• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2014 The Android Open Source Project
6  * Copyright (c) 2016 The Khronos Group Inc.
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief Tessellation Geometry Interaction - Grid render (limits, scatter)
23 *//*--------------------------------------------------------------------*/
24 
25 #include "vktTessellationGeometryGridRenderTests.hpp"
26 #include "vktTestCaseUtil.hpp"
27 #include "vktTessellationUtil.hpp"
28 
29 #include "tcuTestLog.hpp"
30 #include "tcuTextureUtil.hpp"
31 #include "tcuSurface.hpp"
32 #include "tcuRGBA.hpp"
33 
34 #include "vkDefs.hpp"
35 #include "vkQueryUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkTypeUtil.hpp"
38 #include "vkImageUtil.hpp"
39 
40 #include "deUniquePtr.hpp"
41 
42 #include <string>
43 #include <vector>
44 
45 namespace vkt
46 {
47 namespace tessellation
48 {
49 
50 using namespace vk;
51 
52 namespace
53 {
54 
55 enum Constants
56 {
57 	RENDER_SIZE = 256,
58 };
59 
60 enum FlagBits
61 {
62 	FLAG_TESSELLATION_MAX_SPEC			= 1u << 0,
63 	FLAG_GEOMETRY_MAX_SPEC				= 1u << 1,
64 	FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC	= 1u << 2,
65 
66 	FLAG_GEOMETRY_SCATTER_INSTANCES		= 1u << 3,
67 	FLAG_GEOMETRY_SCATTER_PRIMITIVES	= 1u << 4,
68 	FLAG_GEOMETRY_SEPARATE_PRIMITIVES	= 1u << 5, //!< if set, geometry shader outputs separate grid cells and not continuous slices
69 	FLAG_GEOMETRY_SCATTER_LAYERS		= 1u << 6,
70 };
71 typedef deUint32 Flags;
72 
73 class GridRenderTestCase : public TestCase
74 {
75 public:
76 	void			initPrograms			(vk::SourceCollections& programCollection) const;
77 	TestInstance*	createInstance			(Context& context) const;
78 
79 					GridRenderTestCase		(tcu::TestContext& testCtx, const std::string& name, const std::string& description, const Flags flags);
80 
81 private:
82 	const Flags		m_flags;
83 	const int		m_tessGenLevel;
84 	const int		m_numGeometryInvocations;
85 	const int		m_numLayers;
86 	int				m_numGeometryPrimitivesPerInvocation;
87 };
88 
GridRenderTestCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const Flags flags)89 GridRenderTestCase::GridRenderTestCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const Flags flags)
90 	: TestCase					(testCtx, name, description)
91 	, m_flags					(flags)
92 	, m_tessGenLevel			((m_flags & FLAG_TESSELLATION_MAX_SPEC)			? 64 : 5)
93 	, m_numGeometryInvocations	((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC)	? 32 : 4)
94 	, m_numLayers				((m_flags & FLAG_GEOMETRY_SCATTER_LAYERS)		? 8  : 1)
95 {
96 	DE_ASSERT(((flags & (FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SCATTER_LAYERS)) != 0) == ((flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) != 0));
97 
98 	testCtx.getLog()
99 		<< tcu::TestLog::Message
100 		<< "Testing tessellation and geometry shaders that output a large number of primitives.\n"
101 		<< getDescription()
102 		<< tcu::TestLog::EndMessage;
103 
104 	if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS)
105 		m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to 2d texture array, numLayers = " << m_numLayers << tcu::TestLog::EndMessage;
106 
107 	m_testCtx.getLog()
108 		<< tcu::TestLog::Message
109 		<< "Tessellation level: " << m_tessGenLevel << ", mode = quad.\n"
110 		<< "\tEach input patch produces " << (m_tessGenLevel*m_tessGenLevel) << " (" << (m_tessGenLevel*m_tessGenLevel*2) << " triangles)\n"
111 		<< tcu::TestLog::EndMessage;
112 
113 	int geometryOutputComponents	  = 0;
114 	int geometryOutputVertices		  = 0;
115 	int geometryTotalOutputComponents = 0;
116 
117 	if (m_flags & FLAG_GEOMETRY_MAX_SPEC)
118 	{
119 		m_testCtx.getLog() << tcu::TestLog::Message << "Using geometry shader minimum maximum output limits." << tcu::TestLog::EndMessage;
120 
121 		geometryOutputComponents	  = 64;
122 		geometryOutputVertices		  = 256;
123 		geometryTotalOutputComponents = 1024;
124 	}
125 	else
126 	{
127 		geometryOutputComponents	  = 64;
128 		geometryOutputVertices		  = 16;
129 		geometryTotalOutputComponents = 1024;
130 	}
131 
132 	if ((m_flags & FLAG_GEOMETRY_MAX_SPEC) || (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC))
133 	{
134 		tcu::MessageBuilder msg(&m_testCtx.getLog());
135 
136 		msg << "Geometry shader, targeting following limits:\n";
137 
138 		if (m_flags & FLAG_GEOMETRY_MAX_SPEC)
139 			msg	<< "\tmaxGeometryOutputComponents = "	   << geometryOutputComponents << "\n"
140 				<< "\tmaxGeometryOutputVertices = "		   << geometryOutputVertices << "\n"
141 				<< "\tmaxGeometryTotalOutputComponents = " << geometryTotalOutputComponents << "\n";
142 
143 		if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC)
144 			msg << "\tmaxGeometryShaderInvocations = "	   << m_numGeometryInvocations;
145 
146 		msg << tcu::TestLog::EndMessage;
147 	}
148 
149 	const bool	separatePrimitives				  = (m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) != 0;
150 	const int	numComponentsPerVertex			  = 8; // vec4 pos, vec4 color
151 	int			numVerticesPerInvocation		  = 0;
152 	int			geometryVerticesPerPrimitive	  = 0;
153 	int			geometryPrimitivesOutPerPrimitive = 0;
154 
155 	if (separatePrimitives)
156 	{
157 		const int	numComponentLimit		 = geometryTotalOutputComponents / (4 * numComponentsPerVertex);
158 		const int	numOutputLimit			 = geometryOutputVertices / 4;
159 
160 		m_numGeometryPrimitivesPerInvocation = de::min(numComponentLimit, numOutputLimit);
161 		numVerticesPerInvocation			 = m_numGeometryPrimitivesPerInvocation * 4;
162 	}
163 	else
164 	{
165 		// If FLAG_GEOMETRY_SEPARATE_PRIMITIVES is not set, geometry shader fills a rectangle area in slices.
166 		// Each slice is a triangle strip and is generated by a single shader invocation.
167 		// One slice with 4 segment ends (nodes) and 3 segments:
168 		//    .__.__.__.
169 		//    |\ |\ |\ |
170 		//    |_\|_\|_\|
171 
172 		const int	numSliceNodesComponentLimit	= geometryTotalOutputComponents / (2 * numComponentsPerVertex);			// each node 2 vertices
173 		const int	numSliceNodesOutputLimit	= geometryOutputVertices / 2;											// each node 2 vertices
174 		const int	numSliceNodes				= de::min(numSliceNodesComponentLimit, numSliceNodesOutputLimit);
175 
176 		numVerticesPerInvocation				= numSliceNodes * 2;
177 		m_numGeometryPrimitivesPerInvocation	= (numSliceNodes - 1) * 2;
178 	}
179 
180 	geometryVerticesPerPrimitive	  = numVerticesPerInvocation * m_numGeometryInvocations;
181 	geometryPrimitivesOutPerPrimitive = m_numGeometryPrimitivesPerInvocation * m_numGeometryInvocations;
182 
183 	m_testCtx.getLog()
184 		<< tcu::TestLog::Message
185 		<< "Geometry shader:\n"
186 		<< "\tTotal output vertex count per invocation: "		  << numVerticesPerInvocation << "\n"
187 		<< "\tTotal output primitive count per invocation: "	  << m_numGeometryPrimitivesPerInvocation << "\n"
188 		<< "\tNumber of invocations per primitive: "			  << m_numGeometryInvocations << "\n"
189 		<< "\tTotal output vertex count per input primitive: "	  << geometryVerticesPerPrimitive << "\n"
190 		<< "\tTotal output primitive count per input primitive: " << geometryPrimitivesOutPerPrimitive << "\n"
191 		<< tcu::TestLog::EndMessage;
192 
193 	m_testCtx.getLog()
194 		<< tcu::TestLog::Message
195 		<< "Program:\n"
196 		<< "\tTotal program output vertices count per input patch: "  << (m_tessGenLevel*m_tessGenLevel*2 * geometryVerticesPerPrimitive) << "\n"
197 		<< "\tTotal program output primitive count per input patch: " << (m_tessGenLevel*m_tessGenLevel*2 * geometryPrimitivesOutPerPrimitive) << "\n"
198 		<< tcu::TestLog::EndMessage;
199 }
200 
initPrograms(SourceCollections & programCollection) const201 void GridRenderTestCase::initPrograms (SourceCollections& programCollection) const
202 {
203 	// Vertex shader
204 	{
205 		std::ostringstream src;
206 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
207 			<< "\n"
208 			<< "void main (void)\n"
209 			<< "{\n"
210 			<< "    gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n"
211 			<< "}\n";
212 
213 		programCollection.glslSources.add("vert") << glu::VertexSource(src.str());
214 	}
215 
216 	// Fragment shader
217 	{
218 		std::ostringstream src;
219 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
220 			<< "layout(location = 0) flat in highp   vec4 v_color;\n"
221 			<< "layout(location = 0) out     mediump vec4 fragColor;\n"
222 			<< "\n"
223 			<< "void main (void)\n"
224 			<< "{\n"
225 			<< "    fragColor = v_color;\n"
226 			<< "}\n";
227 
228 		programCollection.glslSources.add("frag") << glu::FragmentSource(src.str());
229 	}
230 
231 	// Tessellation control
232 	{
233 		std::ostringstream src;
234 		src <<	glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
235 				"#extension GL_EXT_tessellation_shader : require\n"
236 				"layout(vertices = 1) out;\n"
237 				"\n"
238 				"void main (void)\n"
239 				"{\n"
240 				"    gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"
241 				"    gl_TessLevelInner[0] = float(" << m_tessGenLevel << ");\n"
242 				"    gl_TessLevelInner[1] = float(" << m_tessGenLevel << ");\n"
243 				"    gl_TessLevelOuter[0] = float(" << m_tessGenLevel << ");\n"
244 				"    gl_TessLevelOuter[1] = float(" << m_tessGenLevel << ");\n"
245 				"    gl_TessLevelOuter[2] = float(" << m_tessGenLevel << ");\n"
246 				"    gl_TessLevelOuter[3] = float(" << m_tessGenLevel << ");\n"
247 				"}\n";
248 
249 		programCollection.glslSources.add("tesc") << glu::TessellationControlSource(src.str());
250 	}
251 
252 	// Tessellation evaluation
253 	{
254 		std::ostringstream src;
255 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
256 			<< "#extension GL_EXT_tessellation_shader : require\n"
257 			<< "layout(quads) in;\n"
258 			<< "\n"
259 			<< "layout(location = 0) out mediump ivec2 v_tessellationGridPosition;\n"
260 			<< "\n"
261 			<< "// note: No need to use precise gl_Position since position does not depend on order\n"
262 			<< "void main (void)\n"
263 			<< "{\n";
264 
265 		if (m_flags & (FLAG_GEOMETRY_SCATTER_INSTANCES | FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SCATTER_LAYERS))
266 			src << "    // Cover only a small area in a corner. The area will be expanded in geometry shader to cover whole viewport\n"
267 				<< "    gl_Position = vec4(gl_TessCoord.x * 0.3 - 1.0, gl_TessCoord.y * 0.3 - 1.0, 0.0, 1.0);\n";
268 		else
269 			src << "    // Fill the whole viewport\n"
270 				<< "    gl_Position = vec4(gl_TessCoord.x * 2.0 - 1.0, gl_TessCoord.y * 2.0 - 1.0, 0.0, 1.0);\n";
271 
272 		src << "    // Calculate position in tessellation grid\n"
273 			<< "    v_tessellationGridPosition = ivec2(round(gl_TessCoord.xy * float(" << m_tessGenLevel << ")));\n"
274 			<< "}\n";
275 
276 		programCollection.glslSources.add("tese") << glu::TessellationEvaluationSource(src.str());
277 	}
278 
279 	// Geometry shader
280 	{
281 		const int numInvocations = m_numGeometryInvocations;
282 		const int numPrimitives  = m_numGeometryPrimitivesPerInvocation;
283 
284 		std::ostringstream src;
285 
286 		src	<< glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
287 			<< "#extension GL_EXT_geometry_shader : require\n"
288 			<< "layout(triangles, invocations = " << numInvocations << ") in;\n"
289 			<< "layout(triangle_strip, max_vertices = " << ((m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) ? (4 * numPrimitives) : (numPrimitives + 2)) << ") out;\n"
290 			<< "\n"
291 			<< "layout(location = 0) in       mediump ivec2 v_tessellationGridPosition[];\n"
292 			<< "layout(location = 0) flat out highp   vec4  v_color;\n"
293 			<< "\n"
294 			<< "void main (void)\n"
295 			<< "{\n"
296 			<< "    const float equalThreshold = 0.001;\n"
297 			<< "    const float gapOffset = 0.0001; // subdivision performed by the geometry shader might produce gaps. Fill potential gaps by enlarging the output slice a little.\n"
298 			<< "\n"
299 			<< "    // Input triangle is generated from an axis-aligned rectangle by splitting it in half\n"
300 			<< "    // Original rectangle can be found by finding the bounding AABB of the triangle\n"
301 			<< "    vec4 aabb = vec4(min(gl_in[0].gl_Position.x, min(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n"
302 			<< "                     min(gl_in[0].gl_Position.y, min(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)),\n"
303 			<< "                     max(gl_in[0].gl_Position.x, max(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n"
304 			<< "                     max(gl_in[0].gl_Position.y, max(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)));\n"
305 			<< "\n"
306 			<< "    // Location in tessellation grid\n"
307 			<< "    ivec2 gridPosition = ivec2(min(v_tessellationGridPosition[0], min(v_tessellationGridPosition[1], v_tessellationGridPosition[2])));\n"
308 			<< "\n"
309 			<< "    // Which triangle of the two that split the grid cell\n"
310 			<< "    int numVerticesOnBottomEdge = 0;\n"
311 			<< "    for (int ndx = 0; ndx < 3; ++ndx)\n"
312 			<< "        if (abs(gl_in[ndx].gl_Position.y - aabb.w) < equalThreshold)\n"
313 			<< "            ++numVerticesOnBottomEdge;\n"
314 			<< "    bool isBottomTriangle = numVerticesOnBottomEdge == 2;\n"
315 			<< "\n";
316 
317 		if (m_flags & FLAG_GEOMETRY_SCATTER_PRIMITIVES)
318 		{
319 			// scatter primitives
320 			src << "    // Draw grid cells\n"
321 				<< "    int inputTriangleNdx = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n"
322 				<< "    for (int ndx = 0; ndx < " << numPrimitives << "; ++ndx)\n"
323 				<< "    {\n"
324 				<< "        ivec2 dstGridSize = ivec2(" << m_tessGenLevel << " * " << numPrimitives << ", 2 * " << m_tessGenLevel << " * " << numInvocations << ");\n"
325 				<< "        ivec2 dstGridNdx = ivec2(" << m_tessGenLevel << " * ndx + gridPosition.x, " << m_tessGenLevel << " * inputTriangleNdx + 2 * gridPosition.y + ndx * 127) % dstGridSize;\n"
326 				<< "        vec4 dstArea;\n"
327 				<< "        dstArea.x = float(dstGridNdx.x)   / float(dstGridSize.x) * 2.0 - 1.0 - gapOffset;\n"
328 				<< "        dstArea.y = float(dstGridNdx.y)   / float(dstGridSize.y) * 2.0 - 1.0 - gapOffset;\n"
329 				<< "        dstArea.z = float(dstGridNdx.x+1) / float(dstGridSize.x) * 2.0 - 1.0 + gapOffset;\n"
330 				<< "        dstArea.w = float(dstGridNdx.y+1) / float(dstGridSize.y) * 2.0 - 1.0 + gapOffset;\n"
331 				<< "\n"
332 				<< "        vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
333 				<< "        vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
334 				<< "        vec4 outputColor = (((dstGridNdx.y + dstGridNdx.x) % 2) == 0) ? (green) : (yellow);\n"
335 				<< "\n"
336 				<< "        gl_Position = vec4(dstArea.x, dstArea.y, 0.0, 1.0);\n"
337 				<< "        v_color = outputColor;\n"
338 				<< "        EmitVertex();\n"
339 				<< "\n"
340 				<< "        gl_Position = vec4(dstArea.x, dstArea.w, 0.0, 1.0);\n"
341 				<< "        v_color = outputColor;\n"
342 				<< "        EmitVertex();\n"
343 				<< "\n"
344 				<< "        gl_Position = vec4(dstArea.z, dstArea.y, 0.0, 1.0);\n"
345 				<< "        v_color = outputColor;\n"
346 				<< "        EmitVertex();\n"
347 				<< "\n"
348 				<< "        gl_Position = vec4(dstArea.z, dstArea.w, 0.0, 1.0);\n"
349 				<< "        v_color = outputColor;\n"
350 				<< "        EmitVertex();\n"
351 				<< "        EndPrimitive();\n"
352 				<< "    }\n";
353 		}
354 		else if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS)
355 		{
356 			// Number of subrectangle instances = num layers
357 			DE_ASSERT(m_numLayers == numInvocations * 2);
358 
359 			src << "    // Draw grid cells, send each primitive to a separate layer\n"
360 				<< "    int baseLayer = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n"
361 				<< "    for (int ndx = 0; ndx < " << numPrimitives << "; ++ndx)\n"
362 				<< "    {\n"
363 				<< "        ivec2 dstGridSize = ivec2(" << m_tessGenLevel << " * " << numPrimitives << ", " << m_tessGenLevel << ");\n"
364 				<< "        ivec2 dstGridNdx = ivec2((gridPosition.x * " << numPrimitives << " * 7 + ndx)*13, (gridPosition.y * 127 + ndx) * 19) % dstGridSize;\n"
365 				<< "        vec4 dstArea;\n"
366 				<< "        dstArea.x = float(dstGridNdx.x) / float(dstGridSize.x) * 2.0 - 1.0 - gapOffset;\n"
367 				<< "        dstArea.y = float(dstGridNdx.y) / float(dstGridSize.y) * 2.0 - 1.0 - gapOffset;\n"
368 				<< "        dstArea.z = float(dstGridNdx.x+1) / float(dstGridSize.x) * 2.0 - 1.0 + gapOffset;\n"
369 				<< "        dstArea.w = float(dstGridNdx.y+1) / float(dstGridSize.y) * 2.0 - 1.0 + gapOffset;\n"
370 				<< "\n"
371 				<< "        vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
372 				<< "        vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
373 				<< "        vec4 outputColor = (((dstGridNdx.y + dstGridNdx.x) % 2) == 0) ? (green) : (yellow);\n"
374 				<< "\n"
375 				<< "        gl_Position = vec4(dstArea.x, dstArea.y, 0.0, 1.0);\n"
376 				<< "        v_color = outputColor;\n"
377 				<< "        gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
378 				<< "        EmitVertex();\n"
379 				<< "\n"
380 				<< "        gl_Position = vec4(dstArea.x, dstArea.w, 0.0, 1.0);\n"
381 				<< "        v_color = outputColor;\n"
382 				<< "        gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
383 				<< "        EmitVertex();\n"
384 				<< "\n"
385 				<< "        gl_Position = vec4(dstArea.z, dstArea.y, 0.0, 1.0);\n"
386 				<< "        v_color = outputColor;\n"
387 				<< "        gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
388 				<< "        EmitVertex();\n"
389 				<< "\n"
390 				<< "        gl_Position = vec4(dstArea.z, dstArea.w, 0.0, 1.0);\n"
391 				<< "        v_color = outputColor;\n"
392 				<< "        gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
393 				<< "        EmitVertex();\n"
394 				<< "        EndPrimitive();\n"
395 				<< "    }\n";
396 		}
397 		else
398 		{
399 			if (m_flags & FLAG_GEOMETRY_SCATTER_INSTANCES)
400 			{
401 				src << "    // Scatter slices\n"
402 					<< "    int inputTriangleNdx = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n"
403 					<< "    ivec2 srcSliceNdx = ivec2(gridPosition.x, gridPosition.y * " << (numInvocations*2) << " + inputTriangleNdx);\n"
404 					<< "    ivec2 dstSliceNdx = ivec2(7 * srcSliceNdx.x, 127 * srcSliceNdx.y) % ivec2(" << m_tessGenLevel << ", " << m_tessGenLevel << " * " << (numInvocations*2) << ");\n"
405 					<< "\n"
406 					<< "    // Draw slice to the dstSlice slot\n"
407 					<< "    vec4 outputSliceArea;\n"
408 					<< "    outputSliceArea.x = float(dstSliceNdx.x)   / float(" << m_tessGenLevel << ") * 2.0 - 1.0 - gapOffset;\n"
409 					<< "    outputSliceArea.y = float(dstSliceNdx.y)   / float(" << (m_tessGenLevel * numInvocations * 2) << ") * 2.0 - 1.0 - gapOffset;\n"
410 					<< "    outputSliceArea.z = float(dstSliceNdx.x+1) / float(" << m_tessGenLevel << ") * 2.0 - 1.0 + gapOffset;\n"
411 					<< "    outputSliceArea.w = float(dstSliceNdx.y+1) / float(" << (m_tessGenLevel * numInvocations * 2) << ") * 2.0 - 1.0 + gapOffset;\n";
412 			}
413 			else
414 			{
415 				src << "    // Fill the input area with slices\n"
416 					<< "    // Upper triangle produces slices only to the upper half of the quad and vice-versa\n"
417 					<< "    float triangleOffset = (isBottomTriangle) ? ((aabb.w + aabb.y) / 2.0) : (aabb.y);\n"
418 					<< "    // Each slice is a invocation\n"
419 					<< "    float sliceHeight = (aabb.w - aabb.y) / float(2 * " << numInvocations << ");\n"
420 					<< "    float invocationOffset = float(gl_InvocationID) * sliceHeight;\n"
421 					<< "\n"
422 					<< "    vec4 outputSliceArea;\n"
423 					<< "    outputSliceArea.x = aabb.x - gapOffset;\n"
424 					<< "    outputSliceArea.y = triangleOffset + invocationOffset - gapOffset;\n"
425 					<< "    outputSliceArea.z = aabb.z + gapOffset;\n"
426 					<< "    outputSliceArea.w = triangleOffset + invocationOffset + sliceHeight + gapOffset;\n";
427 			}
428 
429 			src << "\n"
430 				<< "    // Draw slice\n"
431 				<< "    for (int ndx = 0; ndx < " << ((numPrimitives+2)/2) << "; ++ndx)\n"
432 				<< "    {\n"
433 				<< "        vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
434 				<< "        vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
435 				<< "        vec4 outputColor = (((gl_InvocationID + ndx) % 2) == 0) ? (green) : (yellow);\n"
436 				<< "        float xpos = mix(outputSliceArea.x, outputSliceArea.z, float(ndx) / float(" << (numPrimitives/2) << "));\n"
437 				<< "\n"
438 				<< "        gl_Position = vec4(xpos, outputSliceArea.y, 0.0, 1.0);\n"
439 				<< "        v_color = outputColor;\n"
440 				<< "        EmitVertex();\n"
441 				<< "\n"
442 				<< "        gl_Position = vec4(xpos, outputSliceArea.w, 0.0, 1.0);\n"
443 				<< "        v_color = outputColor;\n"
444 				<< "        EmitVertex();\n"
445 				<< "    }\n";
446 		}
447 
448 		src <<	"}\n";
449 
450 		programCollection.glslSources.add("geom") << glu::GeometrySource(src.str());
451 	}
452 }
453 
454 class GridRenderTestInstance : public TestInstance
455 {
456 public:
457 	struct Params
458 	{
459 		Flags	flags;
460 		int		numLayers;
461 
Paramsvkt::tessellation::__anon347793750111::GridRenderTestInstance::Params462 		Params (void) : flags(), numLayers() {}
463 	};
GridRenderTestInstance(Context & context,const Params & params)464 						GridRenderTestInstance	(Context& context, const Params& params) : TestInstance(context), m_params(params) {}
465 	tcu::TestStatus		iterate					(void);
466 
467 private:
468 	Params				m_params;
469 };
470 
createInstance(Context & context) const471 TestInstance* GridRenderTestCase::createInstance (Context& context) const
472 {
473 	GridRenderTestInstance::Params params;
474 
475 	params.flags	 = m_flags;
476 	params.numLayers = m_numLayers;
477 
478 	return new GridRenderTestInstance(context, params);
479 }
480 
verifyResultLayer(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & image,const int layerNdx)481 bool verifyResultLayer (tcu::TestLog& log, const tcu::ConstPixelBufferAccess& image, const int layerNdx)
482 {
483 	tcu::Surface errorMask	(image.getWidth(), image.getHeight());
484 	bool		 foundError	= false;
485 
486 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
487 
488 	log << tcu::TestLog::Message << "Verifying output layer " << layerNdx  << tcu::TestLog::EndMessage;
489 
490 	for (int y = 0; y < image.getHeight(); ++y)
491 	for (int x = 0; x < image.getWidth(); ++x)
492 	{
493 		const int		threshold	= 8;
494 		const tcu::RGBA	color		(image.getPixel(x, y));
495 
496 		// Color must be a linear combination of green and yellow
497 		if (color.getGreen() < 255 - threshold || color.getBlue() > threshold)
498 		{
499 			errorMask.setPixel(x, y, tcu::RGBA::red());
500 			foundError = true;
501 		}
502 	}
503 
504 	if (!foundError)
505 	{
506 		log << tcu::TestLog::Message << "Image valid." << tcu::TestLog::EndMessage
507 			<< tcu::TestLog::ImageSet("ImageVerification", "Image verification")
508 			<< tcu::TestLog::Image("Result", "Rendered result", image)
509 			<< tcu::TestLog::EndImageSet;
510 		return true;
511 	}
512 	else
513 	{
514 		log	<< tcu::TestLog::Message << "Image verification failed, found invalid pixels." << tcu::TestLog::EndMessage
515 			<< tcu::TestLog::ImageSet("ImageVerification", "Image verification")
516 			<< tcu::TestLog::Image("Result", "Rendered result", image)
517 			<< tcu::TestLog::Image("ErrorMask", "Error mask", errorMask.getAccess())
518 			<< tcu::TestLog::EndImageSet;
519 		return false;
520 	}
521 }
522 
iterate(void)523 tcu::TestStatus GridRenderTestInstance::iterate (void)
524 {
525 	requireFeatures(m_context.getInstanceInterface(), m_context.getPhysicalDevice(), FEATURE_TESSELLATION_SHADER | FEATURE_GEOMETRY_SHADER);
526 
527 	m_context.getTestContext().getLog()
528 		<< tcu::TestLog::Message
529 		<< "Rendering single point at the origin. Expecting yellow and green colored grid-like image. (High-frequency grid may appear unicolored)."
530 		<< tcu::TestLog::EndMessage;
531 
532 	const DeviceInterface&	vk					= m_context.getDeviceInterface();
533 	const VkDevice			device				= m_context.getDevice();
534 	const VkQueue			queue				= m_context.getUniversalQueue();
535 	const deUint32			queueFamilyIndex	= m_context.getUniversalQueueFamilyIndex();
536 	Allocator&				allocator			= m_context.getDefaultAllocator();
537 
538 	// Color attachment
539 
540 	const tcu::IVec2			  renderSize			   = tcu::IVec2(RENDER_SIZE, RENDER_SIZE);
541 	const VkFormat				  colorFormat			   = VK_FORMAT_R8G8B8A8_UNORM;
542 	const VkImageSubresourceRange colorImageAllLayersRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, m_params.numLayers);
543 	const VkImageCreateInfo		  colorImageCreateInfo	   = makeImageCreateInfo(renderSize, colorFormat, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, m_params.numLayers);
544 	const VkImageViewType		  colorAttachmentViewType  = (m_params.numLayers == 1 ? VK_IMAGE_VIEW_TYPE_2D : VK_IMAGE_VIEW_TYPE_2D_ARRAY);
545 	const Image					  colorAttachmentImage	   (vk, device, allocator, colorImageCreateInfo, MemoryRequirement::Any);
546 
547 	// Color output buffer: image will be copied here for verification (big enough for all layers).
548 
549 	const VkDeviceSize	colorBufferSizeBytes	= renderSize.x()*renderSize.y() * m_params.numLayers * tcu::getPixelSize(mapVkFormat(colorFormat));
550 	const Buffer		colorBuffer				(vk, device, allocator, makeBufferCreateInfo(colorBufferSizeBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT), MemoryRequirement::HostVisible);
551 
552 	// Pipeline: no vertex input attributes nor descriptors.
553 
554 	const Unique<VkImageView>		colorAttachmentView(makeImageView						(vk, device, *colorAttachmentImage, colorAttachmentViewType, colorFormat, colorImageAllLayersRange));
555 	const Unique<VkRenderPass>		renderPass		   (makeRenderPass						(vk, device, colorFormat));
556 	const Unique<VkFramebuffer>		framebuffer		   (makeFramebuffer						(vk, device, *renderPass, *colorAttachmentView, renderSize.x(), renderSize.y(), m_params.numLayers));
557 	const Unique<VkPipelineLayout>	pipelineLayout	   (makePipelineLayoutWithoutDescriptors(vk, device));
558 	const Unique<VkCommandPool>		cmdPool			   (makeCommandPool						(vk, device, queueFamilyIndex));
559 	const Unique<VkCommandBuffer>	cmdBuffer		   (makeCommandBuffer					(vk, device, *cmdPool));
560 
561 	const Unique<VkPipeline> pipeline (GraphicsPipelineBuilder()
562 		.setRenderSize	(renderSize)
563 		.setShader		(vk, device, VK_SHADER_STAGE_VERTEX_BIT,				  m_context.getBinaryCollection().get("vert"), DE_NULL)
564 		.setShader		(vk, device, VK_SHADER_STAGE_FRAGMENT_BIT,				  m_context.getBinaryCollection().get("frag"), DE_NULL)
565 		.setShader		(vk, device, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,	  m_context.getBinaryCollection().get("tesc"), DE_NULL)
566 		.setShader		(vk, device, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, m_context.getBinaryCollection().get("tese"), DE_NULL)
567 		.setShader		(vk, device, VK_SHADER_STAGE_GEOMETRY_BIT,				  m_context.getBinaryCollection().get("geom"), DE_NULL)
568 		.build			(vk, device, *pipelineLayout, *renderPass));
569 
570 	beginCommandBuffer(vk, *cmdBuffer);
571 
572 	// Change color attachment image layout
573 	{
574 		const VkImageMemoryBarrier colorAttachmentLayoutBarrier = makeImageMemoryBarrier(
575 			(VkAccessFlags)0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
576 			VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
577 			*colorAttachmentImage, colorImageAllLayersRange);
578 
579 		vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0u,
580 			0u, DE_NULL, 0u, DE_NULL, 1u, &colorAttachmentLayoutBarrier);
581 	}
582 
583 	// Begin render pass
584 	{
585 		const VkRect2D renderArea = {
586 			makeOffset2D(0, 0),
587 			makeExtent2D(renderSize.x(), renderSize.y()),
588 		};
589 		const tcu::Vec4 clearColor(0.0f, 0.0f, 0.0f, 1.0f);
590 
591 		beginRenderPass(vk, *cmdBuffer, *renderPass, *framebuffer, renderArea, clearColor);
592 	}
593 
594 	vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
595 
596 	vk.cmdDraw(*cmdBuffer, 1u, 1u, 0u, 0u);
597 	endRenderPass(vk, *cmdBuffer);
598 
599 	// Copy render result to a host-visible buffer
600 	{
601 		const VkImageMemoryBarrier colorAttachmentPreCopyBarrier = makeImageMemoryBarrier(
602 			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
603 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
604 			*colorAttachmentImage, colorImageAllLayersRange);
605 
606 		vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u,
607 			0u, DE_NULL, 0u, DE_NULL, 1u, &colorAttachmentPreCopyBarrier);
608 	}
609 	{
610 		const VkImageSubresourceLayers subresourceLayers = makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, m_params.numLayers);
611 		const VkBufferImageCopy		   copyRegion		 = makeBufferImageCopy(makeExtent3D(renderSize.x(), renderSize.y(), 1), subresourceLayers);
612 		vk.cmdCopyImageToBuffer(*cmdBuffer, *colorAttachmentImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *colorBuffer, 1u, &copyRegion);
613 	}
614 	{
615 		const VkBufferMemoryBarrier postCopyBarrier = makeBufferMemoryBarrier(
616 			VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *colorBuffer, 0ull, colorBufferSizeBytes);
617 
618 		vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u,
619 			0u, DE_NULL, 1u, &postCopyBarrier, 0u, DE_NULL);
620 	}
621 
622 	endCommandBuffer(vk, *cmdBuffer);
623 	submitCommandsAndWait(vk, device, queue, *cmdBuffer);
624 
625 	// Verify results
626 	{
627 		const Allocation& alloc = colorBuffer.getAllocation();
628 		invalidateMappedMemoryRange(vk, device, alloc.getMemory(), alloc.getOffset(), colorBufferSizeBytes);
629 
630 		const tcu::ConstPixelBufferAccess imageAllLayers(mapVkFormat(colorFormat), renderSize.x(), renderSize.y(), m_params.numLayers, alloc.getHostPtr());
631 
632 		bool allOk = true;
633 		for (int ndx = 0; ndx < m_params.numLayers; ++ndx)
634 			allOk = allOk && verifyResultLayer(m_context.getTestContext().getLog(),
635 											   tcu::getSubregion(imageAllLayers, 0, 0, ndx, renderSize.x(), renderSize.y(), 1),
636 											   ndx);
637 
638 		return (allOk ? tcu::TestStatus::pass("OK") : tcu::TestStatus::fail("Image comparison failed"));
639 	}
640 }
641 
642 struct TestCaseDescription
643 {
644 	const char*	name;
645 	const char*	desc;
646 	Flags		flags;
647 };
648 
649 } // anonymous
650 
651 //! Ported from dEQP-GLES31.functional.tessellation_geometry_interaction.render.limits.*
652 //! \note Tests that check implementation defined limits were omitted, because they rely on runtime shader source generation
653 //!       (e.g. changing the number of vertices output from geometry shader). CTS currently doesn't support that,
654 //!       because some platforms require precompiled shaders.
createGeometryGridRenderLimitsTests(tcu::TestContext & testCtx)655 tcu::TestCaseGroup* createGeometryGridRenderLimitsTests  (tcu::TestContext& testCtx)
656 {
657 	de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "limits", "Render with properties near their limits"));
658 
659 	static const TestCaseDescription cases[] =
660 	{
661 		{
662 			"output_required_max_tessellation",
663 			"Minimum maximum tessellation level",
664 			FLAG_TESSELLATION_MAX_SPEC
665 		},
666 		{
667 			"output_required_max_geometry",
668 			"Output minimum maximum number of vertices the geometry shader",
669 			FLAG_GEOMETRY_MAX_SPEC
670 		},
671 		{
672 			"output_required_max_invocations",
673 			"Minimum maximum number of geometry shader invocations",
674 			FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC
675 		},
676 	};
677 
678 	for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx)
679 		group->addChild(new GridRenderTestCase(testCtx, cases[ndx].name, cases[ndx].desc, cases[ndx].flags));
680 
681 	return group.release();
682 }
683 
684 //! Ported from dEQP-GLES31.functional.tessellation_geometry_interaction.render.scatter.*
createGeometryGridRenderScatterTests(tcu::TestContext & testCtx)685 tcu::TestCaseGroup* createGeometryGridRenderScatterTests (tcu::TestContext& testCtx)
686 {
687 	de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "scatter", "Scatter output primitives"));
688 
689 	static const TestCaseDescription cases[] =
690 	{
691 		{
692 			"geometry_scatter_instances",
693 			"Each geometry shader instance outputs its primitives far from other instances of the same execution",
694 			FLAG_GEOMETRY_SCATTER_INSTANCES
695 		},
696 		{
697 			"geometry_scatter_primitives",
698 			"Each geometry shader instance outputs its primitives far from other primitives of the same instance",
699 			FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SEPARATE_PRIMITIVES
700 		},
701 		{
702 			"geometry_scatter_layers",
703 			"Each geometry shader instance outputs its primitives to multiple layers and far from other primitives of the same instance",
704 			FLAG_GEOMETRY_SCATTER_LAYERS | FLAG_GEOMETRY_SEPARATE_PRIMITIVES
705 		},
706 	};
707 
708 	for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx)
709 		group->addChild(new GridRenderTestCase(testCtx, cases[ndx].name, cases[ndx].desc, cases[ndx].flags));
710 
711 	return group.release();
712 }
713 
714 } // tessellation
715 } // vkt
716