• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesImageMemoryAliasing.cpp
21  * \brief Sparse image memory aliasing tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesImageMemoryAliasing.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkRefUtil.hpp"
35 #include "vkMemUtil.hpp"
36 #include "vkQueryUtil.hpp"
37 #include "vkBuilderUtil.hpp"
38 #include "vkTypeUtil.hpp"
39 
40 #include "deStringUtil.hpp"
41 #include "deUniquePtr.hpp"
42 #include "deSharedPtr.hpp"
43 #include "tcuTexture.hpp"
44 
45 #include <deMath.h>
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 enum ShaderParameters
59 {
60 	MODULO_DIVISOR = 128
61 };
62 
getCoordStr(const ImageType imageType,const std::string & x,const std::string & y,const std::string & z)63 const std::string getCoordStr  (const ImageType		imageType,
64 								const std::string&	x,
65 								const std::string&	y,
66 								const std::string&	z)
67 {
68 	switch (imageType)
69 	{
70 		case IMAGE_TYPE_1D:
71 		case IMAGE_TYPE_BUFFER:
72 			return x;
73 
74 		case IMAGE_TYPE_1D_ARRAY:
75 		case IMAGE_TYPE_2D:
76 			return "ivec2(" + x + "," + y + ")";
77 
78 		case IMAGE_TYPE_2D_ARRAY:
79 		case IMAGE_TYPE_3D:
80 		case IMAGE_TYPE_CUBE:
81 		case IMAGE_TYPE_CUBE_ARRAY:
82 			return "ivec3(" + x + "," + y + "," + z + ")";
83 
84 		default:
85 			DE_ASSERT(false);
86 			return "";
87 	}
88 }
89 
alignedDivide(const VkExtent3D & extent,const VkExtent3D & divisor)90 tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
91 {
92 	tcu::UVec3 result;
93 
94 	result.x() = extent.width  / divisor.width  + ((extent.width  % divisor.width)  ? 1u : 0u);
95 	result.y() = extent.height / divisor.height + ((extent.height % divisor.height) ? 1u : 0u);
96 	result.z() = extent.depth  / divisor.depth  + ((extent.depth  % divisor.depth)  ? 1u : 0u);
97 
98 	return result;
99 }
100 
101 class ImageSparseMemoryAliasingCase : public TestCase
102 {
103 public:
104 					ImageSparseMemoryAliasingCase	(tcu::TestContext&			testCtx,
105 													 const std::string&			name,
106 													 const std::string&			description,
107 													 const ImageType			imageType,
108 													 const tcu::UVec3&			imageSize,
109 													 const tcu::TextureFormat&	format,
110 													 const glu::GLSLVersion		glslVersion);
111 
112 	void			initPrograms					(SourceCollections&			sourceCollections) const;
113 	TestInstance*	createInstance					(Context&					context) const;
114 
115 
116 private:
117 	const ImageType				m_imageType;
118 	const tcu::UVec3			m_imageSize;
119 	const tcu::TextureFormat	m_format;
120 	const glu::GLSLVersion		m_glslVersion;
121 };
122 
ImageSparseMemoryAliasingCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const ImageType imageType,const tcu::UVec3 & imageSize,const tcu::TextureFormat & format,const glu::GLSLVersion glslVersion)123 ImageSparseMemoryAliasingCase::ImageSparseMemoryAliasingCase (tcu::TestContext&			testCtx,
124 															  const std::string&		name,
125 															  const std::string&		description,
126 															  const ImageType			imageType,
127 															  const tcu::UVec3&			imageSize,
128 															  const tcu::TextureFormat&	format,
129 															  const glu::GLSLVersion	glslVersion)
130 	: TestCase				(testCtx, name, description)
131 	, m_imageType			(imageType)
132 	, m_imageSize			(imageSize)
133 	, m_format				(format)
134 	, m_glslVersion			(glslVersion)
135 {
136 }
137 
138 class ImageSparseMemoryAliasingInstance : public SparseResourcesBaseInstance
139 {
140 public:
141 					ImageSparseMemoryAliasingInstance	(Context&								context,
142 														 const ImageType						imageType,
143 														 const tcu::UVec3&						imageSize,
144 														 const tcu::TextureFormat&				format);
145 
146 	tcu::TestStatus	iterate								(void);
147 
148 private:
149 	const ImageType				m_imageType;
150 	const tcu::UVec3			m_imageSize;
151 	const tcu::TextureFormat	m_format;
152 };
153 
ImageSparseMemoryAliasingInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const tcu::TextureFormat & format)154 ImageSparseMemoryAliasingInstance::ImageSparseMemoryAliasingInstance (Context&					context,
155 																	  const ImageType			imageType,
156 																	  const tcu::UVec3&			imageSize,
157 																	  const tcu::TextureFormat&	format)
158 	: SparseResourcesBaseInstance	(context)
159 	, m_imageType					(imageType)
160 	, m_imageSize					(imageSize)
161 	, m_format						(format)
162 {
163 }
164 
iterate(void)165 tcu::TestStatus ImageSparseMemoryAliasingInstance::iterate (void)
166 {
167 	const InstanceInterface&			instance				= m_context.getInstanceInterface();
168 	const VkPhysicalDevice				physicalDevice			= m_context.getPhysicalDevice();
169 	const tcu::UVec3					maxWorkGroupSize		= tcu::UVec3(128u, 128u, 64u);
170 	const tcu::UVec3					maxWorkGroupCount		= tcu::UVec3(65535u, 65535u, 65535u);
171 	const deUint32						maxWorkGroupInvocations	= 128u;
172 	VkImageCreateInfo					imageSparseInfo;
173 	VkSparseImageMemoryRequirements		aspectRequirements;
174 	std::vector<DeviceMemorySp>			deviceMemUniquePtrVec;
175 
176 	// Check if image size does not exceed device limits
177 	if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
178 		TCU_THROW(NotSupportedError, "Image size not supported for device");
179 
180 	// Check if sparse memory aliasing is supported
181 	if (!getPhysicalDeviceFeatures(instance, physicalDevice).sparseResidencyAliased)
182 		TCU_THROW(NotSupportedError, "Sparse memory aliasing not supported");
183 
184 	// Check if device supports sparse operations for image type
185 	if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
186 		TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
187 
188 	imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
189 	imageSparseInfo.pNext					= DE_NULL;
190 	imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT |
191 											  VK_IMAGE_CREATE_SPARSE_ALIASED_BIT   |
192 											  VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
193 	imageSparseInfo.imageType				= mapImageType(m_imageType);
194 	imageSparseInfo.format					= mapTextureFormat(m_format);
195 	imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));
196 	imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);
197 	imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;
198 	imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;
199 	imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
200 	imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_DST_BIT |
201 											  VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
202 											  VK_IMAGE_USAGE_STORAGE_BIT;
203 	imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
204 	imageSparseInfo.queueFamilyIndexCount	= 0u;
205 	imageSparseInfo.pQueueFamilyIndices		= DE_NULL;
206 
207 	if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
208 		imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
209 
210 	{
211 		// Assign maximum allowed mipmap levels to image
212 		VkImageFormatProperties imageFormatProperties;
213 		instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
214 			imageSparseInfo.format,
215 			imageSparseInfo.imageType,
216 			imageSparseInfo.tiling,
217 			imageSparseInfo.usage,
218 			imageSparseInfo.flags,
219 			&imageFormatProperties);
220 
221 		imageSparseInfo.mipLevels = getImageMaxMipLevels(imageFormatProperties, imageSparseInfo.extent);
222 	}
223 
224 	// Check if device supports sparse operations for image format
225 	if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
226 		TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
227 
228 	{
229 		// Create logical device supporting both sparse and compute queues
230 		QueueRequirementsVec queueRequirements;
231 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
232 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
233 
234 		createDeviceSupportingQueues(queueRequirements);
235 	}
236 
237 	const DeviceInterface&	deviceInterface	= getDeviceInterface();
238 	const Queue&			sparseQueue		= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
239 	const Queue&			computeQueue	= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
240 
241 	// Create sparse image
242 	const Unique<VkImage> imageRead(createImage(deviceInterface, getDevice(), &imageSparseInfo));
243 	const Unique<VkImage> imageWrite(createImage(deviceInterface, getDevice(), &imageSparseInfo));
244 
245 	// Create semaphores to synchronize sparse binding operations with other operations on the sparse images
246 	const Unique<VkSemaphore> memoryBindSemaphoreTransfer(makeSemaphore(deviceInterface, getDevice()));
247 	const Unique<VkSemaphore> memoryBindSemaphoreCompute(makeSemaphore(deviceInterface, getDevice()));
248 
249 	const VkSemaphore imageMemoryBindSemaphores[] = { memoryBindSemaphoreTransfer.get(), memoryBindSemaphoreCompute.get() };
250 
251 	{
252 		std::vector<VkSparseImageMemoryBind> imageResidencyMemoryBinds;
253 		std::vector<VkSparseMemoryBind>		 imageReadMipTailBinds;
254 		std::vector<VkSparseMemoryBind>		 imageWriteMipTailBinds;
255 
256 		// Get sparse image general memory requirements
257 		const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageRead);
258 
259 		// Check if required image memory size does not exceed device limits
260 		if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
261 			TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
262 
263 		DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
264 
265 		// Get sparse image sparse memory requirements
266 		const std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageRead);
267 
268 		DE_ASSERT(sparseMemoryRequirements.size() != 0);
269 
270 		const deUint32 colorAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_COLOR_BIT);
271 
272 		if (colorAspectIndex == NO_MATCH_FOUND)
273 			TCU_THROW(NotSupportedError, "Not supported image aspect - the test supports currently only VK_IMAGE_ASPECT_COLOR_BIT");
274 
275 		aspectRequirements = sparseMemoryRequirements[colorAspectIndex];
276 
277 		const VkImageAspectFlags	aspectMask			= aspectRequirements.formatProperties.aspectMask;
278 		const VkExtent3D			imageGranularity	= aspectRequirements.formatProperties.imageGranularity;
279 
280 		DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
281 
282 		const deUint32 memoryType = findMatchingMemoryType(instance, physicalDevice, imageMemoryRequirements, MemoryRequirement::Any);
283 
284 		if (memoryType == NO_MATCH_FOUND)
285 			return tcu::TestStatus::fail("No matching memory type found");
286 
287 		// Bind memory for each layer
288 		for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
289 		{
290 			for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
291 			{
292 				const VkExtent3D			mipExtent		= mipLevelExtents(imageSparseInfo.extent, mipLevelNdx);
293 				const tcu::UVec3			sparseBlocks	= alignedDivide(mipExtent, imageGranularity);
294 				const deUint32				numSparseBlocks = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
295 				const VkImageSubresource	subresource		= { aspectMask, mipLevelNdx, layerNdx };
296 
297 				const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
298 					imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
299 
300 				deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
301 
302 				imageResidencyMemoryBinds.push_back(imageMemoryBind);
303 			}
304 
305 			if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
306 			{
307 				const VkSparseMemoryBind imageReadMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
308 					aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
309 
310 				deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageReadMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
311 
312 				imageReadMipTailBinds.push_back(imageReadMipTailMemoryBind);
313 
314 				const VkSparseMemoryBind imageWriteMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
315 					aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
316 
317 				deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageWriteMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
318 
319 				imageWriteMipTailBinds.push_back(imageWriteMipTailMemoryBind);
320 			}
321 		}
322 
323 		if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
324 		{
325 			const VkSparseMemoryBind imageReadMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
326 				aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
327 
328 			deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageReadMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
329 
330 			imageReadMipTailBinds.push_back(imageReadMipTailMemoryBind);
331 
332 			const VkSparseMemoryBind imageWriteMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
333 				aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
334 
335 			deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageWriteMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
336 
337 			imageWriteMipTailBinds.push_back(imageWriteMipTailMemoryBind);
338 		}
339 
340 		VkBindSparseInfo bindSparseInfo =
341 		{
342 			VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,		//VkStructureType							sType;
343 			DE_NULL,								//const void*								pNext;
344 			0u,										//deUint32									waitSemaphoreCount;
345 			DE_NULL,								//const VkSemaphore*						pWaitSemaphores;
346 			0u,										//deUint32									bufferBindCount;
347 			DE_NULL,								//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
348 			0u,										//deUint32									imageOpaqueBindCount;
349 			DE_NULL,								//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
350 			0u,										//deUint32									imageBindCount;
351 			DE_NULL,								//const VkSparseImageMemoryBindInfo*		pImageBinds;
352 			2u,										//deUint32									signalSemaphoreCount;
353 			imageMemoryBindSemaphores				//const VkSemaphore*						pSignalSemaphores;
354 		};
355 
356 		VkSparseImageMemoryBindInfo		  imageResidencyBindInfo[2];
357 		VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo[2];
358 
359 		if (imageResidencyMemoryBinds.size() > 0)
360 		{
361 			imageResidencyBindInfo[0].image		= *imageRead;
362 			imageResidencyBindInfo[0].bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size());
363 			imageResidencyBindInfo[0].pBinds	= &imageResidencyMemoryBinds[0];
364 
365 			imageResidencyBindInfo[1].image		= *imageWrite;
366 			imageResidencyBindInfo[1].bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size());
367 			imageResidencyBindInfo[1].pBinds	= &imageResidencyMemoryBinds[0];
368 
369 			bindSparseInfo.imageBindCount		= 2u;
370 			bindSparseInfo.pImageBinds			= imageResidencyBindInfo;
371 		}
372 
373 		if (imageReadMipTailBinds.size() > 0)
374 		{
375 			imageMipTailBindInfo[0].image		= *imageRead;
376 			imageMipTailBindInfo[0].bindCount	= static_cast<deUint32>(imageReadMipTailBinds.size());
377 			imageMipTailBindInfo[0].pBinds		= &imageReadMipTailBinds[0];
378 
379 			imageMipTailBindInfo[1].image		= *imageWrite;
380 			imageMipTailBindInfo[1].bindCount	= static_cast<deUint32>(imageWriteMipTailBinds.size());
381 			imageMipTailBindInfo[1].pBinds		= &imageWriteMipTailBinds[0];
382 
383 			bindSparseInfo.imageOpaqueBindCount = 2u;
384 			bindSparseInfo.pImageOpaqueBinds	= imageMipTailBindInfo;
385 		}
386 
387 		// Submit sparse bind commands for execution
388 		VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
389 	}
390 
391 	// Create command buffer for compute and transfer oparations
392 	const Unique<VkCommandPool>	  commandPool  (makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
393 	const Unique<VkCommandBuffer> commandBuffer(makeCommandBuffer(deviceInterface, getDevice(), *commandPool));
394 
395 	std::vector<VkBufferImageCopy> bufferImageCopy(imageSparseInfo.mipLevels);
396 
397 	{
398 		deUint32 bufferOffset = 0u;
399 		for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
400 		{
401 			bufferImageCopy[mipLevelNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipLevelNdx), imageSparseInfo.arrayLayers, mipLevelNdx, bufferOffset);
402 			bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
403 		}
404 	}
405 
406 	// Start recording commands
407 	beginCommandBuffer(deviceInterface, *commandBuffer);
408 
409 	const deUint32					imageSizeInBytes		= getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
410 	const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
411 	const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
412 	const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
413 
414 	std::vector<deUint8> referenceData(imageSizeInBytes);
415 
416 	for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
417 	{
418 		const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx);
419 		const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[mipLevelNdx].bufferOffset);
420 
421 		deMemset(&referenceData[bufferOffset], mipLevelNdx + 1u, mipLevelSizeInBytes);
422 	}
423 
424 	deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], imageSizeInBytes);
425 
426 	flushMappedMemoryRange(deviceInterface, getDevice(), inputBufferAlloc->getMemory(), inputBufferAlloc->getOffset(), imageSizeInBytes);
427 
428 	{
429 		const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
430 		(
431 			VK_ACCESS_HOST_WRITE_BIT,
432 			VK_ACCESS_TRANSFER_READ_BIT,
433 			*inputBuffer,
434 			0u,
435 			imageSizeInBytes
436 		);
437 
438 		deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
439 	}
440 
441 	{
442 		const VkImageMemoryBarrier imageSparseTransferDstBarrier = makeImageMemoryBarrier
443 		(
444 			0u,
445 			VK_ACCESS_TRANSFER_WRITE_BIT,
446 			VK_IMAGE_LAYOUT_UNDEFINED,
447 			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
448 			sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex  : VK_QUEUE_FAMILY_IGNORED,
449 			sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
450 			*imageRead,
451 			makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
452 		);
453 
454 		deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferDstBarrier);
455 	}
456 
457 	deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageRead, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
458 
459 	{
460 		const VkImageMemoryBarrier imageSparseTransferSrcBarrier = makeImageMemoryBarrier
461 		(
462 			VK_ACCESS_TRANSFER_WRITE_BIT,
463 			VK_ACCESS_TRANSFER_READ_BIT,
464 			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
465 			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
466 			*imageRead,
467 			makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
468 		);
469 
470 		deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferSrcBarrier);
471 	}
472 
473 	{
474 		const VkImageMemoryBarrier imageSparseShaderStorageBarrier = makeImageMemoryBarrier
475 		(
476 			0u,
477 			VK_ACCESS_SHADER_WRITE_BIT,
478 			VK_IMAGE_LAYOUT_UNDEFINED,
479 			VK_IMAGE_LAYOUT_GENERAL,
480 			*imageWrite,
481 			makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
482 		);
483 
484 		deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseShaderStorageBarrier);
485 	}
486 
487 	// Create descriptor set layout
488 	const Unique<VkDescriptorSetLayout> descriptorSetLayout(
489 		DescriptorSetLayoutBuilder()
490 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
491 		.build(deviceInterface, getDevice()));
492 
493 	Unique<VkPipelineLayout> pipelineLayout(makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout));
494 
495 	Unique<VkDescriptorPool> descriptorPool(
496 		DescriptorPoolBuilder()
497 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, imageSparseInfo.mipLevels)
498 		.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, imageSparseInfo.mipLevels));
499 
500 	typedef de::SharedPtr< Unique<VkImageView> >		SharedVkImageView;
501 	std::vector<SharedVkImageView>						imageViews;
502 	imageViews.resize(imageSparseInfo.mipLevels);
503 
504 	typedef de::SharedPtr< Unique<VkDescriptorSet> >	SharedVkDescriptorSet;
505 	std::vector<SharedVkDescriptorSet>					descriptorSets;
506 	descriptorSets.resize(imageSparseInfo.mipLevels);
507 
508 	typedef de::SharedPtr< Unique<VkPipeline> >			SharedVkPipeline;
509 	std::vector<SharedVkPipeline>						computePipelines;
510 	computePipelines.resize(imageSparseInfo.mipLevels);
511 
512 	for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
513 	{
514 		std::ostringstream name;
515 		name << "comp" << mipLevelNdx;
516 
517 		// Create and bind compute pipeline
518 		Unique<VkShaderModule> shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get(name.str()), DE_NULL));
519 
520 		computePipelines[mipLevelNdx]	= makeVkSharedPtr(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule));
521 		VkPipeline computePipeline		= **computePipelines[mipLevelNdx];
522 
523 		deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline);
524 
525 		// Create and bind descriptor set
526 		descriptorSets[mipLevelNdx]		= makeVkSharedPtr(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
527 		VkDescriptorSet descriptorSet	= **descriptorSets[mipLevelNdx];
528 
529 		// Select which mipmap level to bind
530 		const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, mipLevelNdx, 1u, 0u, imageSparseInfo.arrayLayers);
531 
532 		imageViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), *imageWrite, mapImageViewType(m_imageType), imageSparseInfo.format, subresourceRange));
533 		VkImageView imageView	= **imageViews[mipLevelNdx];
534 
535 		const VkDescriptorImageInfo sparseImageInfo = makeDescriptorImageInfo(DE_NULL, imageView, VK_IMAGE_LAYOUT_GENERAL);
536 
537 		DescriptorSetUpdateBuilder()
538 			.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &sparseImageInfo)
539 			.update(deviceInterface, getDevice());
540 
541 		deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);
542 
543 		const tcu::UVec3	gridSize			= getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx);
544 		const deUint32		xWorkGroupSize		= std::min(std::min(gridSize.x(), maxWorkGroupSize.x()), maxWorkGroupInvocations);
545 		const deUint32		yWorkGroupSize		= std::min(std::min(gridSize.y(), maxWorkGroupSize.y()), maxWorkGroupInvocations / xWorkGroupSize);
546 		const deUint32		zWorkGroupSize		= std::min(std::min(gridSize.z(), maxWorkGroupSize.z()), maxWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize));
547 
548 		const deUint32		xWorkGroupCount		= gridSize.x() / xWorkGroupSize + (gridSize.x() % xWorkGroupSize ? 1u : 0u);
549 		const deUint32		yWorkGroupCount		= gridSize.y() / yWorkGroupSize + (gridSize.y() % yWorkGroupSize ? 1u : 0u);
550 		const deUint32		zWorkGroupCount		= gridSize.z() / zWorkGroupSize + (gridSize.z() % zWorkGroupSize ? 1u : 0u);
551 
552 		if (maxWorkGroupCount.x() < xWorkGroupCount ||
553 			maxWorkGroupCount.y() < yWorkGroupCount ||
554 			maxWorkGroupCount.z() < zWorkGroupCount)
555 			TCU_THROW(NotSupportedError, "Image size is not supported");
556 
557 		deviceInterface.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount);
558 	}
559 
560 	{
561 		const VkMemoryBarrier memoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
562 
563 		deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 1u, &memoryBarrier, 0u, DE_NULL, 0u, DE_NULL);
564 	}
565 
566 	const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
567 	const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
568 	const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
569 
570 	deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageRead, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
571 
572 	{
573 		const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
574 		(
575 			VK_ACCESS_TRANSFER_WRITE_BIT,
576 			VK_ACCESS_HOST_READ_BIT,
577 			*outputBuffer,
578 			0u,
579 			imageSizeInBytes
580 		);
581 
582 		deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
583 	}
584 
585 	// End recording commands
586 	endCommandBuffer(deviceInterface, *commandBuffer);
587 
588 	const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT };
589 
590 	// Submit commands for execution and wait for completion
591 	submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 2u, imageMemoryBindSemaphores, stageBits);
592 
593 	// Retrieve data from buffer to host memory
594 	invalidateMappedMemoryRange(deviceInterface, getDevice(), outputBufferAlloc->getMemory(), outputBufferAlloc->getOffset(), imageSizeInBytes);
595 
596 	const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
597 
598 	// Wait for sparse queue to become idle
599 	deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
600 
601 	for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
602 	{
603 		const tcu::UVec3				  gridSize		= getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx);
604 		const deUint32					  bufferOffset	= static_cast<deUint32>(bufferImageCopy[mipLevelNdx].bufferOffset);
605 		const tcu::ConstPixelBufferAccess pixelBuffer	= tcu::ConstPixelBufferAccess(m_format, gridSize.x(), gridSize.y(), gridSize.z(), outputData + bufferOffset);
606 
607 		for (deUint32 offsetZ = 0u; offsetZ < gridSize.z(); ++offsetZ)
608 		for (deUint32 offsetY = 0u; offsetY < gridSize.y(); ++offsetY)
609 		for (deUint32 offsetX = 0u; offsetX < gridSize.x(); ++offsetX)
610 		{
611 			const deUint32 index			= offsetX + (offsetY + offsetZ * gridSize.y()) * gridSize.x();
612 			const tcu::UVec4 referenceValue = tcu::UVec4(index % MODULO_DIVISOR, index % MODULO_DIVISOR, index % MODULO_DIVISOR, 1u);
613 			const tcu::UVec4 outputValue	= pixelBuffer.getPixelUint(offsetX, offsetY, offsetZ);
614 
615 			if (deMemCmp(&outputValue, &referenceValue, sizeof(deUint32) * getNumUsedChannels(m_format.order)) != 0)
616 				return tcu::TestStatus::fail("Failed");
617 		}
618 	}
619 
620 	for (deUint32 mipLevelNdx = aspectRequirements.imageMipTailFirstLod; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
621 	{
622 		const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx);
623 		const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[mipLevelNdx].bufferOffset);
624 
625 		if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
626 			return tcu::TestStatus::fail("Failed");
627 	}
628 
629 	return tcu::TestStatus::pass("Passed");
630 }
631 
initPrograms(SourceCollections & sourceCollections) const632 void ImageSparseMemoryAliasingCase::initPrograms(SourceCollections&	sourceCollections) const
633 {
634 	const char* const	versionDecl				= glu::getGLSLVersionDeclaration(m_glslVersion);
635 	const std::string	imageTypeStr			= getShaderImageType(m_format, m_imageType);
636 	const std::string	formatQualifierStr		= getShaderImageFormatQualifier(m_format);
637 	const std::string	formatDataStr			= getShaderImageDataType(m_format);
638 	const deUint32		maxWorkGroupInvocations = 128u;
639 	const tcu::UVec3	maxWorkGroupSize		= tcu::UVec3(128u, 128u, 64u);
640 
641 	const tcu::UVec3	layerSize				= getLayerSize(m_imageType, m_imageSize);
642 	const deUint32		widestEdge				= std::max(std::max(layerSize.x(), layerSize.y()), layerSize.z());
643 	const deUint32		mipLevels				= static_cast<deUint32>(deFloatLog2(static_cast<float>(widestEdge))) + 1u;
644 
645 	for (deUint32 mipLevelNdx = 0; mipLevelNdx < mipLevels; ++mipLevelNdx)
646 	{
647 		// Create compute program
648 		const tcu::UVec3	gridSize		= getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx);
649 		const deUint32		xWorkGroupSize  = std::min(std::min(gridSize.x(), maxWorkGroupSize.x()), maxWorkGroupInvocations);
650 		const deUint32		yWorkGroupSize  = std::min(std::min(gridSize.y(), maxWorkGroupSize.y()), maxWorkGroupInvocations / xWorkGroupSize);
651 		const deUint32		zWorkGroupSize  = std::min(std::min(gridSize.z(), maxWorkGroupSize.z()), maxWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize));
652 
653 		std::ostringstream src;
654 
655 		src << versionDecl << "\n"
656 			<< "layout (local_size_x = " << xWorkGroupSize << ", local_size_y = " << yWorkGroupSize << ", local_size_z = " << zWorkGroupSize << ") in; \n"
657 			<< "layout (binding = 0, " << formatQualifierStr << ") writeonly uniform highp " << imageTypeStr << " u_image;\n"
658 			<< "void main (void)\n"
659 			<< "{\n"
660 			<< "	if( gl_GlobalInvocationID.x < " << gridSize.x() << " ) \n"
661 			<< "	if( gl_GlobalInvocationID.y < " << gridSize.y() << " ) \n"
662 			<< "	if( gl_GlobalInvocationID.z < " << gridSize.z() << " ) \n"
663 			<< "	{\n"
664 			<< "		int index = int(gl_GlobalInvocationID.x + (gl_GlobalInvocationID.y + gl_GlobalInvocationID.z*" << gridSize.y() << ")*" << gridSize.x() << ");\n"
665 			<< "		imageStore(u_image, " << getCoordStr(m_imageType, "gl_GlobalInvocationID.x", "gl_GlobalInvocationID.y", "gl_GlobalInvocationID.z") << ","
666 			<< formatDataStr << "( index % " << MODULO_DIVISOR << ", index % " << MODULO_DIVISOR << ", index % " << MODULO_DIVISOR << ", 1 )); \n"
667 			<< "	}\n"
668 			<< "}\n";
669 
670 		std::ostringstream name;
671 		name << "comp" << mipLevelNdx;
672 		sourceCollections.glslSources.add(name.str()) << glu::ComputeSource(src.str());
673 	}
674 }
675 
createInstance(Context & context) const676 TestInstance* ImageSparseMemoryAliasingCase::createInstance (Context& context) const
677 {
678 	return new ImageSparseMemoryAliasingInstance(context, m_imageType, m_imageSize, m_format);
679 }
680 
681 } // anonymous ns
682 
createImageSparseMemoryAliasingTests(tcu::TestContext & testCtx)683 tcu::TestCaseGroup* createImageSparseMemoryAliasingTests (tcu::TestContext& testCtx)
684 {
685 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_memory_aliasing", "Sparse Image Memory Aliasing"));
686 
687 	static const deUint32 sizeCountPerImageType = 4u;
688 
689 	struct ImageParameters
690 	{
691 		ImageType	imageType;
692 		tcu::UVec3	imageSizes[sizeCountPerImageType];
693 	};
694 
695 	static const ImageParameters imageParametersArray[] =
696 	{
697 		{ IMAGE_TYPE_2D,		{ tcu::UVec3(512u, 256u, 1u),	tcu::UVec3(128u, 128u, 1u),	tcu::UVec3(503u, 137u, 1u),	tcu::UVec3(11u, 37u, 1u) } },
698 		{ IMAGE_TYPE_2D_ARRAY,	{ tcu::UVec3(512u, 256u, 6u),	tcu::UVec3(128u, 128u, 8u),	tcu::UVec3(503u, 137u, 3u),	tcu::UVec3(11u, 37u, 3u) } },
699 		{ IMAGE_TYPE_CUBE,		{ tcu::UVec3(256u, 256u, 1u),	tcu::UVec3(128u, 128u, 1u),	tcu::UVec3(137u, 137u, 1u),	tcu::UVec3(11u, 11u, 1u) } },
700 		{ IMAGE_TYPE_CUBE_ARRAY,{ tcu::UVec3(256u, 256u, 6u),	tcu::UVec3(128u, 128u, 8u),	tcu::UVec3(137u, 137u, 3u),	tcu::UVec3(11u, 11u, 3u) } },
701 		{ IMAGE_TYPE_3D,		{ tcu::UVec3(256u, 256u, 16u),	tcu::UVec3(128u, 128u, 8u),	tcu::UVec3(503u, 137u, 3u),	tcu::UVec3(11u, 37u, 3u) } }
702 	};
703 
704 	static const tcu::TextureFormat formats[] =
705 	{
706 		tcu::TextureFormat(tcu::TextureFormat::R,	 tcu::TextureFormat::SIGNED_INT32),
707 		tcu::TextureFormat(tcu::TextureFormat::R,	 tcu::TextureFormat::SIGNED_INT16),
708 		tcu::TextureFormat(tcu::TextureFormat::R,	 tcu::TextureFormat::SIGNED_INT8),
709 		tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32),
710 		tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT16),
711 		tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT8)
712 	};
713 
714 	for (deInt32 imageTypeNdx = 0; imageTypeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray); ++imageTypeNdx)
715 	{
716 		const ImageType					imageType = imageParametersArray[imageTypeNdx].imageType;
717 		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), ""));
718 
719 		for (deInt32 formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(formats); ++formatNdx)
720 		{
721 			const tcu::TextureFormat&		format = formats[formatNdx];
722 			de::MovePtr<tcu::TestCaseGroup> formatGroup(new tcu::TestCaseGroup(testCtx, getShaderImageFormatQualifier(format).c_str(), ""));
723 
724 			for (deInt32 imageSizeNdx = 0; imageSizeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray[imageTypeNdx].imageSizes); ++imageSizeNdx)
725 			{
726 				const tcu::UVec3 imageSize = imageParametersArray[imageTypeNdx].imageSizes[imageSizeNdx];
727 
728 				std::ostringstream stream;
729 				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
730 
731 				formatGroup->addChild(new ImageSparseMemoryAliasingCase(testCtx, stream.str(), "", imageType, imageSize, format, glu::GLSL_VERSION_440));
732 			}
733 			imageTypeGroup->addChild(formatGroup.release());
734 		}
735 		testGroup->addChild(imageTypeGroup.release());
736 	}
737 
738 	return testGroup.release();
739 }
740 
741 } // sparse
742 } // vkt
743