• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10 
11 #include "../private/SkTLogic.h"
12 #include "../private/SkTemplates.h"
13 #include "SkTypes.h"
14 
15 #include <new>
16 #include <utility>
17 
18 /** When MEM_MOVE is true T will be bit copied when moved.
19     When MEM_MOVE is false, T will be copy constructed / destructed.
20     In all cases T will be default-initialized on allocation,
21     and its destructor will be called from this object's destructor.
22 */
23 template <typename T, bool MEM_MOVE = false> class SkTArray {
24 public:
25     /**
26      * Creates an empty array with no initial storage
27      */
SkTArray()28     SkTArray() { this->init(); }
29 
30     /**
31      * Creates an empty array that will preallocate space for reserveCount
32      * elements.
33      */
SkTArray(int reserveCount)34     explicit SkTArray(int reserveCount) { this->init(0, reserveCount); }
35 
36     /**
37      * Copies one array to another. The new array will be heap allocated.
38      */
SkTArray(const SkTArray & that)39     explicit SkTArray(const SkTArray& that) {
40         this->init(that.fCount);
41         this->copy(that.fItemArray);
42     }
43 
SkTArray(SkTArray && that)44     explicit SkTArray(SkTArray&& that) {
45         // TODO: If 'that' owns its memory why don't we just steal the pointer?
46         this->init(that.fCount);
47         that.move(fMemArray);
48         that.fCount = 0;
49     }
50 
51     /**
52      * Creates a SkTArray by copying contents of a standard C array. The new
53      * array will be heap allocated. Be careful not to use this constructor
54      * when you really want the (void*, int) version.
55      */
SkTArray(const T * array,int count)56     SkTArray(const T* array, int count) {
57         this->init(count);
58         this->copy(array);
59     }
60 
61     SkTArray& operator=(const SkTArray& that) {
62         if (this == &that) {
63             return *this;
64         }
65         for (int i = 0; i < fCount; ++i) {
66             fItemArray[i].~T();
67         }
68         fCount = 0;
69         this->checkRealloc(that.count());
70         fCount = that.count();
71         this->copy(that.fItemArray);
72         return *this;
73     }
74     SkTArray& operator=(SkTArray&& that) {
75         if (this == &that) {
76             return *this;
77         }
78         for (int i = 0; i < fCount; ++i) {
79             fItemArray[i].~T();
80         }
81         fCount = 0;
82         this->checkRealloc(that.count());
83         fCount = that.count();
84         that.move(fMemArray);
85         that.fCount = 0;
86         return *this;
87     }
88 
~SkTArray()89     ~SkTArray() {
90         for (int i = 0; i < fCount; ++i) {
91             fItemArray[i].~T();
92         }
93         if (fOwnMemory) {
94             sk_free(fMemArray);
95         }
96     }
97 
98     /**
99      * Resets to count() == 0
100      */
reset()101     void reset() { this->pop_back_n(fCount); }
102 
103     /**
104      * Resets to count() = n newly constructed T objects.
105      */
reset(int n)106     void reset(int n) {
107         SkASSERT(n >= 0);
108         for (int i = 0; i < fCount; ++i) {
109             fItemArray[i].~T();
110         }
111         // Set fCount to 0 before calling checkRealloc so that no elements are moved.
112         fCount = 0;
113         this->checkRealloc(n);
114         fCount = n;
115         for (int i = 0; i < fCount; ++i) {
116             new (fItemArray + i) T;
117         }
118     }
119 
120     /**
121      * Ensures there is enough reserved space for n elements.
122      */
reserve(int n)123     void reserve(int n) {
124         if (fCount < n) {
125             this->checkRealloc(n - fCount);
126         }
127     }
128 
129     /**
130      * Resets to a copy of a C array.
131      */
reset(const T * array,int count)132     void reset(const T* array, int count) {
133         for (int i = 0; i < fCount; ++i) {
134             fItemArray[i].~T();
135         }
136         fCount = 0;
137         this->checkRealloc(count);
138         fCount = count;
139         this->copy(array);
140     }
141 
removeShuffle(int n)142     void removeShuffle(int n) {
143         SkASSERT(n < fCount);
144         int newCount = fCount - 1;
145         fCount = newCount;
146         fItemArray[n].~T();
147         if (n != newCount) {
148             this->move(n, newCount);
149         }
150     }
151 
152     /**
153      * Number of elements in the array.
154      */
count()155     int count() const { return fCount; }
156 
157     /**
158      * Is the array empty.
159      */
empty()160     bool empty() const { return !fCount; }
161 
162     /**
163      * Adds 1 new default-initialized T value and returns it by reference. Note
164      * the reference only remains valid until the next call that adds or removes
165      * elements.
166      */
push_back()167     T& push_back() {
168         void* newT = this->push_back_raw(1);
169         return *new (newT) T;
170     }
171 
172     /**
173      * Version of above that uses a copy constructor to initialize the new item
174      */
push_back(const T & t)175     T& push_back(const T& t) {
176         void* newT = this->push_back_raw(1);
177         return *new (newT) T(t);
178     }
179 
180     /**
181      * Version of above that uses a move constructor to initialize the new item
182      */
push_back(T && t)183     T& push_back(T&& t) {
184         void* newT = this->push_back_raw(1);
185         return *new (newT) T(std::move(t));
186     }
187 
188     /**
189      *  Construct a new T at the back of this array.
190      */
emplace_back(Args &&...args)191     template<class... Args> T& emplace_back(Args&&... args) {
192         void* newT = this->push_back_raw(1);
193         return *new (newT) T(std::forward<Args>(args)...);
194     }
195 
196     /**
197      * Allocates n more default-initialized T values, and returns the address of
198      * the start of that new range. Note: this address is only valid until the
199      * next API call made on the array that might add or remove elements.
200      */
push_back_n(int n)201     T* push_back_n(int n) {
202         SkASSERT(n >= 0);
203         void* newTs = this->push_back_raw(n);
204         for (int i = 0; i < n; ++i) {
205             new (static_cast<char*>(newTs) + i * sizeof(T)) T;
206         }
207         return static_cast<T*>(newTs);
208     }
209 
210     /**
211      * Version of above that uses a copy constructor to initialize all n items
212      * to the same T.
213      */
push_back_n(int n,const T & t)214     T* push_back_n(int n, const T& t) {
215         SkASSERT(n >= 0);
216         void* newTs = this->push_back_raw(n);
217         for (int i = 0; i < n; ++i) {
218             new (static_cast<char*>(newTs) + i * sizeof(T)) T(t);
219         }
220         return static_cast<T*>(newTs);
221     }
222 
223     /**
224      * Version of above that uses a copy constructor to initialize the n items
225      * to separate T values.
226      */
push_back_n(int n,const T t[])227     T* push_back_n(int n, const T t[]) {
228         SkASSERT(n >= 0);
229         this->checkRealloc(n);
230         for (int i = 0; i < n; ++i) {
231             new (fItemArray + fCount + i) T(t[i]);
232         }
233         fCount += n;
234         return fItemArray + fCount - n;
235     }
236 
237     /**
238      * Version of above that uses the move constructor to set n items.
239      */
move_back_n(int n,T * t)240     T* move_back_n(int n, T* t) {
241         SkASSERT(n >= 0);
242         this->checkRealloc(n);
243         for (int i = 0; i < n; ++i) {
244             new (fItemArray + fCount + i) T(std::move(t[i]));
245         }
246         fCount += n;
247         return fItemArray + fCount - n;
248     }
249 
250     /**
251      * Removes the last element. Not safe to call when count() == 0.
252      */
pop_back()253     void pop_back() {
254         SkASSERT(fCount > 0);
255         --fCount;
256         fItemArray[fCount].~T();
257         this->checkRealloc(0);
258     }
259 
260     /**
261      * Removes the last n elements. Not safe to call when count() < n.
262      */
pop_back_n(int n)263     void pop_back_n(int n) {
264         SkASSERT(n >= 0);
265         SkASSERT(fCount >= n);
266         fCount -= n;
267         for (int i = 0; i < n; ++i) {
268             fItemArray[fCount + i].~T();
269         }
270         this->checkRealloc(0);
271     }
272 
273     /**
274      * Pushes or pops from the back to resize. Pushes will be default
275      * initialized.
276      */
resize_back(int newCount)277     void resize_back(int newCount) {
278         SkASSERT(newCount >= 0);
279 
280         if (newCount > fCount) {
281             this->push_back_n(newCount - fCount);
282         } else if (newCount < fCount) {
283             this->pop_back_n(fCount - newCount);
284         }
285     }
286 
287     /** Swaps the contents of this array with that array. Does a pointer swap if possible,
288         otherwise copies the T values. */
swap(SkTArray * that)289     void swap(SkTArray* that) {
290         if (this == that) {
291             return;
292         }
293         if (fOwnMemory && that->fOwnMemory) {
294             SkTSwap(fItemArray, that->fItemArray);
295             SkTSwap(fCount, that->fCount);
296             SkTSwap(fAllocCount, that->fAllocCount);
297         } else {
298             // This could be more optimal...
299             SkTArray copy(std::move(*that));
300             *that = std::move(*this);
301             *this = std::move(copy);
302         }
303     }
304 
begin()305     T* begin() {
306         return fItemArray;
307     }
begin()308     const T* begin() const {
309         return fItemArray;
310     }
end()311     T* end() {
312         return fItemArray ? fItemArray + fCount : NULL;
313     }
end()314     const T* end() const {
315         return fItemArray ? fItemArray + fCount : NULL;
316     }
317 
318    /**
319      * Get the i^th element.
320      */
321     T& operator[] (int i) {
322         SkASSERT(i < fCount);
323         SkASSERT(i >= 0);
324         return fItemArray[i];
325     }
326 
327     const T& operator[] (int i) const {
328         SkASSERT(i < fCount);
329         SkASSERT(i >= 0);
330         return fItemArray[i];
331     }
332 
333     /**
334      * equivalent to operator[](0)
335      */
front()336     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
337 
front()338     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
339 
340     /**
341      * equivalent to operator[](count() - 1)
342      */
back()343     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
344 
back()345     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
346 
347     /**
348      * equivalent to operator[](count()-1-i)
349      */
fromBack(int i)350     T& fromBack(int i) {
351         SkASSERT(i >= 0);
352         SkASSERT(i < fCount);
353         return fItemArray[fCount - i - 1];
354     }
355 
fromBack(int i)356     const T& fromBack(int i) const {
357         SkASSERT(i >= 0);
358         SkASSERT(i < fCount);
359         return fItemArray[fCount - i - 1];
360     }
361 
362     bool operator==(const SkTArray<T, MEM_MOVE>& right) const {
363         int leftCount = this->count();
364         if (leftCount != right.count()) {
365             return false;
366         }
367         for (int index = 0; index < leftCount; ++index) {
368             if (fItemArray[index] != right.fItemArray[index]) {
369                 return false;
370             }
371         }
372         return true;
373     }
374 
375     bool operator!=(const SkTArray<T, MEM_MOVE>& right) const {
376         return !(*this == right);
377     }
378 
379     inline int allocCntForTest() const;
380 
381 protected:
382     /**
383      * Creates an empty array that will use the passed storage block until it
384      * is insufficiently large to hold the entire array.
385      */
386     template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)387     SkTArray(SkAlignedSTStorage<N,T>* storage) {
388         this->initWithPreallocatedStorage(0, storage->get(), N);
389     }
390 
391     /**
392      * Copy another array, using preallocated storage if preAllocCount >=
393      * array.count(). Otherwise storage will only be used when array shrinks
394      * to fit.
395      */
396     template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)397     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
398         this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
399         this->copy(array.fItemArray);
400     }
401 
402     /**
403      * Move another array, using preallocated storage if preAllocCount >=
404      * array.count(). Otherwise storage will only be used when array shrinks
405      * to fit.
406      */
407     template <int N>
SkTArray(SkTArray && array,SkAlignedSTStorage<N,T> * storage)408     SkTArray(SkTArray&& array, SkAlignedSTStorage<N,T>* storage) {
409         this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
410         array.move(fMemArray);
411         array.fCount = 0;
412     }
413 
414     /**
415      * Copy a C array, using preallocated storage if preAllocCount >=
416      * count. Otherwise storage will only be used when array shrinks
417      * to fit.
418      */
419     template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)420     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
421         this->initWithPreallocatedStorage(count, storage->get(), N);
422         this->copy(array);
423     }
424 
425 private:
426     void init(int count = 0, int reserveCount = 0) {
427         SkASSERT(count >= 0);
428         SkASSERT(reserveCount >= 0);
429         fCount = count;
430         if (!count && !reserveCount) {
431             fAllocCount = 0;
432             fMemArray = nullptr;
433             fOwnMemory = false;
434         } else {
435             fAllocCount = SkTMax(count, SkTMax(kMinHeapAllocCount, reserveCount));
436             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
437             fOwnMemory = true;
438         }
439     }
440 
initWithPreallocatedStorage(int count,void * preallocStorage,int preallocCount)441     void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) {
442         SkASSERT(count >= 0);
443         SkASSERT(preallocCount > 0);
444         SkASSERT(preallocStorage);
445         fCount = count;
446         fMemArray = nullptr;
447         if (count > preallocCount) {
448             fAllocCount = SkTMax(count, kMinHeapAllocCount);
449             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
450             fOwnMemory = true;
451         } else {
452             fAllocCount = preallocCount;
453             fMemArray = preallocStorage;
454             fOwnMemory = false;
455         }
456     }
457 
458     /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
459      *  In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
460      */
copy(const T * src)461     void copy(const T* src) {
462         // Some types may be trivially copyable, in which case we *could* use memcopy; but
463         // MEM_MOVE == true implies that the type is trivially movable, and not necessarily
464         // trivially copyable (think sk_sp<>).  So short of adding another template arg, we
465         // must be conservative and use copy construction.
466         for (int i = 0; i < fCount; ++i) {
467             new (fItemArray + i) T(src[i]);
468         }
469     }
470 
SK_WHEN(E,void)471     template <bool E = MEM_MOVE> SK_WHEN(E, void) move(int dst, int src) {
472         memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T));
473     }
SK_WHEN(E,void)474     template <bool E = MEM_MOVE> SK_WHEN(E, void) move(void* dst) {
475         sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T));
476     }
477 
move(int dst,int src)478     template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(int dst, int src) {
479         new (&fItemArray[dst]) T(std::move(fItemArray[src]));
480         fItemArray[src].~T();
481     }
move(void * dst)482     template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(void* dst) {
483         for (int i = 0; i < fCount; ++i) {
484             new (static_cast<char*>(dst) + sizeof(T) * i) T(std::move(fItemArray[i]));
485             fItemArray[i].~T();
486         }
487     }
488 
489     static constexpr int kMinHeapAllocCount = 8;
490 
491     // Helper function that makes space for n objects, adjusts the count, but does not initialize
492     // the new objects.
push_back_raw(int n)493     void* push_back_raw(int n) {
494         this->checkRealloc(n);
495         void* ptr = fItemArray + fCount;
496         fCount += n;
497         return ptr;
498     }
499 
checkRealloc(int delta)500     void checkRealloc(int delta) {
501         SkASSERT(fCount >= 0);
502         SkASSERT(fAllocCount >= 0);
503         SkASSERT(-delta <= fCount);
504 
505         int newCount = fCount + delta;
506 
507         // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink
508         // when we're currently using preallocated memory or would allocate less than
509         // kMinHeapAllocCount.
510         bool mustGrow = newCount > fAllocCount;
511         bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory;
512         if (!mustGrow && !shouldShrink) {
513             return;
514         }
515 
516         // Whether we're growing or shrinking, we leave at least 50% extra space for future growth.
517         int newAllocCount = newCount + ((newCount + 1) >> 1);
518         // Align the new allocation count to kMinHeapAllocCount.
519         static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
520         newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1);
521         // At small sizes the old and new alloc count can both be kMinHeapAllocCount.
522         if (newAllocCount == fAllocCount) {
523             return;
524         }
525         fAllocCount = newAllocCount;
526         void* newMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
527         this->move(newMemArray);
528         if (fOwnMemory) {
529             sk_free(fMemArray);
530 
531         }
532         fMemArray = newMemArray;
533         fOwnMemory = true;
534     }
535 
536     int fCount;
537     int fAllocCount;
538     bool fOwnMemory;
539     union {
540         T*       fItemArray;
541         void*    fMemArray;
542     };
543 };
544 
545 template<typename T, bool MEM_MOVE> constexpr int SkTArray<T, MEM_MOVE>::kMinHeapAllocCount;
546 
547 /**
548  * Subclass of SkTArray that contains a preallocated memory block for the array.
549  */
550 template <int N, typename T, bool MEM_MOVE= false>
551 class SkSTArray : public SkTArray<T, MEM_MOVE> {
552 private:
553     typedef SkTArray<T, MEM_MOVE> INHERITED;
554 
555 public:
SkSTArray()556     SkSTArray() : INHERITED(&fStorage) {
557     }
558 
SkSTArray(const SkSTArray & array)559     SkSTArray(const SkSTArray& array)
560         : INHERITED(array, &fStorage) {
561     }
562 
SkSTArray(SkSTArray && array)563     SkSTArray(SkSTArray&& array)
564         : INHERITED(std::move(array), &fStorage) {
565     }
566 
SkSTArray(const INHERITED & array)567     explicit SkSTArray(const INHERITED& array)
568         : INHERITED(array, &fStorage) {
569     }
570 
SkSTArray(INHERITED && array)571     explicit SkSTArray(INHERITED&& array)
572         : INHERITED(std::move(array), &fStorage) {
573     }
574 
SkSTArray(int reserveCount)575     explicit SkSTArray(int reserveCount)
576         : INHERITED(reserveCount) {
577     }
578 
SkSTArray(const T * array,int count)579     SkSTArray(const T* array, int count)
580         : INHERITED(array, count, &fStorage) {
581     }
582 
583     SkSTArray& operator=(const SkSTArray& array) {
584         INHERITED::operator=(array);
585         return *this;
586     }
587 
588     SkSTArray& operator=(SkSTArray&& array) {
589         INHERITED::operator=(std::move(array));
590         return *this;
591     }
592 
593     SkSTArray& operator=(const INHERITED& array) {
594         INHERITED::operator=(array);
595         return *this;
596     }
597 
598     SkSTArray& operator=(INHERITED&& array) {
599         INHERITED::operator=(std::move(array));
600         return *this;
601     }
602 
603 private:
604     SkAlignedSTStorage<N,T> fStorage;
605 };
606 
607 #endif
608