• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2014 The Android Open Source Project
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions
5  * are met:
6  * 1. Redistributions of source code must retain the above copyright
7  *    notice, this list of conditions and the following disclaimer.
8  * 2. Redistributions in binary form must reproduce the above copyright
9  *    notice, this list of conditions and the following disclaimer in the
10  *    documentation and/or other materials provided with the distribution.
11  *
12  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
13  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
14  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
15  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
16  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
17  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
18  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
19  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
20  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
22 
23 #define LOG_TAG "keystore-engine"
24 #include <UniquePtr.h>
25 
26 #include <pthread.h>
27 #include <sys/socket.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <unistd.h>
31 
32 #include <cutils/log.h>
33 
34 #include <openssl/bn.h>
35 #include <openssl/ec.h>
36 #include <openssl/ec_key.h>
37 #include <openssl/ecdsa.h>
38 #include <openssl/engine.h>
39 #include <openssl/evp.h>
40 #include <openssl/rsa.h>
41 #include <openssl/x509.h>
42 
43 #ifndef BACKEND_WIFI_HIDL
44 #include "keystore_backend_binder.h"
45 #else
46 #include "keystore_backend_hidl.h"
47 #endif
48 
49 namespace {
50 extern const RSA_METHOD keystore_rsa_method;
51 extern const ECDSA_METHOD keystore_ecdsa_method;
52 
53 /* key_id_dup is called when one of the RSA or EC_KEY objects is duplicated. */
key_id_dup(CRYPTO_EX_DATA *,const CRYPTO_EX_DATA *,void ** from_d,int,long,void *)54 int key_id_dup(CRYPTO_EX_DATA* /* to */,
55                const CRYPTO_EX_DATA* /* from */,
56                void** from_d,
57                int /* index */,
58                long /* argl */,
59                void* /* argp */) {
60     char *key_id = reinterpret_cast<char *>(*from_d);
61     if (key_id != NULL) {
62         *from_d = strdup(key_id);
63     }
64     return 1;
65 }
66 
67 /* key_id_free is called when one of the RSA, DSA or EC_KEY object is freed. */
key_id_free(void *,void * ptr,CRYPTO_EX_DATA *,int,long,void *)68 void key_id_free(void* /* parent */,
69                  void* ptr,
70                  CRYPTO_EX_DATA* /* ad */,
71                  int /* index */,
72                  long /* argl */,
73                  void* /* argp */) {
74     char *key_id = reinterpret_cast<char *>(ptr);
75     free(key_id);
76 }
77 
78 /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by
79  * forwarding the requested operations to Keystore. */
80 class KeystoreEngine {
81  public:
KeystoreEngine()82   KeystoreEngine()
83       : rsa_index_(RSA_get_ex_new_index(0 /* argl */,
84                                         NULL /* argp */,
85                                         NULL /* new_func */,
86                                         key_id_dup,
87                                         key_id_free)),
88         ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */,
89                                               NULL /* argp */,
90                                               NULL /* new_func */,
91                                               key_id_dup,
92                                               key_id_free)),
93         engine_(ENGINE_new()) {
94     ENGINE_set_RSA_method(
95         engine_, &keystore_rsa_method, sizeof(keystore_rsa_method));
96     ENGINE_set_ECDSA_method(
97         engine_, &keystore_ecdsa_method, sizeof(keystore_ecdsa_method));
98   }
99 
rsa_ex_index() const100   int rsa_ex_index() const { return rsa_index_; }
ec_key_ex_index() const101   int ec_key_ex_index() const { return ec_key_index_; }
102 
engine() const103   const ENGINE* engine() const { return engine_; }
104 
105  private:
106   const int rsa_index_;
107   const int ec_key_index_;
108   ENGINE* const engine_;
109 };
110 
111 pthread_once_t g_keystore_engine_once = PTHREAD_ONCE_INIT;
112 KeystoreEngine *g_keystore_engine;
113 KeystoreBackend *g_keystore_backend;
114 
115 /* init_keystore_engine is called to initialize |g_keystore_engine|. This
116  * should only be called by |pthread_once|. */
init_keystore_engine()117 void init_keystore_engine() {
118     g_keystore_engine = new KeystoreEngine;
119 #ifndef BACKEND_WIFI_HIDL
120     g_keystore_backend = new KeystoreBackendBinder;
121 #else
122     g_keystore_backend = new KeystoreBackendHidl;
123 #endif
124 }
125 
126 /* ensure_keystore_engine ensures that |g_keystore_engine| is pointing to a
127  * valid |KeystoreEngine| object and creates one if not. */
ensure_keystore_engine()128 void ensure_keystore_engine() {
129     pthread_once(&g_keystore_engine_once, init_keystore_engine);
130 }
131 
132 /* Many OpenSSL APIs take ownership of an argument on success but don't free
133  * the argument on failure. This means we need to tell our scoped pointers when
134  * we've transferred ownership, without triggering a warning by not using the
135  * result of release(). */
136 #define OWNERSHIP_TRANSFERRED(obj) \
137     typeof ((obj).release()) _dummy __attribute__((unused)) = (obj).release()
138 
rsa_get_key_id(const RSA * rsa)139 const char* rsa_get_key_id(const RSA* rsa) {
140   return reinterpret_cast<char*>(
141       RSA_get_ex_data(rsa, g_keystore_engine->rsa_ex_index()));
142 }
143 
144 /* rsa_private_transform takes a big-endian integer from |in|, calculates the
145  * d'th power of it, modulo the RSA modulus, and writes the result as a
146  * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It
147  * returns one on success and zero otherwise. */
rsa_private_transform(RSA * rsa,uint8_t * out,const uint8_t * in,size_t len)148 int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) {
149     ALOGV("rsa_private_transform(%p, %p, %p, %u)", rsa, out, in, (unsigned) len);
150 
151     ensure_keystore_engine();
152 
153     const char *key_id = rsa_get_key_id(rsa);
154     if (key_id == NULL) {
155         ALOGE("key had no key_id!");
156         return 0;
157     }
158 
159     uint8_t* reply = NULL;
160     size_t reply_len;
161     int32_t ret = g_keystore_backend->sign(key_id, in, len, &reply, &reply_len);
162     if (ret < 0) {
163         ALOGW("There was an error during rsa_decrypt: could not connect");
164         return 0;
165     } else if (ret != 0) {
166         ALOGW("Error during sign from keystore: %d", ret);
167         return 0;
168     } else if (reply_len == 0 || reply == NULL) {
169         ALOGW("No valid signature returned");
170         return 0;
171     }
172 
173     if (reply_len > len) {
174         /* The result of the RSA operation can never be larger than the size of
175          * the modulus so we assume that the result has extra zeros on the
176          * left. This provides attackers with an oracle, but there's nothing
177          * that we can do about it here. */
178         ALOGW("Reply len %zu greater than expected %zu", reply_len, len);
179         memcpy(out, &reply[reply_len - len], len);
180     } else if (reply_len < len) {
181         /* If the Keystore implementation returns a short value we assume that
182          * it's because it removed leading zeros from the left side. This is
183          * bad because it provides attackers with an oracle but we cannot do
184          * anything about a broken Keystore implementation here. */
185         ALOGW("Reply len %zu lesser than expected %zu", reply_len, len);
186         memset(out, 0, len);
187         memcpy(out + len - reply_len, &reply[0], reply_len);
188     } else {
189         memcpy(out, &reply[0], len);
190     }
191 
192     ALOGV("rsa=%p keystore_rsa_priv_dec successful", rsa);
193     return 1;
194 }
195 
196 const struct rsa_meth_st keystore_rsa_method = {
197   {
198     0 /* references */,
199     1 /* is_static */,
200   },
201   NULL /* app_data */,
202 
203   NULL /* init */,
204   NULL /* finish */,
205 
206   NULL /* size */,
207 
208   NULL /* sign */,
209   NULL /* verify */,
210 
211   NULL /* encrypt */,
212   NULL /* sign_raw */,
213   NULL /* decrypt */,
214   NULL /* verify_raw */,
215 
216   rsa_private_transform,
217 
218   NULL /* mod_exp */,
219   NULL /* bn_mod_exp */,
220 
221   RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_OPAQUE,
222 
223   NULL /* keygen */,
224   NULL /* multi_prime_keygen */,
225   NULL /* supports_digest */,
226 };
227 
ecdsa_get_key_id(const EC_KEY * ec_key)228 const char* ecdsa_get_key_id(const EC_KEY* ec_key) {
229     return reinterpret_cast<char*>(
230         EC_KEY_get_ex_data(ec_key, g_keystore_engine->ec_key_ex_index()));
231 }
232 
233 /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes
234  * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on
235  * success and zero otherwise. */
ecdsa_sign(const uint8_t * digest,size_t digest_len,uint8_t * sig,unsigned int * sig_len,EC_KEY * ec_key)236 static int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig,
237                       unsigned int* sig_len, EC_KEY* ec_key) {
238     ALOGV("ecdsa_sign(%p, %u, %p)", digest, (unsigned) digest_len, ec_key);
239 
240     ensure_keystore_engine();
241 
242     const char *key_id = ecdsa_get_key_id(ec_key);
243     if (key_id == NULL) {
244         ALOGE("key had no key_id!");
245         return 0;
246     }
247 
248     size_t ecdsa_size = ECDSA_size(ec_key);
249 
250     uint8_t* reply = NULL;
251     size_t reply_len;
252     int32_t ret = g_keystore_backend->sign(
253             key_id, digest, digest_len, &reply, &reply_len);
254     if (ret < 0) {
255         ALOGW("There was an error during ecdsa_sign: could not connect");
256         return 0;
257     } else if (reply_len == 0 || reply == NULL) {
258         ALOGW("No valid signature returned");
259         return 0;
260     } else if (reply_len > ecdsa_size) {
261         ALOGW("Signature is too large");
262         return 0;
263     }
264 
265     // Reviewer: should't sig_len be checked here? Or is it just assumed that it is at least ecdsa_size?
266     memcpy(sig, &reply[0], reply_len);
267     *sig_len = reply_len;
268 
269     ALOGV("ecdsa_sign(%p, %u, %p) => success", digest, (unsigned)digest_len,
270           ec_key);
271     return 1;
272 }
273 
274 const ECDSA_METHOD keystore_ecdsa_method = {
275     {
276      0 /* references */,
277      1 /* is_static */
278     } /* common */,
279     NULL /* app_data */,
280 
281     NULL /* init */,
282     NULL /* finish */,
283     NULL /* group_order_size */,
284     ecdsa_sign,
285     NULL /* verify */,
286     ECDSA_FLAG_OPAQUE,
287 };
288 
289 struct EVP_PKEY_Delete {
operator ()__anon7400a8480111::EVP_PKEY_Delete290     void operator()(EVP_PKEY* p) const {
291         EVP_PKEY_free(p);
292     }
293 };
294 typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
295 
296 struct RSA_Delete {
operator ()__anon7400a8480111::RSA_Delete297     void operator()(RSA* p) const {
298         RSA_free(p);
299     }
300 };
301 typedef UniquePtr<RSA, RSA_Delete> Unique_RSA;
302 
303 struct EC_KEY_Delete {
operator ()__anon7400a8480111::EC_KEY_Delete304     void operator()(EC_KEY* ec) const {
305         EC_KEY_free(ec);
306     }
307 };
308 typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY;
309 
310 /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public
311  * part is taken from |public_rsa| and the private operations are forwarded to
312  * KeyStore and operate on the key named |key_id|. */
wrap_rsa(const char * key_id,const RSA * public_rsa)313 static EVP_PKEY *wrap_rsa(const char *key_id, const RSA *public_rsa) {
314     Unique_RSA rsa(RSA_new_method(g_keystore_engine->engine()));
315     if (rsa.get() == NULL) {
316         return NULL;
317     }
318 
319     char *key_id_copy = strdup(key_id);
320     if (key_id_copy == NULL) {
321         return NULL;
322     }
323 
324     if (!RSA_set_ex_data(rsa.get(), g_keystore_engine->rsa_ex_index(),
325                          key_id_copy)) {
326         free(key_id_copy);
327         return NULL;
328     }
329 
330     rsa->n = BN_dup(public_rsa->n);
331     rsa->e = BN_dup(public_rsa->e);
332     if (rsa->n == NULL || rsa->e == NULL) {
333         return NULL;
334     }
335 
336     Unique_EVP_PKEY result(EVP_PKEY_new());
337     if (result.get() == NULL ||
338         !EVP_PKEY_assign_RSA(result.get(), rsa.get())) {
339         return NULL;
340     }
341     OWNERSHIP_TRANSFERRED(rsa);
342 
343     return result.release();
344 }
345 
346 /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public
347  * part is taken from |public_rsa| and the private operations are forwarded to
348  * KeyStore and operate on the key named |key_id|. */
wrap_ecdsa(const char * key_id,const EC_KEY * public_ecdsa)349 static EVP_PKEY *wrap_ecdsa(const char *key_id, const EC_KEY *public_ecdsa) {
350     Unique_EC_KEY ec(EC_KEY_new_method(g_keystore_engine->engine()));
351     if (ec.get() == NULL) {
352         return NULL;
353     }
354 
355     if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) ||
356         !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) {
357         return NULL;
358     }
359 
360     char *key_id_copy = strdup(key_id);
361     if (key_id_copy == NULL) {
362         return NULL;
363     }
364 
365     if (!EC_KEY_set_ex_data(ec.get(), g_keystore_engine->ec_key_ex_index(),
366                             key_id_copy)) {
367         free(key_id_copy);
368         return NULL;
369     }
370 
371     Unique_EVP_PKEY result(EVP_PKEY_new());
372     if (result.get() == NULL ||
373         !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) {
374         return NULL;
375     }
376     OWNERSHIP_TRANSFERRED(ec);
377 
378     return result.release();
379 }
380 
381 }  /* anonymous namespace */
382 
383 extern "C" {
384 
385 EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) __attribute__((visibility("default")));
386 
387 /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or
388  * ECDSA key where the public part of the key reflects the value of the key
389  * named |key_id| in Keystore and the private operations are forwarded onto
390  * KeyStore. */
EVP_PKEY_from_keystore(const char * key_id)391 EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) {
392     ALOGV("EVP_PKEY_from_keystore(\"%s\")", key_id);
393 
394     ensure_keystore_engine();
395 
396     uint8_t *pubkey = NULL;
397     size_t pubkey_len;
398     int32_t ret = g_keystore_backend->get_pubkey(key_id, &pubkey, &pubkey_len);
399     if (ret < 0) {
400         ALOGW("could not contact keystore");
401         return NULL;
402     } else if (ret != 0 || pubkey == NULL) {
403         ALOGW("keystore reports error: %d", ret);
404         return NULL;
405     }
406 
407     const uint8_t *inp = pubkey;
408     Unique_EVP_PKEY pkey(d2i_PUBKEY(NULL, &inp, pubkey_len));
409     if (pkey.get() == NULL) {
410         ALOGW("Cannot convert pubkey");
411         return NULL;
412     }
413 
414     EVP_PKEY *result;
415     switch (EVP_PKEY_type(pkey->type)) {
416     case EVP_PKEY_RSA: {
417         Unique_RSA public_rsa(EVP_PKEY_get1_RSA(pkey.get()));
418         result = wrap_rsa(key_id, public_rsa.get());
419         break;
420     }
421     case EVP_PKEY_EC: {
422         Unique_EC_KEY public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get()));
423         result = wrap_ecdsa(key_id, public_ecdsa.get());
424         break;
425     }
426     default:
427         ALOGE("Unsupported key type %d", EVP_PKEY_type(pkey->type));
428         result = NULL;
429     }
430 
431     return result;
432 }
433 
434 }  // extern "C"
435