• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #include "VirtualDisplaySurface.h"
19 #include "HWComposer.h"
20 #include "SurfaceFlinger.h"
21 
22 #include <gui/BufferItem.h>
23 #include <gui/BufferQueue.h>
24 #include <gui/IProducerListener.h>
25 
26 // ---------------------------------------------------------------------------
27 namespace android {
28 // ---------------------------------------------------------------------------
29 
30 #define VDS_LOGE(msg, ...) ALOGE("[%s] " msg, \
31         mDisplayName.string(), ##__VA_ARGS__)
32 #define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] " msg, \
33         mDisplayName.string(), ##__VA_ARGS__)
34 #define VDS_LOGV(msg, ...) ALOGV("[%s] " msg, \
35         mDisplayName.string(), ##__VA_ARGS__)
36 
dbgCompositionTypeStr(DisplaySurface::CompositionType type)37 static const char* dbgCompositionTypeStr(DisplaySurface::CompositionType type) {
38     switch (type) {
39         case DisplaySurface::COMPOSITION_UNKNOWN: return "UNKNOWN";
40         case DisplaySurface::COMPOSITION_GLES:    return "GLES";
41         case DisplaySurface::COMPOSITION_HWC:     return "HWC";
42         case DisplaySurface::COMPOSITION_MIXED:   return "MIXED";
43         default:                                  return "<INVALID>";
44     }
45 }
46 
VirtualDisplaySurface(HWComposer & hwc,int32_t dispId,const sp<IGraphicBufferProducer> & sink,const sp<IGraphicBufferProducer> & bqProducer,const sp<IGraphicBufferConsumer> & bqConsumer,const String8 & name)47 VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
48         const sp<IGraphicBufferProducer>& sink,
49         const sp<IGraphicBufferProducer>& bqProducer,
50         const sp<IGraphicBufferConsumer>& bqConsumer,
51         const String8& name)
52 :   ConsumerBase(bqConsumer),
53     mHwc(hwc),
54     mDisplayId(dispId),
55     mDisplayName(name),
56     mSource{},
57     mDefaultOutputFormat(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED),
58     mOutputFormat(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED),
59     mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
60     mProducerSlotSource(0),
61     mProducerBuffers(),
62     mQueueBufferOutput(),
63     mSinkBufferWidth(0),
64     mSinkBufferHeight(0),
65     mCompositionType(COMPOSITION_UNKNOWN),
66     mFbFence(Fence::NO_FENCE),
67     mOutputFence(Fence::NO_FENCE),
68     mFbProducerSlot(BufferQueue::INVALID_BUFFER_SLOT),
69     mOutputProducerSlot(BufferQueue::INVALID_BUFFER_SLOT),
70     mDbgState(DBG_STATE_IDLE),
71     mDbgLastCompositionType(COMPOSITION_UNKNOWN),
72     mMustRecompose(false),
73     mForceHwcCopy(SurfaceFlinger::useHwcForRgbToYuv)
74 {
75     mSource[SOURCE_SINK] = sink;
76     mSource[SOURCE_SCRATCH] = bqProducer;
77 
78     resetPerFrameState();
79 
80     int sinkWidth, sinkHeight;
81     sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
82     sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
83     mSinkBufferWidth = sinkWidth;
84     mSinkBufferHeight = sinkHeight;
85 
86     // Pick the buffer format to request from the sink when not rendering to it
87     // with GLES. If the consumer needs CPU access, use the default format
88     // set by the consumer. Otherwise allow gralloc to decide the format based
89     // on usage bits.
90     int sinkUsage;
91     sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
92     if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
93         int sinkFormat;
94         sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
95         mDefaultOutputFormat = sinkFormat;
96     } else {
97         mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
98     }
99     mOutputFormat = mDefaultOutputFormat;
100 
101     ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
102     mConsumer->setConsumerName(ConsumerBase::mName);
103     mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER);
104     mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
105     sink->setAsyncMode(true);
106     IGraphicBufferProducer::QueueBufferOutput output;
107     mSource[SOURCE_SCRATCH]->connect(NULL, NATIVE_WINDOW_API_EGL, false, &output);
108 }
109 
~VirtualDisplaySurface()110 VirtualDisplaySurface::~VirtualDisplaySurface() {
111     mSource[SOURCE_SCRATCH]->disconnect(NATIVE_WINDOW_API_EGL);
112 }
113 
beginFrame(bool mustRecompose)114 status_t VirtualDisplaySurface::beginFrame(bool mustRecompose) {
115     if (mDisplayId < 0)
116         return NO_ERROR;
117 
118     mMustRecompose = mustRecompose;
119 
120     VDS_LOGW_IF(mDbgState != DBG_STATE_IDLE,
121             "Unexpected beginFrame() in %s state", dbgStateStr());
122     mDbgState = DBG_STATE_BEGUN;
123 
124     return refreshOutputBuffer();
125 }
126 
prepareFrame(CompositionType compositionType)127 status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
128     if (mDisplayId < 0)
129         return NO_ERROR;
130 
131     VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN,
132             "Unexpected prepareFrame() in %s state", dbgStateStr());
133     mDbgState = DBG_STATE_PREPARED;
134 
135     mCompositionType = compositionType;
136     if (mForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
137         // Some hardware can do RGB->YUV conversion more efficiently in hardware
138         // controlled by HWC than in hardware controlled by the video encoder.
139         // Forcing GLES-composed frames to go through an extra copy by the HWC
140         // allows the format conversion to happen there, rather than passing RGB
141         // directly to the consumer.
142         //
143         // On the other hand, when the consumer prefers RGB or can consume RGB
144         // inexpensively, this forces an unnecessary copy.
145         mCompositionType = COMPOSITION_MIXED;
146     }
147 
148     if (mCompositionType != mDbgLastCompositionType) {
149         VDS_LOGV("prepareFrame: composition type changed to %s",
150                 dbgCompositionTypeStr(mCompositionType));
151         mDbgLastCompositionType = mCompositionType;
152     }
153 
154     if (mCompositionType != COMPOSITION_GLES &&
155             (mOutputFormat != mDefaultOutputFormat ||
156              mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
157         // We must have just switched from GLES-only to MIXED or HWC
158         // composition. Stop using the format and usage requested by the GLES
159         // driver; they may be suboptimal when HWC is writing to the output
160         // buffer. For example, if the output is going to a video encoder, and
161         // HWC can write directly to YUV, some hardware can skip a
162         // memory-to-memory RGB-to-YUV conversion step.
163         //
164         // If we just switched *to* GLES-only mode, we'll change the
165         // format/usage and get a new buffer when the GLES driver calls
166         // dequeueBuffer().
167         mOutputFormat = mDefaultOutputFormat;
168         mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
169         refreshOutputBuffer();
170     }
171 
172     return NO_ERROR;
173 }
174 
175 #ifndef USE_HWC2
compositionComplete()176 status_t VirtualDisplaySurface::compositionComplete() {
177     return NO_ERROR;
178 }
179 #endif
180 
advanceFrame()181 status_t VirtualDisplaySurface::advanceFrame() {
182     if (mDisplayId < 0)
183         return NO_ERROR;
184 
185     if (mCompositionType == COMPOSITION_HWC) {
186         VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
187                 "Unexpected advanceFrame() in %s state on HWC frame",
188                 dbgStateStr());
189     } else {
190         VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
191                 "Unexpected advanceFrame() in %s state on GLES/MIXED frame",
192                 dbgStateStr());
193     }
194     mDbgState = DBG_STATE_HWC;
195 
196     if (mOutputProducerSlot < 0 ||
197             (mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
198         // Last chance bailout if something bad happened earlier. For example,
199         // in a GLES configuration, if the sink disappears then dequeueBuffer
200         // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
201         // will soldier on. So we end up here without a buffer. There should
202         // be lots of scary messages in the log just before this.
203         VDS_LOGE("advanceFrame: no buffer, bailing out");
204         return NO_MEMORY;
205     }
206 
207     sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
208             mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
209     sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
210     VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
211             mFbProducerSlot, fbBuffer.get(),
212             mOutputProducerSlot, outBuffer.get());
213 
214     // At this point we know the output buffer acquire fence,
215     // so update HWC state with it.
216     mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);
217 
218     status_t result = NO_ERROR;
219     if (fbBuffer != NULL) {
220 #ifdef USE_HWC2
221         uint32_t hwcSlot = 0;
222         sp<GraphicBuffer> hwcBuffer;
223         mHwcBufferCache.getHwcBuffer(mFbProducerSlot, fbBuffer,
224                 &hwcSlot, &hwcBuffer);
225 
226         // TODO: Correctly propagate the dataspace from GL composition
227         result = mHwc.setClientTarget(mDisplayId, hwcSlot, mFbFence,
228                 hwcBuffer, HAL_DATASPACE_UNKNOWN);
229 #else
230         result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
231 #endif
232     }
233 
234     return result;
235 }
236 
onFrameCommitted()237 void VirtualDisplaySurface::onFrameCommitted() {
238     if (mDisplayId < 0)
239         return;
240 
241     VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
242             "Unexpected onFrameCommitted() in %s state", dbgStateStr());
243     mDbgState = DBG_STATE_IDLE;
244 
245 #ifdef USE_HWC2
246     sp<Fence> retireFence = mHwc.getPresentFence(mDisplayId);
247 #else
248     sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
249 #endif
250     if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) {
251         // release the scratch buffer back to the pool
252         Mutex::Autolock lock(mMutex);
253         int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
254         VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
255 #ifdef USE_HWC2
256         addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot],
257                 retireFence);
258 #else
259         addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
260 #endif
261         releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
262                 EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
263     }
264 
265     if (mOutputProducerSlot >= 0) {
266         int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
267         QueueBufferOutput qbo;
268 #ifndef USE_HWC2
269         sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
270 #endif
271         VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
272         if (mMustRecompose) {
273             status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
274                     QueueBufferInput(
275                         systemTime(), false /* isAutoTimestamp */,
276                         HAL_DATASPACE_UNKNOWN,
277                         Rect(mSinkBufferWidth, mSinkBufferHeight),
278                         NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
279 #ifdef USE_HWC2
280                         retireFence),
281 #else
282                         outFence),
283 #endif
284                     &qbo);
285             if (result == NO_ERROR) {
286                 updateQueueBufferOutput(std::move(qbo));
287             }
288         } else {
289             // If the surface hadn't actually been updated, then we only went
290             // through the motions of updating the display to keep our state
291             // machine happy. We cancel the buffer to avoid triggering another
292             // re-composition and causing an infinite loop.
293 #ifdef USE_HWC2
294             mSource[SOURCE_SINK]->cancelBuffer(sslot, retireFence);
295 #else
296             mSource[SOURCE_SINK]->cancelBuffer(sslot, outFence);
297 #endif
298         }
299     }
300 
301     resetPerFrameState();
302 }
303 
dumpAsString(String8 &) const304 void VirtualDisplaySurface::dumpAsString(String8& /* result */) const {
305 }
306 
resizeBuffers(const uint32_t w,const uint32_t h)307 void VirtualDisplaySurface::resizeBuffers(const uint32_t w, const uint32_t h) {
308     mQueueBufferOutput.width = w;
309     mQueueBufferOutput.height = h;
310     mSinkBufferWidth = w;
311     mSinkBufferHeight = h;
312 }
313 
getClientTargetAcquireFence() const314 const sp<Fence>& VirtualDisplaySurface::getClientTargetAcquireFence() const {
315     return mFbFence;
316 }
317 
requestBuffer(int pslot,sp<GraphicBuffer> * outBuf)318 status_t VirtualDisplaySurface::requestBuffer(int pslot,
319         sp<GraphicBuffer>* outBuf) {
320     if (mDisplayId < 0)
321         return mSource[SOURCE_SINK]->requestBuffer(pslot, outBuf);
322 
323     VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
324             "Unexpected requestBuffer pslot=%d in %s state",
325             pslot, dbgStateStr());
326 
327     *outBuf = mProducerBuffers[pslot];
328     return NO_ERROR;
329 }
330 
setMaxDequeuedBufferCount(int maxDequeuedBuffers)331 status_t VirtualDisplaySurface::setMaxDequeuedBufferCount(
332         int maxDequeuedBuffers) {
333     return mSource[SOURCE_SINK]->setMaxDequeuedBufferCount(maxDequeuedBuffers);
334 }
335 
setAsyncMode(bool async)336 status_t VirtualDisplaySurface::setAsyncMode(bool async) {
337     return mSource[SOURCE_SINK]->setAsyncMode(async);
338 }
339 
dequeueBuffer(Source source,PixelFormat format,uint32_t usage,int * sslot,sp<Fence> * fence)340 status_t VirtualDisplaySurface::dequeueBuffer(Source source,
341         PixelFormat format, uint32_t usage, int* sslot, sp<Fence>* fence) {
342     LOG_FATAL_IF(mDisplayId < 0, "mDisplayId=%d but should not be < 0.", mDisplayId);
343 
344     status_t result = mSource[source]->dequeueBuffer(sslot, fence,
345             mSinkBufferWidth, mSinkBufferHeight, format, usage, nullptr);
346     if (result < 0)
347         return result;
348     int pslot = mapSource2ProducerSlot(source, *sslot);
349     VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d",
350             dbgSourceStr(source), *sslot, pslot, result);
351     uint64_t sourceBit = static_cast<uint64_t>(source) << pslot;
352 
353     if ((mProducerSlotSource & (1ULL << pslot)) != sourceBit) {
354         // This slot was previously dequeued from the other source; must
355         // re-request the buffer.
356         result |= BUFFER_NEEDS_REALLOCATION;
357         mProducerSlotSource &= ~(1ULL << pslot);
358         mProducerSlotSource |= sourceBit;
359     }
360 
361     if (result & RELEASE_ALL_BUFFERS) {
362         for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
363             if ((mProducerSlotSource & (1ULL << i)) == sourceBit)
364                 mProducerBuffers[i].clear();
365         }
366     }
367     if (result & BUFFER_NEEDS_REALLOCATION) {
368         result = mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
369         if (result < 0) {
370             mProducerBuffers[pslot].clear();
371             mSource[source]->cancelBuffer(*sslot, *fence);
372             return result;
373         }
374         VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
375                 dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
376                 mProducerBuffers[pslot]->getPixelFormat(),
377                 mProducerBuffers[pslot]->getUsage());
378     }
379 
380     return result;
381 }
382 
dequeueBuffer(int * pslot,sp<Fence> * fence,uint32_t w,uint32_t h,PixelFormat format,uint32_t usage,FrameEventHistoryDelta * outTimestamps)383 status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence,
384         uint32_t w, uint32_t h, PixelFormat format, uint32_t usage,
385         FrameEventHistoryDelta* outTimestamps) {
386     if (mDisplayId < 0) {
387         return mSource[SOURCE_SINK]->dequeueBuffer(
388                 pslot, fence, w, h, format, usage, outTimestamps);
389     }
390 
391     VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
392             "Unexpected dequeueBuffer() in %s state", dbgStateStr());
393     mDbgState = DBG_STATE_GLES;
394 
395     VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);
396 
397     status_t result = NO_ERROR;
398     Source source = fbSourceForCompositionType(mCompositionType);
399 
400     if (source == SOURCE_SINK) {
401 
402         if (mOutputProducerSlot < 0) {
403             // Last chance bailout if something bad happened earlier. For example,
404             // in a GLES configuration, if the sink disappears then dequeueBuffer
405             // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
406             // will soldier on. So we end up here without a buffer. There should
407             // be lots of scary messages in the log just before this.
408             VDS_LOGE("dequeueBuffer: no buffer, bailing out");
409             return NO_MEMORY;
410         }
411 
412         // We already dequeued the output buffer. If the GLES driver wants
413         // something incompatible, we have to cancel and get a new one. This
414         // will mean that HWC will see a different output buffer between
415         // prepare and set, but since we're in GLES-only mode already it
416         // shouldn't matter.
417 
418         usage |= GRALLOC_USAGE_HW_COMPOSER;
419         const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
420         if ((usage & ~buf->getUsage()) != 0 ||
421                 (format != 0 && format != buf->getPixelFormat()) ||
422                 (w != 0 && w != mSinkBufferWidth) ||
423                 (h != 0 && h != mSinkBufferHeight)) {
424             VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
425                     "want %dx%d fmt=%d use=%#x, "
426                     "have %dx%d fmt=%d use=%#x",
427                     w, h, format, usage,
428                     mSinkBufferWidth, mSinkBufferHeight,
429                     buf->getPixelFormat(), buf->getUsage());
430             mOutputFormat = format;
431             mOutputUsage = usage;
432             result = refreshOutputBuffer();
433             if (result < 0)
434                 return result;
435         }
436     }
437 
438     if (source == SOURCE_SINK) {
439         *pslot = mOutputProducerSlot;
440         *fence = mOutputFence;
441     } else {
442         int sslot;
443         result = dequeueBuffer(source, format, usage, &sslot, fence);
444         if (result >= 0) {
445             *pslot = mapSource2ProducerSlot(source, sslot);
446         }
447     }
448     return result;
449 }
450 
detachBuffer(int)451 status_t VirtualDisplaySurface::detachBuffer(int /* slot */) {
452     VDS_LOGE("detachBuffer is not available for VirtualDisplaySurface");
453     return INVALID_OPERATION;
454 }
455 
detachNextBuffer(sp<GraphicBuffer> *,sp<Fence> *)456 status_t VirtualDisplaySurface::detachNextBuffer(
457         sp<GraphicBuffer>* /* outBuffer */, sp<Fence>* /* outFence */) {
458     VDS_LOGE("detachNextBuffer is not available for VirtualDisplaySurface");
459     return INVALID_OPERATION;
460 }
461 
attachBuffer(int *,const sp<GraphicBuffer> &)462 status_t VirtualDisplaySurface::attachBuffer(int* /* outSlot */,
463         const sp<GraphicBuffer>& /* buffer */) {
464     VDS_LOGE("attachBuffer is not available for VirtualDisplaySurface");
465     return INVALID_OPERATION;
466 }
467 
queueBuffer(int pslot,const QueueBufferInput & input,QueueBufferOutput * output)468 status_t VirtualDisplaySurface::queueBuffer(int pslot,
469         const QueueBufferInput& input, QueueBufferOutput* output) {
470     if (mDisplayId < 0)
471         return mSource[SOURCE_SINK]->queueBuffer(pslot, input, output);
472 
473     VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
474             "Unexpected queueBuffer(pslot=%d) in %s state", pslot,
475             dbgStateStr());
476     mDbgState = DBG_STATE_GLES_DONE;
477 
478     VDS_LOGV("queueBuffer pslot=%d", pslot);
479 
480     status_t result;
481     if (mCompositionType == COMPOSITION_MIXED) {
482         // Queue the buffer back into the scratch pool
483         QueueBufferOutput scratchQBO;
484         int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
485         result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
486         if (result != NO_ERROR)
487             return result;
488 
489         // Now acquire the buffer from the scratch pool -- should be the same
490         // slot and fence as we just queued.
491         Mutex::Autolock lock(mMutex);
492         BufferItem item;
493         result = acquireBufferLocked(&item, 0);
494         if (result != NO_ERROR)
495             return result;
496         VDS_LOGW_IF(item.mSlot != sslot,
497                 "queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d",
498                 item.mSlot, sslot);
499         mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mSlot);
500         mFbFence = mSlots[item.mSlot].mFence;
501 
502     } else {
503         LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES,
504                 "Unexpected queueBuffer in state %s for compositionType %s",
505                 dbgStateStr(), dbgCompositionTypeStr(mCompositionType));
506 
507         // Extract the GLES release fence for HWC to acquire
508         int64_t timestamp;
509         bool isAutoTimestamp;
510         android_dataspace dataSpace;
511         Rect crop;
512         int scalingMode;
513         uint32_t transform;
514         input.deflate(&timestamp, &isAutoTimestamp, &dataSpace, &crop,
515                 &scalingMode, &transform, &mFbFence);
516 
517         mFbProducerSlot = pslot;
518         mOutputFence = mFbFence;
519     }
520 
521     // This moves the frame timestamps and keeps a copy of all other fields.
522     *output = std::move(mQueueBufferOutput);
523     return NO_ERROR;
524 }
525 
cancelBuffer(int pslot,const sp<Fence> & fence)526 status_t VirtualDisplaySurface::cancelBuffer(int pslot,
527         const sp<Fence>& fence) {
528     if (mDisplayId < 0)
529         return mSource[SOURCE_SINK]->cancelBuffer(mapProducer2SourceSlot(SOURCE_SINK, pslot), fence);
530 
531     VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
532             "Unexpected cancelBuffer(pslot=%d) in %s state", pslot,
533             dbgStateStr());
534     VDS_LOGV("cancelBuffer pslot=%d", pslot);
535     Source source = fbSourceForCompositionType(mCompositionType);
536     return mSource[source]->cancelBuffer(
537             mapProducer2SourceSlot(source, pslot), fence);
538 }
539 
query(int what,int * value)540 int VirtualDisplaySurface::query(int what, int* value) {
541     switch (what) {
542         case NATIVE_WINDOW_WIDTH:
543             *value = mSinkBufferWidth;
544             break;
545         case NATIVE_WINDOW_HEIGHT:
546             *value = mSinkBufferHeight;
547             break;
548         default:
549             return mSource[SOURCE_SINK]->query(what, value);
550     }
551     return NO_ERROR;
552 }
553 
connect(const sp<IProducerListener> & listener,int api,bool producerControlledByApp,QueueBufferOutput * output)554 status_t VirtualDisplaySurface::connect(const sp<IProducerListener>& listener,
555         int api, bool producerControlledByApp,
556         QueueBufferOutput* output) {
557     QueueBufferOutput qbo;
558     status_t result = mSource[SOURCE_SINK]->connect(listener, api,
559             producerControlledByApp, &qbo);
560     if (result == NO_ERROR) {
561         updateQueueBufferOutput(std::move(qbo));
562         // This moves the frame timestamps and keeps a copy of all other fields.
563         *output = std::move(mQueueBufferOutput);
564     }
565     return result;
566 }
567 
disconnect(int api,DisconnectMode mode)568 status_t VirtualDisplaySurface::disconnect(int api, DisconnectMode mode) {
569     return mSource[SOURCE_SINK]->disconnect(api, mode);
570 }
571 
setSidebandStream(const sp<NativeHandle> &)572 status_t VirtualDisplaySurface::setSidebandStream(const sp<NativeHandle>& /*stream*/) {
573     return INVALID_OPERATION;
574 }
575 
allocateBuffers(uint32_t,uint32_t,PixelFormat,uint32_t)576 void VirtualDisplaySurface::allocateBuffers(uint32_t /* width */,
577         uint32_t /* height */, PixelFormat /* format */, uint32_t /* usage */) {
578     // TODO: Should we actually allocate buffers for a virtual display?
579 }
580 
allowAllocation(bool)581 status_t VirtualDisplaySurface::allowAllocation(bool /* allow */) {
582     return INVALID_OPERATION;
583 }
584 
setGenerationNumber(uint32_t)585 status_t VirtualDisplaySurface::setGenerationNumber(uint32_t /* generation */) {
586     ALOGE("setGenerationNumber not supported on VirtualDisplaySurface");
587     return INVALID_OPERATION;
588 }
589 
getConsumerName() const590 String8 VirtualDisplaySurface::getConsumerName() const {
591     return String8("VirtualDisplaySurface");
592 }
593 
setSharedBufferMode(bool)594 status_t VirtualDisplaySurface::setSharedBufferMode(bool /*sharedBufferMode*/) {
595     ALOGE("setSharedBufferMode not supported on VirtualDisplaySurface");
596     return INVALID_OPERATION;
597 }
598 
setAutoRefresh(bool)599 status_t VirtualDisplaySurface::setAutoRefresh(bool /*autoRefresh*/) {
600     ALOGE("setAutoRefresh not supported on VirtualDisplaySurface");
601     return INVALID_OPERATION;
602 }
603 
setDequeueTimeout(nsecs_t)604 status_t VirtualDisplaySurface::setDequeueTimeout(nsecs_t /* timeout */) {
605     ALOGE("setDequeueTimeout not supported on VirtualDisplaySurface");
606     return INVALID_OPERATION;
607 }
608 
getLastQueuedBuffer(sp<GraphicBuffer> *,sp<Fence> *,float[16])609 status_t VirtualDisplaySurface::getLastQueuedBuffer(
610         sp<GraphicBuffer>* /*outBuffer*/, sp<Fence>* /*outFence*/,
611         float[16] /* outTransformMatrix*/) {
612     ALOGE("getLastQueuedBuffer not supported on VirtualDisplaySurface");
613     return INVALID_OPERATION;
614 }
615 
getUniqueId(uint64_t *) const616 status_t VirtualDisplaySurface::getUniqueId(uint64_t* /*outId*/) const {
617     ALOGE("getUniqueId not supported on VirtualDisplaySurface");
618     return INVALID_OPERATION;
619 }
620 
updateQueueBufferOutput(QueueBufferOutput && qbo)621 void VirtualDisplaySurface::updateQueueBufferOutput(
622         QueueBufferOutput&& qbo) {
623     mQueueBufferOutput = std::move(qbo);
624     mQueueBufferOutput.transformHint = 0;
625 }
626 
resetPerFrameState()627 void VirtualDisplaySurface::resetPerFrameState() {
628     mCompositionType = COMPOSITION_UNKNOWN;
629     mFbFence = Fence::NO_FENCE;
630     mOutputFence = Fence::NO_FENCE;
631     mOutputProducerSlot = -1;
632     mFbProducerSlot = -1;
633 }
634 
refreshOutputBuffer()635 status_t VirtualDisplaySurface::refreshOutputBuffer() {
636     if (mOutputProducerSlot >= 0) {
637         mSource[SOURCE_SINK]->cancelBuffer(
638                 mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot),
639                 mOutputFence);
640     }
641 
642     int sslot;
643     status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
644             &sslot, &mOutputFence);
645     if (result < 0)
646         return result;
647     mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);
648 
649     // On GLES-only frames, we don't have the right output buffer acquire fence
650     // until after GLES calls queueBuffer(). So here we just set the buffer
651     // (for use in HWC prepare) but not the fence; we'll call this again with
652     // the proper fence once we have it.
653     result = mHwc.setOutputBuffer(mDisplayId, Fence::NO_FENCE,
654             mProducerBuffers[mOutputProducerSlot]);
655 
656     return result;
657 }
658 
659 // This slot mapping function is its own inverse, so two copies are unnecessary.
660 // Both are kept to make the intent clear where the function is called, and for
661 // the (unlikely) chance that we switch to a different mapping function.
mapSource2ProducerSlot(Source source,int sslot)662 int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) {
663     if (source == SOURCE_SCRATCH) {
664         return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1;
665     } else {
666         return sslot;
667     }
668 }
mapProducer2SourceSlot(Source source,int pslot)669 int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) {
670     return mapSource2ProducerSlot(source, pslot);
671 }
672 
673 VirtualDisplaySurface::Source
fbSourceForCompositionType(CompositionType type)674 VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) {
675     return type == COMPOSITION_MIXED ? SOURCE_SCRATCH : SOURCE_SINK;
676 }
677 
dbgStateStr() const678 const char* VirtualDisplaySurface::dbgStateStr() const {
679     switch (mDbgState) {
680         case DBG_STATE_IDLE:      return "IDLE";
681         case DBG_STATE_PREPARED:  return "PREPARED";
682         case DBG_STATE_GLES:      return "GLES";
683         case DBG_STATE_GLES_DONE: return "GLES_DONE";
684         case DBG_STATE_HWC:       return "HWC";
685         default:                  return "INVALID";
686     }
687 }
688 
dbgSourceStr(Source s)689 const char* VirtualDisplaySurface::dbgSourceStr(Source s) {
690     switch (s) {
691         case SOURCE_SINK:    return "SINK";
692         case SOURCE_SCRATCH: return "SCRATCH";
693         default:             return "INVALID";
694     }
695 }
696 
697 // ---------------------------------------------------------------------------
698 } // namespace android
699 // ---------------------------------------------------------------------------
700