOfMemory typically by calling
38   // NewFixedArray as a fallback.
39   MUST_USE_RESULT
40   MaybeHandle<FixedArray> TryNewFixedArray(
41       int size, PretenureFlag pretenure = NOT_TENURED);
42 
43   // Allocate a new fixed array with non-existing entries (the hole).
44   Handle<FixedArray> NewFixedArrayWithHoles(
45       int size,
46       PretenureFlag pretenure = NOT_TENURED);
47 
48   // Allocates an uninitialized fixed array. It must be filled by the caller.
49   Handle<FixedArray> NewUninitializedFixedArray(int size);
50 
51   // Allocate a new uninitialized fixed double array.
52   // The function returns a pre-allocated empty fixed array for capacity = 0,
53   // so the return type must be the general fixed array class.
54   Handle<FixedArrayBase> NewFixedDoubleArray(
55       int size,
56       PretenureFlag pretenure = NOT_TENURED);
57 
58   // Allocate a new fixed double array with hole values.
59   Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
60       int size,
61       PretenureFlag pretenure = NOT_TENURED);
62 
63   Handle<FrameArray> NewFrameArray(int number_of_frames,
64                                    PretenureFlag pretenure = NOT_TENURED);
65 
66   Handle<OrderedHashSet> NewOrderedHashSet();
67   Handle<OrderedHashMap> NewOrderedHashMap();
68 
69   // Create a new boxed value.
70   Handle<Box> NewBox(Handle<Object> value);
71 
72   // Create a new PromiseReactionJobInfo struct.
73   Handle<PromiseReactionJobInfo> NewPromiseReactionJobInfo(
74       Handle<Object> value, Handle<Object> tasks, Handle<Object> deferred,
75       Handle<Object> debug_id, Handle<Object> debug_name,
76       Handle<Context> context);
77 
78   // Create a new PromiseResolveThenableJobInfo struct.
79   Handle<PromiseResolveThenableJobInfo> NewPromiseResolveThenableJobInfo(
80       Handle<JSReceiver> thenable, Handle<JSReceiver> then,
81       Handle<JSFunction> resolve, Handle<JSFunction> reject,
82       Handle<Object> debug_id, Handle<Object> debug_name,
83       Handle<Context> context);
84 
85   // Create a new PrototypeInfo struct.
86   Handle<PrototypeInfo> NewPrototypeInfo();
87 
88   // Create a new Tuple3 struct.
89   Handle<Tuple3> NewTuple3(Handle<Object> value1, Handle<Object> value2,
90                            Handle<Object> value3);
91 
92   // Create a new ContextExtension struct.
93   Handle<ContextExtension> NewContextExtension(Handle<ScopeInfo> scope_info,
94                                                Handle<Object> extension);
95 
96   // Create a pre-tenured empty AccessorPair.
97   Handle<AccessorPair> NewAccessorPair();
98 
99   // Create an empty TypeFeedbackInfo.
100   Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
101 
102   // Finds the internalized copy for string in the string table.
103   // If not found, a new string is added to the table and returned.
104   Handle<String> InternalizeUtf8String(Vector<const char> str);
InternalizeUtf8String(const char * str)105   Handle<String> InternalizeUtf8String(const char* str) {
106     return InternalizeUtf8String(CStrVector(str));
107   }
108 
109   Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
110   Handle<String> InternalizeOneByteString(
111       Handle<SeqOneByteString>, int from, int length);
112 
113   Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
114 
115   template<class StringTableKey>
116   Handle<String> InternalizeStringWithKey(StringTableKey* key);
117 
118   // Internalized strings are created in the old generation (data space).
InternalizeString(Handle<String> string)119   Handle<String> InternalizeString(Handle<String> string) {
120     if (string->IsInternalizedString()) return string;
121     return StringTable::LookupString(isolate(), string);
122   }
123 
InternalizeName(Handle<Name> name)124   Handle<Name> InternalizeName(Handle<Name> name) {
125     if (name->IsUniqueName()) return name;
126     return StringTable::LookupString(isolate(), Handle<String>::cast(name));
127   }
128 
129   // String creation functions.  Most of the string creation functions take
130   // a Heap::PretenureFlag argument to optionally request that they be
131   // allocated in the old generation.  The pretenure flag defaults to
132   // DONT_TENURE.
133   //
134   // Creates a new String object.  There are two String encodings: one-byte and
135   // two-byte.  One should choose between the three string factory functions
136   // based on the encoding of the string buffer that the string is
137   // initialized from.
138   //   - ...FromOneByte initializes the string from a buffer that is Latin1
139   //     encoded (it does not check that the buffer is Latin1 encoded) and
140   //     the result will be Latin1 encoded.
141   //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
142   //     encoded.  If the characters are all ASCII characters, the result
143   //     will be Latin1 encoded, otherwise it will converted to two-byte.
144   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
145   //     encoded.  If the characters are all Latin1 characters, the result
146   //     will be converted to Latin1, otherwise it will be left as two-byte.
147   //
148   // One-byte strings are pretenured when used as keys in the SourceCodeCache.
149   MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
150       Vector<const uint8_t> str, PretenureFlag pretenure = NOT_TENURED);
151 
152   template <size_t N>
153   inline Handle<String> NewStringFromStaticChars(
154       const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
155     DCHECK(N == StrLength(str) + 1);
156     return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
157         .ToHandleChecked();
158   }
159 
160   inline Handle<String> NewStringFromAsciiChecked(
161       const char* str,
162       PretenureFlag pretenure = NOT_TENURED) {
163     return NewStringFromOneByte(
164         OneByteVector(str), pretenure).ToHandleChecked();
165   }
166 
167 
168   // Allocates and fully initializes a String.  There are two String encodings:
169   // one-byte and two-byte. One should choose between the threestring
170   // allocation functions based on the encoding of the string buffer used to
171   // initialized the string.
172   //   - ...FromOneByte initializes the string from a buffer that is Latin1
173   //     encoded (it does not check that the buffer is Latin1 encoded) and the
174   //     result will be Latin1 encoded.
175   //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
176   //     encoded.  If the characters are all ASCII characters, the result
177   //     will be Latin1 encoded, otherwise it will converted to two-byte.
178   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
179   //     encoded.  If the characters are all Latin1 characters, the
180   //     result will be converted to Latin1, otherwise it will be left as
181   //     two-byte.
182 
183   // TODO(dcarney): remove this function.
184   MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
185       Vector<const char> str,
186       PretenureFlag pretenure = NOT_TENURED) {
187     return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
188   }
189 
190   // UTF8 strings are pretenured when used for regexp literal patterns and
191   // flags in the parser.
192   MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
193       Vector<const char> str, PretenureFlag pretenure = NOT_TENURED);
194 
195   MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8SubString(
196       Handle<SeqOneByteString> str, int begin, int end,
197       PretenureFlag pretenure = NOT_TENURED);
198 
199   MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
200       Vector<const uc16> str, PretenureFlag pretenure = NOT_TENURED);
201 
202   MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
203       const ZoneVector<uc16>* str, PretenureFlag pretenure = NOT_TENURED);
204 
205   Handle<JSStringIterator> NewJSStringIterator(Handle<String> string);
206 
207   // Allocates an internalized string in old space based on the character
208   // stream.
209   Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str,
210                                                int chars, uint32_t hash_field);
211 
212   Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str,
213                                               uint32_t hash_field);
214 
215   Handle<String> NewOneByteInternalizedSubString(
216       Handle<SeqOneByteString> string, int offset, int length,
217       uint32_t hash_field);
218 
219   Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str,
220                                               uint32_t hash_field);
221 
222   Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
223                                            uint32_t hash_field);
224 
225   // Compute the matching internalized string map for a string if possible.
226   // Empty handle is returned if string is in new space or not flattened.
227   MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
228       Handle<String> string);
229 
230   // Allocates and partially initializes an one-byte or two-byte String. The
231   // characters of the string are uninitialized. Currently used in regexp code
232   // only, where they are pretenured.
233   MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
234       int length,
235       PretenureFlag pretenure = NOT_TENURED);
236   MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
237       int length,
238       PretenureFlag pretenure = NOT_TENURED);
239 
240   // Creates a single character string where the character has given code.
241   // A cache is used for Latin1 codes.
242   Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
243 
244   // Create a new cons string object which consists of a pair of strings.
245   MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
246                                                     Handle<String> right);
247 
248   // Create or lookup a single characters tring made up of a utf16 surrogate
249   // pair.
250   Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail);
251 
252   // Create a new string object which holds a proper substring of a string.
253   Handle<String> NewProperSubString(Handle<String> str,
254                                     int begin,
255                                     int end);
256 
257   // Create a new string object which holds a substring of a string.
NewSubString(Handle<String> str,int begin,int end)258   Handle<String> NewSubString(Handle<String> str, int begin, int end) {
259     if (begin == 0 && end == str->length()) return str;
260     return NewProperSubString(str, begin, end);
261   }
262 
263   // Creates a new external String object.  There are two String encodings
264   // in the system: one-byte and two-byte.  Unlike other String types, it does
265   // not make sense to have a UTF-8 factory function for external strings,
266   // because we cannot change the underlying buffer.  Note that these strings
267   // are backed by a string resource that resides outside the V8 heap.
268   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
269       const ExternalOneByteString::Resource* resource);
270   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
271       const ExternalTwoByteString::Resource* resource);
272   // Create a new external string object for one-byte encoded native script.
273   // It does not cache the resource data pointer.
274   Handle<ExternalOneByteString> NewNativeSourceString(
275       const ExternalOneByteString::Resource* resource);
276 
277   // Create a symbol.
278   Handle<Symbol> NewSymbol();
279   Handle<Symbol> NewPrivateSymbol();
280 
281   // Create a global (but otherwise uninitialized) context.
282   Handle<Context> NewNativeContext();
283 
284   // Create a script context.
285   Handle<Context> NewScriptContext(Handle<JSFunction> function,
286                                    Handle<ScopeInfo> scope_info);
287 
288   // Create an empty script context table.
289   Handle<ScriptContextTable> NewScriptContextTable();
290 
291   // Create a module context.
292   Handle<Context> NewModuleContext(Handle<Module> module,
293                                    Handle<JSFunction> function,
294                                    Handle<ScopeInfo> scope_info);
295 
296   // Create a function context.
297   Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
298 
299   // Create a catch context.
300   Handle<Context> NewCatchContext(Handle<JSFunction> function,
301                                   Handle<Context> previous,
302                                   Handle<ScopeInfo> scope_info,
303                                   Handle<String> name,
304                                   Handle<Object> thrown_object);
305 
306   // Create a 'with' context.
307   Handle<Context> NewWithContext(Handle<JSFunction> function,
308                                  Handle<Context> previous,
309                                  Handle<ScopeInfo> scope_info,
310                                  Handle<JSReceiver> extension);
311 
312   Handle<Context> NewDebugEvaluateContext(Handle<Context> previous,
313                                           Handle<ScopeInfo> scope_info,
314                                           Handle<JSReceiver> extension,
315                                           Handle<Context> wrapped,
316                                           Handle<StringSet> whitelist);
317 
318   // Create a block context.
319   Handle<Context> NewBlockContext(Handle<JSFunction> function,
320                                   Handle<Context> previous,
321                                   Handle<ScopeInfo> scope_info);
322   // Create a promise context.
323   Handle<Context> NewPromiseResolvingFunctionContext(int length);
324 
325   // Allocate a new struct.  The struct is pretenured (allocated directly in
326   // the old generation).
327   Handle<Struct> NewStruct(InstanceType type);
328 
329   Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
330       int aliased_context_slot);
331 
332   Handle<AccessorInfo> NewAccessorInfo();
333 
334   Handle<Script> NewScript(Handle<String> source);
335 
336   // Foreign objects are pretenured when allocated by the bootstrapper.
337   Handle<Foreign> NewForeign(Address addr,
338                              PretenureFlag pretenure = NOT_TENURED);
339 
340   // Allocate a new foreign object.  The foreign is pretenured (allocated
341   // directly in the old generation).
342   Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
343 
344   Handle<ByteArray> NewByteArray(int length,
345                                  PretenureFlag pretenure = NOT_TENURED);
346 
347   Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
348                                          int frame_size, int parameter_count,
349                                          Handle<FixedArray> constant_pool);
350 
351   Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
352       int length, ExternalArrayType array_type, void* external_pointer,
353       PretenureFlag pretenure = NOT_TENURED);
354 
355   Handle<FixedTypedArrayBase> NewFixedTypedArray(
356       int length, ExternalArrayType array_type, bool initialize,
357       PretenureFlag pretenure = NOT_TENURED);
358 
359   Handle<Cell> NewCell(Handle<Object> value);
360 
361   Handle<PropertyCell> NewPropertyCell();
362 
363   Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
364 
365   Handle<TransitionArray> NewTransitionArray(int capacity);
366 
367   // Allocate a tenured AllocationSite. It's payload is null.
368   Handle<AllocationSite> NewAllocationSite();
369 
370   Handle<Map> NewMap(
371       InstanceType type,
372       int instance_size,
373       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
374 
375   Handle<HeapObject> NewFillerObject(int size,
376                                      bool double_align,
377                                      AllocationSpace space);
378 
379   Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
380 
381   Handle<JSObject> CopyJSObject(Handle<JSObject> object);
382 
383   Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
384                                                   Handle<AllocationSite> site);
385 
386   Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
387                                            Handle<Map> map);
388 
389   Handle<FixedArray> CopyFixedArrayAndGrow(
390       Handle<FixedArray> array, int grow_by,
391       PretenureFlag pretenure = NOT_TENURED);
392 
393   Handle<FixedArray> CopyFixedArrayUpTo(Handle<FixedArray> array, int new_len,
394                                         PretenureFlag pretenure = NOT_TENURED);
395 
396   Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
397 
398   // This method expects a COW array in new space, and creates a copy
399   // of it in old space.
400   Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
401 
402   Handle<FixedDoubleArray> CopyFixedDoubleArray(
403       Handle<FixedDoubleArray> array);
404 
405   // Numbers (e.g. literals) are pretenured by the parser.
406   // The return value may be a smi or a heap number.
407   Handle<Object> NewNumber(double value,
408                            PretenureFlag pretenure = NOT_TENURED);
409 
410   Handle<Object> NewNumberFromInt(int32_t value,
411                                   PretenureFlag pretenure = NOT_TENURED);
412   Handle<Object> NewNumberFromUint(uint32_t value,
413                                   PretenureFlag pretenure = NOT_TENURED);
414   Handle<Object> NewNumberFromSize(size_t value,
415                                    PretenureFlag pretenure = NOT_TENURED) {
416     // We can't use Smi::IsValid() here because that operates on a signed
417     // intptr_t, and casting from size_t could create a bogus sign bit.
418     if (value <= static_cast<size_t>(Smi::kMaxValue)) {
419       return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
420                             isolate());
421     }
422     return NewNumber(static_cast<double>(value), pretenure);
423   }
424   Handle<Object> NewNumberFromInt64(int64_t value,
425                                     PretenureFlag pretenure = NOT_TENURED) {
426     if (value <= std::numeric_limits<int32_t>::max() &&
427         value >= std::numeric_limits<int32_t>::min() &&
428         Smi::IsValid(static_cast<int32_t>(value))) {
429       return Handle<Object>(Smi::FromInt(static_cast<int32_t>(value)),
430                             isolate());
431     }
432     return NewNumber(static_cast<double>(value), pretenure);
433   }
434   Handle<HeapNumber> NewHeapNumber(double value,
435                                    MutableMode mode = IMMUTABLE,
436                                    PretenureFlag pretenure = NOT_TENURED);
437 
438 #define SIMD128_NEW_DECL(TYPE, Type, type, lane_count, lane_type) \
439   Handle<Type> New##Type(lane_type lanes[lane_count],             \
440                          PretenureFlag pretenure = NOT_TENURED);
441   SIMD128_TYPES(SIMD128_NEW_DECL)
442 #undef SIMD128_NEW_DECL
443 
444   Handle<JSWeakMap> NewJSWeakMap();
445 
446   Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
447 
448   // JS objects are pretenured when allocated by the bootstrapper and
449   // runtime.
450   Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
451                                PretenureFlag pretenure = NOT_TENURED);
452   // JSObject without a prototype.
453   Handle<JSObject> NewJSObjectWithNullProto();
454 
455   // Global objects are pretenured and initialized based on a constructor.
456   Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
457 
458   // JS objects are pretenured when allocated by the bootstrapper and
459   // runtime.
460   Handle<JSObject> NewJSObjectFromMap(
461       Handle<Map> map,
462       PretenureFlag pretenure = NOT_TENURED,
463       Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
464 
465   // JS arrays are pretenured when allocated by the parser.
466 
467   // Create a JSArray with a specified length and elements initialized
468   // according to the specified mode.
469   Handle<JSArray> NewJSArray(
470       ElementsKind elements_kind, int length, int capacity,
471       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
472       PretenureFlag pretenure = NOT_TENURED);
473 
474   Handle<JSArray> NewJSArray(
475       int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
476       PretenureFlag pretenure = NOT_TENURED) {
477     if (capacity != 0) {
478       elements_kind = GetHoleyElementsKind(elements_kind);
479     }
480     return NewJSArray(elements_kind, 0, capacity,
481                       INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
482   }
483 
484   // Create a JSArray with the given elements.
485   Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements,
486                                          ElementsKind elements_kind, int length,
487                                          PretenureFlag pretenure = NOT_TENURED);
488 
489   Handle<JSArray> NewJSArrayWithElements(
490       Handle<FixedArrayBase> elements,
491       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
492       PretenureFlag pretenure = NOT_TENURED) {
493     return NewJSArrayWithElements(elements, elements_kind, elements->length(),
494                                   pretenure);
495   }
496 
497   void NewJSArrayStorage(
498       Handle<JSArray> array,
499       int length,
500       int capacity,
501       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
502 
503   Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
504 
505   Handle<JSModuleNamespace> NewJSModuleNamespace();
506 
507   Handle<Module> NewModule(Handle<SharedFunctionInfo> code);
508 
509   Handle<JSArrayBuffer> NewJSArrayBuffer(
510       SharedFlag shared = SharedFlag::kNotShared,
511       PretenureFlag pretenure = NOT_TENURED);
512 
513   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
514                                        PretenureFlag pretenure = NOT_TENURED);
515 
516   Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
517                                        PretenureFlag pretenure = NOT_TENURED);
518 
519   // Creates a new JSTypedArray with the specified buffer.
520   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
521                                        Handle<JSArrayBuffer> buffer,
522                                        size_t byte_offset, size_t length,
523                                        PretenureFlag pretenure = NOT_TENURED);
524 
525   // Creates a new on-heap JSTypedArray.
526   Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
527                                        size_t number_of_elements,
528                                        PretenureFlag pretenure = NOT_TENURED);
529 
530   Handle<JSDataView> NewJSDataView();
531   Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
532                                    size_t byte_offset, size_t byte_length);
533 
534   Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done);
535 
536   Handle<JSMap> NewJSMap();
537   Handle<JSSet> NewJSSet();
538 
539   // TODO(aandrey): Maybe these should take table, index and kind arguments.
540   Handle<JSMapIterator> NewJSMapIterator();
541   Handle<JSSetIterator> NewJSSetIterator();
542 
543   Handle<JSFixedArrayIterator> NewJSFixedArrayIterator(
544       Handle<FixedArray> array);
545 
546   // Allocates a bound function.
547   MaybeHandle<JSBoundFunction> NewJSBoundFunction(
548       Handle<JSReceiver> target_function, Handle<Object> bound_this,
549       Vector<Handle<Object>> bound_args);
550 
551   // Allocates a Harmony proxy.
552   Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
553                              Handle<JSReceiver> handler);
554 
555   // Reinitialize an JSGlobalProxy based on a constructor.  The object
556   // must have the same size as objects allocated using the
557   // constructor.  The object is reinitialized and behaves as an
558   // object that has been freshly allocated using the constructor.
559   void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
560                                  Handle<JSFunction> constructor);
561 
562   Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size);
563 
564   Handle<JSFunction> NewFunction(Handle<Map> map,
565                                  Handle<SharedFunctionInfo> info,
566                                  Handle<Object> context_or_undefined,
567                                  PretenureFlag pretenure = TENURED);
568   Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
569                                  Handle<Object> prototype,
570                                  bool is_strict = false);
571   Handle<JSFunction> NewFunction(Handle<String> name);
572   Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
573                                                  Handle<Code> code,
574                                                  bool is_strict = false);
575 
576   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
577       Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
578       Handle<Object> context_or_undefined, PretenureFlag pretenure = TENURED);
579 
580   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
581       Handle<SharedFunctionInfo> function_info, Handle<Context> context,
582       PretenureFlag pretenure = TENURED);
583 
584   Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
585                                  Handle<Object> prototype, InstanceType type,
586                                  int instance_size,
587                                  bool is_strict = false);
588   Handle<JSFunction> NewFunction(Handle<String> name,
589                                  Handle<Code> code,
590                                  InstanceType type,
591                                  int instance_size);
592   Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name,
593                                  MaybeHandle<Code> maybe_code);
594 
595   // Create a serialized scope info.
596   Handle<ScopeInfo> NewScopeInfo(int length);
597 
598   Handle<ModuleInfoEntry> NewModuleInfoEntry();
599   Handle<ModuleInfo> NewModuleInfo();
600 
601   // Create an External object for V8's external API.
602   Handle<JSObject> NewExternal(void* value);
603 
604   // The reference to the Code object is stored in self_reference.
605   // This allows generated code to reference its own Code object
606   // by containing this handle.
607   Handle<Code> NewCode(const CodeDesc& desc,
608                        Code::Flags flags,
609                        Handle<Object> self_reference,
610                        bool immovable = false,
611                        bool crankshafted = false,
612                        int prologue_offset = Code::kPrologueOffsetNotSet,
613                        bool is_debug = false);
614 
615   Handle<Code> CopyCode(Handle<Code> code);
616 
617   Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>);
618 
619   // Interface for creating error objects.
620   Handle<Object> NewError(Handle<JSFunction> constructor,
621                           Handle<String> message);
622 
623   Handle<Object> NewInvalidStringLengthError();
624 
NewURIError()625   Handle<Object> NewURIError() {
626     return NewError(isolate()->uri_error_function(),
627                     MessageTemplate::kURIMalformed);
628   }
629 
630   Handle<Object> NewError(Handle<JSFunction> constructor,
631                           MessageTemplate::Template template_index,
632                           Handle<Object> arg0 = Handle<Object>(),
633                           Handle<Object> arg1 = Handle<Object>(),
634                           Handle<Object> arg2 = Handle<Object>());
635 
636 #define DECLARE_ERROR(NAME)                                          \
637   Handle<Object> New##NAME(MessageTemplate::Template template_index, \
638                            Handle<Object> arg0 = Handle<Object>(),   \
639                            Handle<Object> arg1 = Handle<Object>(),   \
640                            Handle<Object> arg2 = Handle<Object>());
641   DECLARE_ERROR(Error)
642   DECLARE_ERROR(EvalError)
643   DECLARE_ERROR(RangeError)
644   DECLARE_ERROR(ReferenceError)
645   DECLARE_ERROR(SyntaxError)
646   DECLARE_ERROR(TypeError)
647   DECLARE_ERROR(WasmCompileError)
648   DECLARE_ERROR(WasmRuntimeError)
649 #undef DECLARE_ERROR
650 
651   Handle<String> NumberToString(Handle<Object> number,
652                                 bool check_number_string_cache = true);
653 
Uint32ToString(uint32_t value)654   Handle<String> Uint32ToString(uint32_t value) {
655     return NumberToString(NewNumberFromUint(value));
656   }
657 
658   Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
659 
660 #define ROOT_ACCESSOR(type, name, camel_name)                         \
661   inline Handle<type> name() {                                        \
662     return Handle<type>(bit_cast<type**>(                             \
663         &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
664   }
665   ROOT_LIST(ROOT_ACCESSOR)
666 #undef ROOT_ACCESSOR
667 
668 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                      \
669   inline Handle<Map> name##_map() {                                \
670     return Handle<Map>(bit_cast<Map**>(                            \
671         &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
672   }
673   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
674 #undef STRUCT_MAP_ACCESSOR
675 
676 #define STRING_ACCESSOR(name, str)                              \
677   inline Handle<String> name() {                                \
678     return Handle<String>(bit_cast<String**>(                   \
679         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
680   }
681   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
682 #undef STRING_ACCESSOR
683 
684 #define SYMBOL_ACCESSOR(name)                                   \
685   inline Handle<Symbol> name() {                                \
686     return Handle<Symbol>(bit_cast<Symbol**>(                   \
687         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
688   }
689   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
690 #undef SYMBOL_ACCESSOR
691 
692 #define SYMBOL_ACCESSOR(name, description)                      \
693   inline Handle<Symbol> name() {                                \
694     return Handle<Symbol>(bit_cast<Symbol**>(                   \
695         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
696   }
697   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
698   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
699 #undef SYMBOL_ACCESSOR
700 
701   // Allocates a new SharedFunctionInfo object.
702   Handle<SharedFunctionInfo> NewSharedFunctionInfo(
703       Handle<String> name, int number_of_literals, FunctionKind kind,
704       Handle<Code> code, Handle<ScopeInfo> scope_info);
705   Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
706                                                    MaybeHandle<Code> code,
707                                                    bool is_constructor);
708 
IsFunctionModeWithPrototype(FunctionMode function_mode)709   static bool IsFunctionModeWithPrototype(FunctionMode function_mode) {
710     return (function_mode == FUNCTION_WITH_WRITEABLE_PROTOTYPE ||
711             function_mode == FUNCTION_WITH_READONLY_PROTOTYPE);
712   }
713 
714   Handle<Map> CreateSloppyFunctionMap(FunctionMode function_mode);
715 
716   Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode,
717                                       Handle<JSFunction> empty_function);
718 
719   // Allocates a new JSMessageObject object.
720   Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message,
721                                              Handle<Object> argument,
722                                              int start_position,
723                                              int end_position,
724                                              Handle<Object> script,
725                                              Handle<Object> stack_frames);
726 
727   Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
728 
729   // Return a map for given number of properties using the map cache in the
730   // native context.
731   Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
732                                         int number_of_properties,
733                                         bool* is_result_from_cache);
734 
735   Handle<RegExpMatchInfo> NewRegExpMatchInfo();
736 
737   // Creates a new FixedArray that holds the data associated with the
738   // atom regexp and stores it in the regexp.
739   void SetRegExpAtomData(Handle<JSRegExp> regexp,
740                          JSRegExp::Type type,
741                          Handle<String> source,
742                          JSRegExp::Flags flags,
743                          Handle<Object> match_pattern);
744 
745   // Creates a new FixedArray that holds the data associated with the
746   // irregexp regexp and stores it in the regexp.
747   void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
748                              JSRegExp::Type type,
749                              Handle<String> source,
750                              JSRegExp::Flags flags,
751                              int capture_count);
752 
753   // Returns the value for a known global constant (a property of the global
754   // object which is neither configurable nor writable) like 'undefined'.
755   // Returns a null handle when the given name is unknown.
756   Handle<Object> GlobalConstantFor(Handle<Name> name);
757 
758   // Converts the given boolean condition to JavaScript boolean value.
759   Handle<Object> ToBoolean(bool value);
760 
761   // Converts the given ToPrimitive hint to it's string representation.
762   Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint);
763 
764  private:
isolate()765   Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
766 
767   // Creates a heap object based on the map. The fields of the heap object are
768   // not initialized by New<>() functions. It's the responsibility of the caller
769   // to do that.
770   template<typename T>
771   Handle<T> New(Handle<Map> map, AllocationSpace space);
772 
773   template<typename T>
774   Handle<T> New(Handle<Map> map,
775                 AllocationSpace space,
776                 Handle<AllocationSite> allocation_site);
777 
778   MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length,
779                                            PretenureFlag pretenure);
780 
781   // Creates a code object that is not yet fully initialized yet.
782   inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
783 
784   // Attempt to find the number in a small cache.  If we finds it, return
785   // the string representation of the number.  Otherwise return undefined.
786   Handle<Object> GetNumberStringCache(Handle<Object> number);
787 
788   // Update the cache with a new number-string pair.
789   void SetNumberStringCache(Handle<Object> number, Handle<String> string);
790 
791   // Create a JSArray with no elements and no length.
792   Handle<JSArray> NewJSArray(ElementsKind elements_kind,
793                              PretenureFlag pretenure = NOT_TENURED);
794 
795   void SetFunctionInstanceDescriptor(Handle<Map> map,
796                                      FunctionMode function_mode);
797 
798   void SetStrictFunctionInstanceDescriptor(Handle<Map> map,
799                                            FunctionMode function_mode);
800 };
801 
802 }  // namespace internal
803 }  // namespace v8
804 
805 #endif  // V8_FACTORY_H_
806