• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrPathUtils_DEFINED
9 #define GrPathUtils_DEFINED
10 
11 #include "SkRect.h"
12 #include "SkPathPriv.h"
13 #include "SkTArray.h"
14 
15 class SkMatrix;
16 
17 /**
18  *  Utilities for evaluating paths.
19  */
20 namespace GrPathUtils {
21     SkScalar scaleToleranceToSrc(SkScalar devTol,
22                                  const SkMatrix& viewM,
23                                  const SkRect& pathBounds);
24 
25     /// Since we divide by tol if we're computing exact worst-case bounds,
26     /// very small tolerances will be increased to gMinCurveTol.
27     int worstCasePointCount(const SkPath&,
28                             int* subpaths,
29                             SkScalar tol);
30 
31     /// Since we divide by tol if we're computing exact worst-case bounds,
32     /// very small tolerances will be increased to gMinCurveTol.
33     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
34 
35     uint32_t generateQuadraticPoints(const SkPoint& p0,
36                                      const SkPoint& p1,
37                                      const SkPoint& p2,
38                                      SkScalar tolSqd,
39                                      SkPoint** points,
40                                      uint32_t pointsLeft);
41 
42     /// Since we divide by tol if we're computing exact worst-case bounds,
43     /// very small tolerances will be increased to gMinCurveTol.
44     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
45 
46     uint32_t generateCubicPoints(const SkPoint& p0,
47                                  const SkPoint& p1,
48                                  const SkPoint& p2,
49                                  const SkPoint& p3,
50                                  SkScalar tolSqd,
51                                  SkPoint** points,
52                                  uint32_t pointsLeft);
53 
54     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
55     // u^2-v = 0 specifies the quad. The matrix is determined by the control
56     // points of the quadratic.
57     class QuadUVMatrix {
58     public:
QuadUVMatrix()59         QuadUVMatrix() {}
60         // Initialize the matrix from the control pts
QuadUVMatrix(const SkPoint controlPts[3])61         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
62         void set(const SkPoint controlPts[3]);
63 
64         /**
65          * Applies the matrix to vertex positions to compute UV coords. This
66          * has been templated so that the compiler can easliy unroll the loop
67          * and reorder to avoid stalling for loads. The assumption is that a
68          * path renderer will have a small fixed number of vertices that it
69          * uploads for each quad.
70          *
71          * N is the number of vertices.
72          * STRIDE is the size of each vertex.
73          * UV_OFFSET is the offset of the UV values within each vertex.
74          * vertices is a pointer to the first vertex.
75          */
76         template <int N, size_t STRIDE, size_t UV_OFFSET>
apply(const void * vertices)77         void apply(const void* vertices) const {
78             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
79             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
80             float sx = fM[0];
81             float kx = fM[1];
82             float tx = fM[2];
83             float ky = fM[3];
84             float sy = fM[4];
85             float ty = fM[5];
86             for (int i = 0; i < N; ++i) {
87                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
88                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
89                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
90                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
91                 xyPtr += STRIDE;
92                 uvPtr += STRIDE;
93             }
94         }
95     private:
96         float fM[6];
97     };
98 
99     // Input is 3 control points and a weight for a bezier conic. Calculates the
100     // three linear functionals (K,L,M) that represent the implicit equation of the
101     // conic, k^2 - lm.
102     //
103     // Output: klm holds the linear functionals K,L,M as row vectors:
104     //
105     //     | ..K.. |   | x |      | k |
106     //     | ..L.. | * | y |  ==  | l |
107     //     | ..M.. |   | 1 |      | m |
108     //
109     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
110 
111     // Converts a cubic into a sequence of quads. If working in device space
112     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
113     // result is sets of 3 points in quads.
114     void convertCubicToQuads(const SkPoint p[4],
115                              SkScalar tolScale,
116                              SkTArray<SkPoint, true>* quads);
117 
118     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
119     // ensure that the new control point lies between the lines ab and cd. The
120     // convex path renderer requires this. It starts with a path where all the
121     // control points taken together form a convex polygon. It relies on this
122     // property and the quadratic approximation of cubics step cannot alter it.
123     // This variation enforces this constraint. The cubic must be simple and dir
124     // must specify the orientation of the contour containing the cubic.
125     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
126                                                 SkScalar tolScale,
127                                                 SkPathPriv::FirstDirection dir,
128                                                 SkTArray<SkPoint, true>* quads);
129 
130     // Chops the cubic bezier passed in by src, at the double point (intersection point)
131     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
132     // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1.
133     // Return value:
134     // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics,
135     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
136     // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics,
137     //             dst[0..3] and dst[3..6] if dst is not nullptr
138     // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic,
139     //             dst[0..3] if dst is not nullptr
140     //
141     // Optional KLM Calculation:
142     // The function can also return the KLM linear functionals for the cubic implicit form of
143     // k^3 - lm. This can be shared by all chopped cubics.
144     //
145     // Output:
146     //
147     // klm: Holds the linear functionals K,L,M as row vectors:
148     //
149     //          | ..K.. |   | x |      | k |
150     //          | ..L.. | * | y |  ==  | l |
151     //          | ..M.. |   | 1 |      | m |
152     //
153     // loopIndex: This value will tell the caller which of the chopped sections (if any) are the
154     //            actual loop. A value of -1 means there is no loop section. The caller can then use
155     //            this value to decide how/if they want to flip the orientation of this section.
156     //            The flip should be done by negating the k and l values as follows:
157     //
158     //                KLM.postScale(-1, -1)
159     //
160     // Notice that the KLM lines are calculated in the same space as the input control points.
161     // If you transform the points the lines will also need to be transformed. This can be done
162     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
163     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = nullptr,
164                                     SkMatrix* klm = nullptr, int* loopIndex = nullptr);
165 
166     // When tessellating curved paths into linear segments, this defines the maximum distance
167     // in screen space which a segment may deviate from the mathmatically correct value.
168     // Above this value, the segment will be subdivided.
169     // This value was chosen to approximate the supersampling accuracy of the raster path (16
170     // samples, or one quarter pixel).
171     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
172 };
173 #endif
174