• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
6 // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 
13 #ifndef EIGEN_PRODUCTEVALUATORS_H
14 #define EIGEN_PRODUCTEVALUATORS_H
15 
16 namespace Eigen {
17 
18 namespace internal {
19 
20 /** \internal
21   * Evaluator of a product expression.
22   * Since products require special treatments to handle all possible cases,
23   * we simply deffer the evaluation logic to a product_evaluator class
24   * which offers more partial specialization possibilities.
25   *
26   * \sa class product_evaluator
27   */
28 template<typename Lhs, typename Rhs, int Options>
29 struct evaluator<Product<Lhs, Rhs, Options> >
30  : public product_evaluator<Product<Lhs, Rhs, Options> >
31 {
32   typedef Product<Lhs, Rhs, Options> XprType;
33   typedef product_evaluator<XprType> Base;
34 
35   EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
36 };
37 
38 // Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
39 // TODO we should apply that rule only if that's really helpful
40 template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
41 struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
42                                                const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
43                                                const Product<Lhs, Rhs, DefaultProduct> > >
44 {
45   static const bool value = true;
46 };
47 template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
48 struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
49                                const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
50                                const Product<Lhs, Rhs, DefaultProduct> > >
51  : public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
52 {
53   typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
54                                const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
55                                const Product<Lhs, Rhs, DefaultProduct> > XprType;
56   typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
57 
58   EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
59     : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
60   {}
61 };
62 
63 
64 template<typename Lhs, typename Rhs, int DiagIndex>
65 struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
66  : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
67 {
68   typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
69   typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
70 
71   EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
72     : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
73         Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
74         xpr.index() ))
75   {}
76 };
77 
78 
79 // Helper class to perform a matrix product with the destination at hand.
80 // Depending on the sizes of the factors, there are different evaluation strategies
81 // as controlled by internal::product_type.
82 template< typename Lhs, typename Rhs,
83           typename LhsShape = typename evaluator_traits<Lhs>::Shape,
84           typename RhsShape = typename evaluator_traits<Rhs>::Shape,
85           int ProductType = internal::product_type<Lhs,Rhs>::value>
86 struct generic_product_impl;
87 
88 template<typename Lhs, typename Rhs>
89 struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
90   static const bool value = true;
91 };
92 
93 // This is the default evaluator implementation for products:
94 // It creates a temporary and call generic_product_impl
95 template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
96 struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
97   : public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
98 {
99   typedef Product<Lhs, Rhs, Options> XprType;
100   typedef typename XprType::PlainObject PlainObject;
101   typedef evaluator<PlainObject> Base;
102   enum {
103     Flags = Base::Flags | EvalBeforeNestingBit
104   };
105 
106   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
107   explicit product_evaluator(const XprType& xpr)
108     : m_result(xpr.rows(), xpr.cols())
109   {
110     ::new (static_cast<Base*>(this)) Base(m_result);
111 
112 // FIXME shall we handle nested_eval here?,
113 // if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
114 //     typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
115 //     typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
116 //     typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
117 //     typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
118 //
119 //     const LhsNested lhs(xpr.lhs());
120 //     const RhsNested rhs(xpr.rhs());
121 //
122 //     generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
123 
124     generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
125   }
126 
127 protected:
128   PlainObject m_result;
129 };
130 
131 // The following three shortcuts are enabled only if the scalar types match excatly.
132 // TODO: we could enable them for different scalar types when the product is not vectorized.
133 
134 // Dense = Product
135 template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
136 struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
137   typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
138 {
139   typedef Product<Lhs,Rhs,Options> SrcXprType;
140   static EIGEN_STRONG_INLINE
141   void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
142   {
143     Index dstRows = src.rows();
144     Index dstCols = src.cols();
145     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
146       dst.resize(dstRows, dstCols);
147     // FIXME shall we handle nested_eval here?
148     generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
149   }
150 };
151 
152 // Dense += Product
153 template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
154 struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
155   typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
156 {
157   typedef Product<Lhs,Rhs,Options> SrcXprType;
158   static EIGEN_STRONG_INLINE
159   void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
160   {
161     eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
162     // FIXME shall we handle nested_eval here?
163     generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
164   }
165 };
166 
167 // Dense -= Product
168 template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
169 struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
170   typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
171 {
172   typedef Product<Lhs,Rhs,Options> SrcXprType;
173   static EIGEN_STRONG_INLINE
174   void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
175   {
176     eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
177     // FIXME shall we handle nested_eval here?
178     generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
179   }
180 };
181 
182 
183 // Dense ?= scalar * Product
184 // TODO we should apply that rule if that's really helpful
185 // for instance, this is not good for inner products
186 template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
187 struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
188                                            const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
189 {
190   typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
191                         const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
192                         const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
193   static EIGEN_STRONG_INLINE
194   void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
195   {
196     call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
197   }
198 };
199 
200 //----------------------------------------
201 // Catch "Dense ?= xpr + Product<>" expression to save one temporary
202 // FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
203 
204 template<typename OtherXpr, typename Lhs, typename Rhs>
205 struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
206                                                const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
207   static const bool value = true;
208 };
209 
210 template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
211 struct assignment_from_xpr_op_product
212 {
213   template<typename SrcXprType, typename InitialFunc>
214   static EIGEN_STRONG_INLINE
215   void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
216   {
217     call_assignment_no_alias(dst, src.lhs(), Func1());
218     call_assignment_no_alias(dst, src.rhs(), Func2());
219   }
220 };
221 
222 #define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
223   template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
224   struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
225                                             const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
226     : assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
227   {}
228 
229 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op,    scalar_sum_op,add_assign_op);
230 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
231 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);
232 
233 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op,    scalar_difference_op,sub_assign_op);
234 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
235 EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);
236 
237 //----------------------------------------
238 
239 template<typename Lhs, typename Rhs>
240 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
241 {
242   template<typename Dst>
243   static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
244   {
245     dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
246   }
247 
248   template<typename Dst>
249   static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
250   {
251     dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
252   }
253 
254   template<typename Dst>
255   static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
256   { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
257 };
258 
259 
260 /***********************************************************************
261 *  Implementation of outer dense * dense vector product
262 ***********************************************************************/
263 
264 // Column major result
265 template<typename Dst, typename Lhs, typename Rhs, typename Func>
266 void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
267 {
268   evaluator<Rhs> rhsEval(rhs);
269   typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs);
270   // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
271   // FIXME not very good if rhs is real and lhs complex while alpha is real too
272   const Index cols = dst.cols();
273   for (Index j=0; j<cols; ++j)
274     func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
275 }
276 
277 // Row major result
278 template<typename Dst, typename Lhs, typename Rhs, typename Func>
279 void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
280 {
281   evaluator<Lhs> lhsEval(lhs);
282   typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs);
283   // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
284   // FIXME not very good if lhs is real and rhs complex while alpha is real too
285   const Index rows = dst.rows();
286   for (Index i=0; i<rows; ++i)
287     func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
288 }
289 
290 template<typename Lhs, typename Rhs>
291 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
292 {
293   template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
294   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
295 
296   // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
297   struct set  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived()  = src; } };
298   struct add  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
299   struct sub  { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
300   struct adds {
301     Scalar m_scale;
302     explicit adds(const Scalar& s) : m_scale(s) {}
303     template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
304       dst.const_cast_derived() += m_scale * src;
305     }
306   };
307 
308   template<typename Dst>
309   static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
310   {
311     internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
312   }
313 
314   template<typename Dst>
315   static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
316   {
317     internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
318   }
319 
320   template<typename Dst>
321   static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
322   {
323     internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
324   }
325 
326   template<typename Dst>
327   static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
328   {
329     internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
330   }
331 
332 };
333 
334 
335 // This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
336 template<typename Lhs, typename Rhs, typename Derived>
337 struct generic_product_impl_base
338 {
339   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
340 
341   template<typename Dst>
342   static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
343   { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
344 
345   template<typename Dst>
346   static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
347   { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
348 
349   template<typename Dst>
350   static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
351   { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
352 
353   template<typename Dst>
354   static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
355   { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
356 
357 };
358 
359 template<typename Lhs, typename Rhs>
360 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
361   : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
362 {
363   typedef typename nested_eval<Lhs,1>::type LhsNested;
364   typedef typename nested_eval<Rhs,1>::type RhsNested;
365   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
366   enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
367   typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
368 
369   template<typename Dest>
370   static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
371   {
372     LhsNested actual_lhs(lhs);
373     RhsNested actual_rhs(rhs);
374     internal::gemv_dense_selector<Side,
375                             (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
376                             bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
377                            >::run(actual_lhs, actual_rhs, dst, alpha);
378   }
379 };
380 
381 template<typename Lhs, typename Rhs>
382 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
383 {
384   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
385 
386   template<typename Dst>
387   static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
388   {
389     // Same as: dst.noalias() = lhs.lazyProduct(rhs);
390     // but easier on the compiler side
391     call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
392   }
393 
394   template<typename Dst>
395   static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
396   {
397     // dst.noalias() += lhs.lazyProduct(rhs);
398     call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
399   }
400 
401   template<typename Dst>
402   static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
403   {
404     // dst.noalias() -= lhs.lazyProduct(rhs);
405     call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
406   }
407 
408 //   template<typename Dst>
409 //   static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
410 //   { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
411 };
412 
413 // This specialization enforces the use of a coefficient-based evaluation strategy
414 template<typename Lhs, typename Rhs>
415 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
416   : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
417 
418 // Case 2: Evaluate coeff by coeff
419 //
420 // This is mostly taken from CoeffBasedProduct.h
421 // The main difference is that we add an extra argument to the etor_product_*_impl::run() function
422 // for the inner dimension of the product, because evaluator object do not know their size.
423 
424 template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
425 struct etor_product_coeff_impl;
426 
427 template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
428 struct etor_product_packet_impl;
429 
430 template<typename Lhs, typename Rhs, int ProductTag>
431 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
432     : evaluator_base<Product<Lhs, Rhs, LazyProduct> >
433 {
434   typedef Product<Lhs, Rhs, LazyProduct> XprType;
435   typedef typename XprType::Scalar Scalar;
436   typedef typename XprType::CoeffReturnType CoeffReturnType;
437 
438   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
439   explicit product_evaluator(const XprType& xpr)
440     : m_lhs(xpr.lhs()),
441       m_rhs(xpr.rhs()),
442       m_lhsImpl(m_lhs),     // FIXME the creation of the evaluator objects should result in a no-op, but check that!
443       m_rhsImpl(m_rhs),     //       Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
444                             //       or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
445       m_innerDim(xpr.lhs().cols())
446   {
447     EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
448     EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
449     EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
450 #if 0
451     std::cerr << "LhsOuterStrideBytes=  " << LhsOuterStrideBytes << "\n";
452     std::cerr << "RhsOuterStrideBytes=  " << RhsOuterStrideBytes << "\n";
453     std::cerr << "LhsAlignment=         " << LhsAlignment << "\n";
454     std::cerr << "RhsAlignment=         " << RhsAlignment << "\n";
455     std::cerr << "CanVectorizeLhs=      " << CanVectorizeLhs << "\n";
456     std::cerr << "CanVectorizeRhs=      " << CanVectorizeRhs << "\n";
457     std::cerr << "CanVectorizeInner=    " << CanVectorizeInner << "\n";
458     std::cerr << "EvalToRowMajor=       " << EvalToRowMajor << "\n";
459     std::cerr << "Alignment=            " << Alignment << "\n";
460     std::cerr << "Flags=                " << Flags << "\n";
461 #endif
462   }
463 
464   // Everything below here is taken from CoeffBasedProduct.h
465 
466   typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
467   typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
468 
469   typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
470   typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
471 
472   typedef evaluator<LhsNestedCleaned> LhsEtorType;
473   typedef evaluator<RhsNestedCleaned> RhsEtorType;
474 
475   enum {
476     RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
477     ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
478     InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
479     MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
480     MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
481   };
482 
483   typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
484   typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;
485 
486   enum {
487 
488     LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
489     RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
490     CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
491                   : InnerSize == Dynamic ? HugeCost
492                   : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
493                     + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
494 
495     Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
496 
497     LhsFlags = LhsEtorType::Flags,
498     RhsFlags = RhsEtorType::Flags,
499 
500     LhsRowMajor = LhsFlags & RowMajorBit,
501     RhsRowMajor = RhsFlags & RowMajorBit,
502 
503     LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
504     RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
505 
506     // Here, we don't care about alignment larger than the usable packet size.
507     LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
508     RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
509 
510     SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
511 
512     CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
513     CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),
514 
515     EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
516                     : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
517                     : (bool(RhsRowMajor) && !CanVectorizeLhs),
518 
519     Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
520           | (EvalToRowMajor ? RowMajorBit : 0)
521           // TODO enable vectorization for mixed types
522           | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
523           | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
524 
525     LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
526     RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
527 
528     Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
529               : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
530               : 0,
531 
532     /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
533      * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
534      * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
535      * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
536      */
537     CanVectorizeInner =    SameType
538                         && LhsRowMajor
539                         && (!RhsRowMajor)
540                         && (LhsFlags & RhsFlags & ActualPacketAccessBit)
541                         && (InnerSize % packet_traits<Scalar>::size == 0)
542   };
543 
544   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
545   {
546     return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
547   }
548 
549   /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
550    * which is why we don't set the LinearAccessBit.
551    * TODO: this seems possible when the result is a vector
552    */
553   EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
554   {
555     const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
556     const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
557     return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
558   }
559 
560   template<int LoadMode, typename PacketType>
561   const PacketType packet(Index row, Index col) const
562   {
563     PacketType res;
564     typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
565                                      Unroll ? int(InnerSize) : Dynamic,
566                                      LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
567     PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
568     return res;
569   }
570 
571   template<int LoadMode, typename PacketType>
572   const PacketType packet(Index index) const
573   {
574     const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
575     const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
576     return packet<LoadMode,PacketType>(row,col);
577   }
578 
579 protected:
580   typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
581   typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
582 
583   LhsEtorType m_lhsImpl;
584   RhsEtorType m_rhsImpl;
585 
586   // TODO: Get rid of m_innerDim if known at compile time
587   Index m_innerDim;
588 };
589 
590 template<typename Lhs, typename Rhs>
591 struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
592   : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
593 {
594   typedef Product<Lhs, Rhs, DefaultProduct> XprType;
595   typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
596   typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
597   enum {
598     Flags = Base::Flags | EvalBeforeNestingBit
599   };
600   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
601     : Base(BaseProduct(xpr.lhs(),xpr.rhs()))
602   {}
603 };
604 
605 /****************************************
606 *** Coeff based product, Packet path  ***
607 ****************************************/
608 
609 template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
610 struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
611 {
612   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
613   {
614     etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
615     res =  pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
616   }
617 };
618 
619 template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
620 struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
621 {
622   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
623   {
624     etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
625     res =  pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
626   }
627 };
628 
629 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
630 struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
631 {
632   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
633   {
634     res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
635   }
636 };
637 
638 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
639 struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
640 {
641   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
642   {
643     res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
644   }
645 };
646 
647 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
648 struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
649 {
650   static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
651   {
652     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
653   }
654 };
655 
656 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
657 struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
658 {
659   static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
660   {
661     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
662   }
663 };
664 
665 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
666 struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
667 {
668   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
669   {
670     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
671     for(Index i = 0; i < innerDim; ++i)
672       res =  pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
673   }
674 };
675 
676 template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
677 struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
678 {
679   static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
680   {
681     res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
682     for(Index i = 0; i < innerDim; ++i)
683       res =  pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
684   }
685 };
686 
687 
688 /***************************************************************************
689 * Triangular products
690 ***************************************************************************/
691 template<int Mode, bool LhsIsTriangular,
692          typename Lhs, bool LhsIsVector,
693          typename Rhs, bool RhsIsVector>
694 struct triangular_product_impl;
695 
696 template<typename Lhs, typename Rhs, int ProductTag>
697 struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
698   : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
699 {
700   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
701 
702   template<typename Dest>
703   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
704   {
705     triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
706         ::run(dst, lhs.nestedExpression(), rhs, alpha);
707   }
708 };
709 
710 template<typename Lhs, typename Rhs, int ProductTag>
711 struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
712 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
713 {
714   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
715 
716   template<typename Dest>
717   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
718   {
719     triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
720   }
721 };
722 
723 
724 /***************************************************************************
725 * SelfAdjoint products
726 ***************************************************************************/
727 template <typename Lhs, int LhsMode, bool LhsIsVector,
728           typename Rhs, int RhsMode, bool RhsIsVector>
729 struct selfadjoint_product_impl;
730 
731 template<typename Lhs, typename Rhs, int ProductTag>
732 struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
733   : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
734 {
735   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
736 
737   template<typename Dest>
738   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
739   {
740     selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
741   }
742 };
743 
744 template<typename Lhs, typename Rhs, int ProductTag>
745 struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
746 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
747 {
748   typedef typename Product<Lhs,Rhs>::Scalar Scalar;
749 
750   template<typename Dest>
751   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
752   {
753     selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
754   }
755 };
756 
757 
758 /***************************************************************************
759 * Diagonal products
760 ***************************************************************************/
761 
762 template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
763 struct diagonal_product_evaluator_base
764   : evaluator_base<Derived>
765 {
766    typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
767 public:
768   enum {
769     CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
770 
771     MatrixFlags = evaluator<MatrixType>::Flags,
772     DiagFlags = evaluator<DiagonalType>::Flags,
773     _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
774     _ScalarAccessOnDiag =  !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
775                            ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
776     _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
777     // FIXME currently we need same types, but in the future the next rule should be the one
778     //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
779     _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
780     _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
781     Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
782     Alignment = evaluator<MatrixType>::Alignment
783   };
784 
785   diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
786     : m_diagImpl(diag), m_matImpl(mat)
787   {
788     EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
789     EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
790   }
791 
792   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
793   {
794     return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
795   }
796 
797 protected:
798   template<int LoadMode,typename PacketType>
799   EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
800   {
801     return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
802                           internal::pset1<PacketType>(m_diagImpl.coeff(id)));
803   }
804 
805   template<int LoadMode,typename PacketType>
806   EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
807   {
808     enum {
809       InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
810       DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
811     };
812     return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
813                           m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
814   }
815 
816   evaluator<DiagonalType> m_diagImpl;
817   evaluator<MatrixType>   m_matImpl;
818 };
819 
820 // diagonal * dense
821 template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
822 struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
823   : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
824 {
825   typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
826   using Base::m_diagImpl;
827   using Base::m_matImpl;
828   using Base::coeff;
829   typedef typename Base::Scalar Scalar;
830 
831   typedef Product<Lhs, Rhs, ProductKind> XprType;
832   typedef typename XprType::PlainObject PlainObject;
833 
834   enum {
835     StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
836   };
837 
838   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
839     : Base(xpr.rhs(), xpr.lhs().diagonal())
840   {
841   }
842 
843   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
844   {
845     return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
846   }
847 
848 #ifndef __CUDACC__
849   template<int LoadMode,typename PacketType>
850   EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
851   {
852     // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
853     // See also similar calls below.
854     return this->template packet_impl<LoadMode,PacketType>(row,col, row,
855                                  typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
856   }
857 
858   template<int LoadMode,typename PacketType>
859   EIGEN_STRONG_INLINE PacketType packet(Index idx) const
860   {
861     return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
862   }
863 #endif
864 };
865 
866 // dense * diagonal
867 template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
868 struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
869   : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
870 {
871   typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
872   using Base::m_diagImpl;
873   using Base::m_matImpl;
874   using Base::coeff;
875   typedef typename Base::Scalar Scalar;
876 
877   typedef Product<Lhs, Rhs, ProductKind> XprType;
878   typedef typename XprType::PlainObject PlainObject;
879 
880   enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
881 
882   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
883     : Base(xpr.lhs(), xpr.rhs().diagonal())
884   {
885   }
886 
887   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
888   {
889     return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
890   }
891 
892 #ifndef __CUDACC__
893   template<int LoadMode,typename PacketType>
894   EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
895   {
896     return this->template packet_impl<LoadMode,PacketType>(row,col, col,
897                                  typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
898   }
899 
900   template<int LoadMode,typename PacketType>
901   EIGEN_STRONG_INLINE PacketType packet(Index idx) const
902   {
903     return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
904   }
905 #endif
906 };
907 
908 /***************************************************************************
909 * Products with permutation matrices
910 ***************************************************************************/
911 
912 /** \internal
913   * \class permutation_matrix_product
914   * Internal helper class implementing the product between a permutation matrix and a matrix.
915   * This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
916   */
917 template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
918 struct permutation_matrix_product;
919 
920 template<typename ExpressionType, int Side, bool Transposed>
921 struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
922 {
923     typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
924     typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
925 
926     template<typename Dest, typename PermutationType>
927     static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
928     {
929       MatrixType mat(xpr);
930       const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
931       // FIXME we need an is_same for expression that is not sensitive to constness. For instance
932       // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
933       //if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
934       if(is_same_dense(dst, mat))
935       {
936         // apply the permutation inplace
937         Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
938         mask.fill(false);
939         Index r = 0;
940         while(r < perm.size())
941         {
942           // search for the next seed
943           while(r<perm.size() && mask[r]) r++;
944           if(r>=perm.size())
945             break;
946           // we got one, let's follow it until we are back to the seed
947           Index k0 = r++;
948           Index kPrev = k0;
949           mask.coeffRef(k0) = true;
950           for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
951           {
952                   Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
953             .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
954                        (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
955 
956             mask.coeffRef(k) = true;
957             kPrev = k;
958           }
959         }
960       }
961       else
962       {
963         for(Index i = 0; i < n; ++i)
964         {
965           Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
966                (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
967 
968           =
969 
970           Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
971                (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
972         }
973       }
974     }
975 };
976 
977 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
978 struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
979 {
980   template<typename Dest>
981   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
982   {
983     permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
984   }
985 };
986 
987 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
988 struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
989 {
990   template<typename Dest>
991   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
992   {
993     permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
994   }
995 };
996 
997 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
998 struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
999 {
1000   template<typename Dest>
1001   static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
1002   {
1003     permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
1004   }
1005 };
1006 
1007 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1008 struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
1009 {
1010   template<typename Dest>
1011   static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
1012   {
1013     permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
1014   }
1015 };
1016 
1017 
1018 /***************************************************************************
1019 * Products with transpositions matrices
1020 ***************************************************************************/
1021 
1022 // FIXME could we unify Transpositions and Permutation into a single "shape"??
1023 
1024 /** \internal
1025   * \class transposition_matrix_product
1026   * Internal helper class implementing the product between a permutation matrix and a matrix.
1027   */
1028 template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
1029 struct transposition_matrix_product
1030 {
1031   typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
1032   typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
1033 
1034   template<typename Dest, typename TranspositionType>
1035   static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
1036   {
1037     MatrixType mat(xpr);
1038     typedef typename TranspositionType::StorageIndex StorageIndex;
1039     const Index size = tr.size();
1040     StorageIndex j = 0;
1041 
1042     if(!is_same_dense(dst,mat))
1043       dst = mat;
1044 
1045     for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
1046       if(Index(j=tr.coeff(k))!=k)
1047       {
1048         if(Side==OnTheLeft)        dst.row(k).swap(dst.row(j));
1049         else if(Side==OnTheRight)  dst.col(k).swap(dst.col(j));
1050       }
1051   }
1052 };
1053 
1054 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1055 struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
1056 {
1057   template<typename Dest>
1058   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1059   {
1060     transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
1061   }
1062 };
1063 
1064 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1065 struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
1066 {
1067   template<typename Dest>
1068   static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1069   {
1070     transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
1071   }
1072 };
1073 
1074 
1075 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1076 struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
1077 {
1078   template<typename Dest>
1079   static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
1080   {
1081     transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
1082   }
1083 };
1084 
1085 template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1086 struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
1087 {
1088   template<typename Dest>
1089   static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
1090   {
1091     transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
1092   }
1093 };
1094 
1095 } // end namespace internal
1096 
1097 } // end namespace Eigen
1098 
1099 #endif // EIGEN_PRODUCT_EVALUATORS_H
1100