1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30
31 // Forward declaration.
32 class JumpTarget;
33
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45
46
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49 EMIT_RETURN = true,
50 NO_EMIT_RETURN = false
51 };
52
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55 // Tag the result.
56 TAG_RESULT,
57 // Don't tag
58 DONT_TAG_RESULT
59 };
60
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63 // No special flags.
64 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65 // Object is known to be a non smi.
66 OBJECT_NOT_SMI = 1 << 0,
67 // Don't load NaNs or infinities, branch to the non number case instead.
68 AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73 USE_DELAY_SLOT,
74 PROTECT
75 };
76
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79 // If the constant value can be represented in just 16 bits, then
80 // optimize the li to use a single instruction, rather than lui/ori/dsll
81 // sequence.
82 OPTIMIZE_SIZE = 0,
83 // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
84 // could be loaded with just one, so that this value is patchable later.
85 CONSTANT_SIZE = 1,
86 // For address loads only 4 instruction are required. Used to mark
87 // constant load that will be used as address without relocation
88 // information. It ensures predictable code size, so specific sites
89 // in code are patchable.
90 ADDRESS_LOAD = 2
91 };
92
93
94 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
95 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
96 enum PointersToHereCheck {
97 kPointersToHereMaybeInteresting,
98 kPointersToHereAreAlwaysInteresting
99 };
100 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
101
102 Register GetRegisterThatIsNotOneOf(Register reg1,
103 Register reg2 = no_reg,
104 Register reg3 = no_reg,
105 Register reg4 = no_reg,
106 Register reg5 = no_reg,
107 Register reg6 = no_reg);
108
109 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
110 Register reg4 = no_reg, Register reg5 = no_reg,
111 Register reg6 = no_reg, Register reg7 = no_reg,
112 Register reg8 = no_reg, Register reg9 = no_reg,
113 Register reg10 = no_reg);
114
115
116 // -----------------------------------------------------------------------------
117 // Static helper functions.
118
119 #if defined(V8_TARGET_LITTLE_ENDIAN)
120 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
121 #else
122 #define SmiWordOffset(offset) offset
123 #endif
124
125
ContextMemOperand(Register context,int index)126 inline MemOperand ContextMemOperand(Register context, int index) {
127 return MemOperand(context, Context::SlotOffset(index));
128 }
129
130
NativeContextMemOperand()131 inline MemOperand NativeContextMemOperand() {
132 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
133 }
134
135
136 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)137 inline MemOperand FieldMemOperand(Register object, int offset) {
138 return MemOperand(object, offset - kHeapObjectTag);
139 }
140
141
UntagSmiMemOperand(Register rm,int offset)142 inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
143 // Assumes that Smis are shifted by 32 bits.
144 STATIC_ASSERT(kSmiShift == 32);
145 return MemOperand(rm, SmiWordOffset(offset));
146 }
147
148
UntagSmiFieldMemOperand(Register rm,int offset)149 inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
150 return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
151 }
152
153
154 // Generate a MemOperand for storing arguments 5..N on the stack
155 // when calling CallCFunction().
156 // TODO(plind): Currently ONLY used for O32. Should be fixed for
157 // n64, and used in RegExp code, and other places
158 // with more than 8 arguments.
CFunctionArgumentOperand(int index)159 inline MemOperand CFunctionArgumentOperand(int index) {
160 DCHECK(index > kCArgSlotCount);
161 // Argument 5 takes the slot just past the four Arg-slots.
162 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
163 return MemOperand(sp, offset);
164 }
165
166
167 // MacroAssembler implements a collection of frequently used macros.
168 class MacroAssembler: public Assembler {
169 public:
170 MacroAssembler(Isolate* isolate, void* buffer, int size,
171 CodeObjectRequired create_code_object);
172
173 // Arguments macros.
174 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
175 #define COND_ARGS cond, r1, r2
176
177 // Cases when relocation is not needed.
178 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
179 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
180 inline void Name(BranchDelaySlot bd, target_type target) { \
181 Name(target, bd); \
182 } \
183 void Name(target_type target, \
184 COND_TYPED_ARGS, \
185 BranchDelaySlot bd = PROTECT); \
186 inline void Name(BranchDelaySlot bd, \
187 target_type target, \
188 COND_TYPED_ARGS) { \
189 Name(target, COND_ARGS, bd); \
190 }
191
192 #define DECLARE_BRANCH_PROTOTYPES(Name) \
193 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
194 DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
195
196 DECLARE_BRANCH_PROTOTYPES(Branch)
197 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
198 DECLARE_BRANCH_PROTOTYPES(BranchShort)
199
200 #undef DECLARE_BRANCH_PROTOTYPES
201 #undef COND_TYPED_ARGS
202 #undef COND_ARGS
203
204
205 // Jump, Call, and Ret pseudo instructions implementing inter-working.
206 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
207 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
208
209 void Jump(Register target, COND_ARGS);
210 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
211 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
212 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
213 static int CallSize(Register target, COND_ARGS);
214 void Call(Register target, COND_ARGS);
215 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
216 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
217 int CallSize(Handle<Code> code,
218 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
219 TypeFeedbackId ast_id = TypeFeedbackId::None(),
220 COND_ARGS);
221 void Call(Handle<Code> code,
222 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
223 TypeFeedbackId ast_id = TypeFeedbackId::None(),
224 COND_ARGS);
225 void Ret(COND_ARGS);
226 inline void Ret(BranchDelaySlot bd, Condition cond = al,
227 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
228 Ret(cond, rs, rt, bd);
229 }
230
231 bool IsNear(Label* L, Condition cond, int rs_reg);
232
233 void Branch(Label* L,
234 Condition cond,
235 Register rs,
236 Heap::RootListIndex index,
237 BranchDelaySlot bdslot = PROTECT);
238
239 // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
240 // functor/function with 'Label *func(size_t index)' declaration.
241 template <typename Func>
242 void GenerateSwitchTable(Register index, size_t case_count,
243 Func GetLabelFunction);
244 #undef COND_ARGS
245
246 // Emit code that loads |parameter_index|'th parameter from the stack to
247 // the register according to the CallInterfaceDescriptor definition.
248 // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
249 // below the caller's sp.
250 template <class Descriptor>
251 void LoadParameterFromStack(
252 Register reg, typename Descriptor::ParameterIndices parameter_index,
253 int sp_to_ra_offset_in_words = 0) {
254 DCHECK(Descriptor::kPassLastArgsOnStack);
255 UNIMPLEMENTED();
256 }
257
258 // Emit code to discard a non-negative number of pointer-sized elements
259 // from the stack, clobbering only the sp register.
260 void Drop(int count,
261 Condition cond = cc_always,
262 Register reg = no_reg,
263 const Operand& op = Operand(no_reg));
264
265 // Trivial case of DropAndRet that utilizes the delay slot and only emits
266 // 2 instructions.
267 void DropAndRet(int drop);
268
269 void DropAndRet(int drop,
270 Condition cond,
271 Register reg,
272 const Operand& op);
273
274 // Swap two registers. If the scratch register is omitted then a slightly
275 // less efficient form using xor instead of mov is emitted.
276 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
277
278 void Call(Label* target);
279
Move(Register dst,Handle<Object> handle)280 inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)281 inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
282
Move(Register dst,Register src)283 inline void Move(Register dst, Register src) {
284 if (!dst.is(src)) {
285 mov(dst, src);
286 }
287 }
288
Move_d(FPURegister dst,FPURegister src)289 inline void Move_d(FPURegister dst, FPURegister src) {
290 if (!dst.is(src)) {
291 mov_d(dst, src);
292 }
293 }
294
Move_s(FPURegister dst,FPURegister src)295 inline void Move_s(FPURegister dst, FPURegister src) {
296 if (!dst.is(src)) {
297 mov_s(dst, src);
298 }
299 }
300
Move(FPURegister dst,FPURegister src)301 inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
302
Move(Register dst_low,Register dst_high,FPURegister src)303 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
304 mfc1(dst_low, src);
305 mfhc1(dst_high, src);
306 }
307
Move(Register dst,FPURegister src)308 inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
309
Move(FPURegister dst,Register src)310 inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
311
FmoveHigh(Register dst_high,FPURegister src)312 inline void FmoveHigh(Register dst_high, FPURegister src) {
313 mfhc1(dst_high, src);
314 }
315
FmoveHigh(FPURegister dst,Register src_high)316 inline void FmoveHigh(FPURegister dst, Register src_high) {
317 mthc1(src_high, dst);
318 }
319
FmoveLow(Register dst_low,FPURegister src)320 inline void FmoveLow(Register dst_low, FPURegister src) {
321 mfc1(dst_low, src);
322 }
323
324 void FmoveLow(FPURegister dst, Register src_low);
325
Move(FPURegister dst,Register src_low,Register src_high)326 inline void Move(FPURegister dst, Register src_low, Register src_high) {
327 mtc1(src_low, dst);
328 mthc1(src_high, dst);
329 }
330
331 void Move(FPURegister dst, float imm);
332 void Move(FPURegister dst, double imm);
333
334 // Conditional move.
335 void Movz(Register rd, Register rs, Register rt);
336 void Movn(Register rd, Register rs, Register rt);
337 void Movt(Register rd, Register rs, uint16_t cc = 0);
338 void Movf(Register rd, Register rs, uint16_t cc = 0);
339
340 // Min, Max macros.
341 // On pre-r6 these functions may modify at and t8 registers.
342 void MinNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
343 Label* nan = nullptr);
344 void MaxNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
345 Label* nan = nullptr);
346 void MinNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
347 Label* nan = nullptr);
348 void MaxNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
349 Label* nan = nullptr);
350
351 void Clz(Register rd, Register rs);
352
353 // Jump unconditionally to given label.
354 // We NEED a nop in the branch delay slot, as it used by v8, for example in
355 // CodeGenerator::ProcessDeferred().
356 // Currently the branch delay slot is filled by the MacroAssembler.
357 // Use rather b(Label) for code generation.
jmp(Label * L)358 void jmp(Label* L) {
359 Branch(L);
360 }
361
362 void Load(Register dst, const MemOperand& src, Representation r);
363 void Store(Register src, const MemOperand& dst, Representation r);
364
PushRoot(Heap::RootListIndex index)365 void PushRoot(Heap::RootListIndex index) {
366 LoadRoot(at, index);
367 Push(at);
368 }
369
370 // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)371 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
372 LoadRoot(at, index);
373 Branch(if_equal, eq, with, Operand(at));
374 }
375
376 // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)377 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
378 Label* if_not_equal) {
379 LoadRoot(at, index);
380 Branch(if_not_equal, ne, with, Operand(at));
381 }
382
383 // Load an object from the root table.
384 void LoadRoot(Register destination,
385 Heap::RootListIndex index);
386 void LoadRoot(Register destination,
387 Heap::RootListIndex index,
388 Condition cond, Register src1, const Operand& src2);
389
390 // Store an object to the root table.
391 void StoreRoot(Register source,
392 Heap::RootListIndex index);
393 void StoreRoot(Register source,
394 Heap::RootListIndex index,
395 Condition cond, Register src1, const Operand& src2);
396
397 // ---------------------------------------------------------------------------
398 // GC Support
399
400 void IncrementalMarkingRecordWriteHelper(Register object,
401 Register value,
402 Register address);
403
404 enum RememberedSetFinalAction {
405 kReturnAtEnd,
406 kFallThroughAtEnd
407 };
408
409
410 // Record in the remembered set the fact that we have a pointer to new space
411 // at the address pointed to by the addr register. Only works if addr is not
412 // in new space.
413 void RememberedSetHelper(Register object, // Used for debug code.
414 Register addr,
415 Register scratch,
416 SaveFPRegsMode save_fp,
417 RememberedSetFinalAction and_then);
418
419 void CheckPageFlag(Register object,
420 Register scratch,
421 int mask,
422 Condition cc,
423 Label* condition_met);
424
425 // Check if object is in new space. Jumps if the object is not in new space.
426 // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)427 void JumpIfNotInNewSpace(Register object,
428 Register scratch,
429 Label* branch) {
430 InNewSpace(object, scratch, eq, branch);
431 }
432
433 // Check if object is in new space. Jumps if the object is in new space.
434 // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)435 void JumpIfInNewSpace(Register object,
436 Register scratch,
437 Label* branch) {
438 InNewSpace(object, scratch, ne, branch);
439 }
440
441 // Check if an object has a given incremental marking color.
442 void HasColor(Register object,
443 Register scratch0,
444 Register scratch1,
445 Label* has_color,
446 int first_bit,
447 int second_bit);
448
449 void JumpIfBlack(Register object,
450 Register scratch0,
451 Register scratch1,
452 Label* on_black);
453
454 // Checks the color of an object. If the object is white we jump to the
455 // incremental marker.
456 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
457 Register scratch3, Label* value_is_white);
458
459 // Notify the garbage collector that we wrote a pointer into an object.
460 // |object| is the object being stored into, |value| is the object being
461 // stored. value and scratch registers are clobbered by the operation.
462 // The offset is the offset from the start of the object, not the offset from
463 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
464 void RecordWriteField(
465 Register object,
466 int offset,
467 Register value,
468 Register scratch,
469 RAStatus ra_status,
470 SaveFPRegsMode save_fp,
471 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
472 SmiCheck smi_check = INLINE_SMI_CHECK,
473 PointersToHereCheck pointers_to_here_check_for_value =
474 kPointersToHereMaybeInteresting);
475
476 // As above, but the offset has the tag presubtracted. For use with
477 // MemOperand(reg, off).
478 inline void RecordWriteContextSlot(
479 Register context,
480 int offset,
481 Register value,
482 Register scratch,
483 RAStatus ra_status,
484 SaveFPRegsMode save_fp,
485 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
486 SmiCheck smi_check = INLINE_SMI_CHECK,
487 PointersToHereCheck pointers_to_here_check_for_value =
488 kPointersToHereMaybeInteresting) {
489 RecordWriteField(context,
490 offset + kHeapObjectTag,
491 value,
492 scratch,
493 ra_status,
494 save_fp,
495 remembered_set_action,
496 smi_check,
497 pointers_to_here_check_for_value);
498 }
499
500 // Notify the garbage collector that we wrote a code entry into a
501 // JSFunction. Only scratch is clobbered by the operation.
502 void RecordWriteCodeEntryField(Register js_function, Register code_entry,
503 Register scratch);
504
505 void RecordWriteForMap(
506 Register object,
507 Register map,
508 Register dst,
509 RAStatus ra_status,
510 SaveFPRegsMode save_fp);
511
512 // For a given |object| notify the garbage collector that the slot |address|
513 // has been written. |value| is the object being stored. The value and
514 // address registers are clobbered by the operation.
515 void RecordWrite(
516 Register object,
517 Register address,
518 Register value,
519 RAStatus ra_status,
520 SaveFPRegsMode save_fp,
521 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
522 SmiCheck smi_check = INLINE_SMI_CHECK,
523 PointersToHereCheck pointers_to_here_check_for_value =
524 kPointersToHereMaybeInteresting);
525
526
527 // ---------------------------------------------------------------------------
528 // Inline caching support.
529
530 void GetNumberHash(Register reg0, Register scratch);
531
MarkCode(NopMarkerTypes type)532 inline void MarkCode(NopMarkerTypes type) {
533 nop(type);
534 }
535
536 // Check if the given instruction is a 'type' marker.
537 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
538 // nop(type)). These instructions are generated to mark special location in
539 // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)540 static inline bool IsMarkedCode(Instr instr, int type) {
541 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
542 return IsNop(instr, type);
543 }
544
545
GetCodeMarker(Instr instr)546 static inline int GetCodeMarker(Instr instr) {
547 uint32_t opcode = ((instr & kOpcodeMask));
548 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
549 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
550 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
551
552 // Return <n> if we have a sll zero_reg, zero_reg, n
553 // else return -1.
554 bool sllzz = (opcode == SLL &&
555 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
556 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
557 int type =
558 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
559 DCHECK((type == -1) ||
560 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
561 return type;
562 }
563
564
565
566 // ---------------------------------------------------------------------------
567 // Allocation support.
568
569 // Allocate an object in new space or old space. The object_size is
570 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
571 // is passed. If the space is exhausted control continues at the gc_required
572 // label. The allocated object is returned in result. If the flag
573 // tag_allocated_object is true the result is tagged as as a heap object.
574 // All registers are clobbered also when control continues at the gc_required
575 // label.
576 void Allocate(int object_size,
577 Register result,
578 Register scratch1,
579 Register scratch2,
580 Label* gc_required,
581 AllocationFlags flags);
582
583 void Allocate(Register object_size, Register result, Register result_end,
584 Register scratch, Label* gc_required, AllocationFlags flags);
585
586 // FastAllocate is right now only used for folded allocations. It just
587 // increments the top pointer without checking against limit. This can only
588 // be done if it was proved earlier that the allocation will succeed.
589 void FastAllocate(int object_size, Register result, Register scratch1,
590 Register scratch2, AllocationFlags flags);
591
592 void FastAllocate(Register object_size, Register result, Register result_new,
593 Register scratch, AllocationFlags flags);
594
595 void AllocateTwoByteString(Register result,
596 Register length,
597 Register scratch1,
598 Register scratch2,
599 Register scratch3,
600 Label* gc_required);
601 void AllocateOneByteString(Register result, Register length,
602 Register scratch1, Register scratch2,
603 Register scratch3, Label* gc_required);
604 void AllocateTwoByteConsString(Register result,
605 Register length,
606 Register scratch1,
607 Register scratch2,
608 Label* gc_required);
609 void AllocateOneByteConsString(Register result, Register length,
610 Register scratch1, Register scratch2,
611 Label* gc_required);
612 void AllocateTwoByteSlicedString(Register result,
613 Register length,
614 Register scratch1,
615 Register scratch2,
616 Label* gc_required);
617 void AllocateOneByteSlicedString(Register result, Register length,
618 Register scratch1, Register scratch2,
619 Label* gc_required);
620
621 // Allocates a heap number or jumps to the gc_required label if the young
622 // space is full and a scavenge is needed. All registers are clobbered also
623 // when control continues at the gc_required label.
624 void AllocateHeapNumber(Register result,
625 Register scratch1,
626 Register scratch2,
627 Register heap_number_map,
628 Label* gc_required,
629 MutableMode mode = IMMUTABLE);
630
631 void AllocateHeapNumberWithValue(Register result,
632 FPURegister value,
633 Register scratch1,
634 Register scratch2,
635 Label* gc_required);
636
637 // Allocate and initialize a JSValue wrapper with the specified {constructor}
638 // and {value}.
639 void AllocateJSValue(Register result, Register constructor, Register value,
640 Register scratch1, Register scratch2,
641 Label* gc_required);
642
643 // ---------------------------------------------------------------------------
644 // Instruction macros.
645
646 #define DEFINE_INSTRUCTION(instr) \
647 void instr(Register rd, Register rs, const Operand& rt); \
648 void instr(Register rd, Register rs, Register rt) { \
649 instr(rd, rs, Operand(rt)); \
650 } \
651 void instr(Register rs, Register rt, int32_t j) { \
652 instr(rs, rt, Operand(j)); \
653 }
654
655 #define DEFINE_INSTRUCTION2(instr) \
656 void instr(Register rs, const Operand& rt); \
657 void instr(Register rs, Register rt) { \
658 instr(rs, Operand(rt)); \
659 } \
660 void instr(Register rs, int32_t j) { \
661 instr(rs, Operand(j)); \
662 }
663
664 DEFINE_INSTRUCTION(Addu);
665 DEFINE_INSTRUCTION(Daddu);
666 DEFINE_INSTRUCTION(Div);
667 DEFINE_INSTRUCTION(Divu);
668 DEFINE_INSTRUCTION(Ddivu);
669 DEFINE_INSTRUCTION(Mod);
670 DEFINE_INSTRUCTION(Modu);
671 DEFINE_INSTRUCTION(Ddiv);
672 DEFINE_INSTRUCTION(Subu);
673 DEFINE_INSTRUCTION(Dsubu);
674 DEFINE_INSTRUCTION(Dmod);
675 DEFINE_INSTRUCTION(Dmodu);
676 DEFINE_INSTRUCTION(Mul);
677 DEFINE_INSTRUCTION(Mulh);
678 DEFINE_INSTRUCTION(Mulhu);
679 DEFINE_INSTRUCTION(Dmul);
680 DEFINE_INSTRUCTION(Dmulh);
681 DEFINE_INSTRUCTION2(Mult);
682 DEFINE_INSTRUCTION2(Dmult);
683 DEFINE_INSTRUCTION2(Multu);
684 DEFINE_INSTRUCTION2(Dmultu);
685 DEFINE_INSTRUCTION2(Div);
686 DEFINE_INSTRUCTION2(Ddiv);
687 DEFINE_INSTRUCTION2(Divu);
688 DEFINE_INSTRUCTION2(Ddivu);
689
690 DEFINE_INSTRUCTION(And);
691 DEFINE_INSTRUCTION(Or);
692 DEFINE_INSTRUCTION(Xor);
693 DEFINE_INSTRUCTION(Nor);
694 DEFINE_INSTRUCTION2(Neg);
695
696 DEFINE_INSTRUCTION(Slt);
697 DEFINE_INSTRUCTION(Sltu);
698
699 // MIPS32 R2 instruction macro.
700 DEFINE_INSTRUCTION(Ror);
701 DEFINE_INSTRUCTION(Dror);
702
703 #undef DEFINE_INSTRUCTION
704 #undef DEFINE_INSTRUCTION2
705 #undef DEFINE_INSTRUCTION3
706
707 // Load Scaled Address instructions. Parameter sa (shift argument) must be
708 // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
709 // may be clobbered.
710 void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
711 Register scratch = at);
712 void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
713 Register scratch = at);
714
715 void Pref(int32_t hint, const MemOperand& rs);
716
717
718 // ---------------------------------------------------------------------------
719 // Pseudo-instructions.
720
721 // Change endianness
722 void ByteSwapSigned(Register dest, Register src, int operand_size);
723 void ByteSwapUnsigned(Register dest, Register src, int operand_size);
724
mov(Register rd,Register rt)725 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
726
727 void Ulh(Register rd, const MemOperand& rs);
728 void Ulhu(Register rd, const MemOperand& rs);
729 void Ush(Register rd, const MemOperand& rs, Register scratch);
730
731 void Ulw(Register rd, const MemOperand& rs);
732 void Ulwu(Register rd, const MemOperand& rs);
733 void Usw(Register rd, const MemOperand& rs);
734
735 void Uld(Register rd, const MemOperand& rs);
736 void Usd(Register rd, const MemOperand& rs);
737
738 void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
739 void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
740
741 void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
742 void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
743
744 void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
745 void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
746
747 // Load int32 in the rd register.
748 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
749 inline bool LiLower32BitHelper(Register rd, Operand j);
750 inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
751 li(rd, Operand(j), mode);
752 }
753 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
754
755 // Push multiple registers on the stack.
756 // Registers are saved in numerical order, with higher numbered registers
757 // saved in higher memory addresses.
758 void MultiPush(RegList regs);
759 void MultiPushReversed(RegList regs);
760
761 void MultiPushFPU(RegList regs);
762 void MultiPushReversedFPU(RegList regs);
763
push(Register src)764 void push(Register src) {
765 Daddu(sp, sp, Operand(-kPointerSize));
766 sd(src, MemOperand(sp, 0));
767 }
Push(Register src)768 void Push(Register src) { push(src); }
769
770 // Push a handle.
771 void Push(Handle<Object> handle);
Push(Smi * smi)772 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
773
774 // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)775 void Push(Register src1, Register src2) {
776 Dsubu(sp, sp, Operand(2 * kPointerSize));
777 sd(src1, MemOperand(sp, 1 * kPointerSize));
778 sd(src2, MemOperand(sp, 0 * kPointerSize));
779 }
780
781 // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)782 void Push(Register src1, Register src2, Register src3) {
783 Dsubu(sp, sp, Operand(3 * kPointerSize));
784 sd(src1, MemOperand(sp, 2 * kPointerSize));
785 sd(src2, MemOperand(sp, 1 * kPointerSize));
786 sd(src3, MemOperand(sp, 0 * kPointerSize));
787 }
788
789 // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)790 void Push(Register src1, Register src2, Register src3, Register src4) {
791 Dsubu(sp, sp, Operand(4 * kPointerSize));
792 sd(src1, MemOperand(sp, 3 * kPointerSize));
793 sd(src2, MemOperand(sp, 2 * kPointerSize));
794 sd(src3, MemOperand(sp, 1 * kPointerSize));
795 sd(src4, MemOperand(sp, 0 * kPointerSize));
796 }
797
798 // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)799 void Push(Register src1, Register src2, Register src3, Register src4,
800 Register src5) {
801 Dsubu(sp, sp, Operand(5 * kPointerSize));
802 sd(src1, MemOperand(sp, 4 * kPointerSize));
803 sd(src2, MemOperand(sp, 3 * kPointerSize));
804 sd(src3, MemOperand(sp, 2 * kPointerSize));
805 sd(src4, MemOperand(sp, 1 * kPointerSize));
806 sd(src5, MemOperand(sp, 0 * kPointerSize));
807 }
808
Push(Register src,Condition cond,Register tst1,Register tst2)809 void Push(Register src, Condition cond, Register tst1, Register tst2) {
810 // Since we don't have conditional execution we use a Branch.
811 Branch(3, cond, tst1, Operand(tst2));
812 Dsubu(sp, sp, Operand(kPointerSize));
813 sd(src, MemOperand(sp, 0));
814 }
815
816 void PushRegisterAsTwoSmis(Register src, Register scratch = at);
817 void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
818
819 // Pops multiple values from the stack and load them in the
820 // registers specified in regs. Pop order is the opposite as in MultiPush.
821 void MultiPop(RegList regs);
822 void MultiPopReversed(RegList regs);
823
824 void MultiPopFPU(RegList regs);
825 void MultiPopReversedFPU(RegList regs);
826
pop(Register dst)827 void pop(Register dst) {
828 ld(dst, MemOperand(sp, 0));
829 Daddu(sp, sp, Operand(kPointerSize));
830 }
Pop(Register dst)831 void Pop(Register dst) { pop(dst); }
832
833 // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)834 void Pop(Register src1, Register src2) {
835 DCHECK(!src1.is(src2));
836 ld(src2, MemOperand(sp, 0 * kPointerSize));
837 ld(src1, MemOperand(sp, 1 * kPointerSize));
838 Daddu(sp, sp, 2 * kPointerSize);
839 }
840
841 // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)842 void Pop(Register src1, Register src2, Register src3) {
843 ld(src3, MemOperand(sp, 0 * kPointerSize));
844 ld(src2, MemOperand(sp, 1 * kPointerSize));
845 ld(src1, MemOperand(sp, 2 * kPointerSize));
846 Daddu(sp, sp, 3 * kPointerSize);
847 }
848
849 void Pop(uint32_t count = 1) {
850 Daddu(sp, sp, Operand(count * kPointerSize));
851 }
852
853 // Push a fixed frame, consisting of ra, fp.
854 void PushCommonFrame(Register marker_reg = no_reg);
855
856 // Push a standard frame, consisting of ra, fp, context and JS function.
857 void PushStandardFrame(Register function_reg);
858
859 void PopCommonFrame(Register marker_reg = no_reg);
860
861 // Push and pop the registers that can hold pointers, as defined by the
862 // RegList constant kSafepointSavedRegisters.
863 void PushSafepointRegisters();
864 void PopSafepointRegisters();
865 // Store value in register src in the safepoint stack slot for
866 // register dst.
867 void StoreToSafepointRegisterSlot(Register src, Register dst);
868 // Load the value of the src register from its safepoint stack slot
869 // into register dst.
870 void LoadFromSafepointRegisterSlot(Register dst, Register src);
871
872 // MIPS64 R2 instruction macro.
873 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
874 void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
875 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
876
877 void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size);
878
879 void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
880 void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
881 void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
882 void Neg_s(FPURegister fd, FPURegister fs);
883 void Neg_d(FPURegister fd, FPURegister fs);
884
885 // MIPS64 R6 instruction macros.
886 void Bovc(Register rt, Register rs, Label* L);
887 void Bnvc(Register rt, Register rs, Label* L);
888
889 // ---------------------------------------------------------------------------
890 // FPU macros. These do not handle special cases like NaN or +- inf.
891
892 // Convert unsigned word to double.
893 void Cvt_d_uw(FPURegister fd, FPURegister fs);
894 void Cvt_d_uw(FPURegister fd, Register rs);
895
896 // Convert unsigned long to double.
897 void Cvt_d_ul(FPURegister fd, FPURegister fs);
898 void Cvt_d_ul(FPURegister fd, Register rs);
899
900 // Convert unsigned word to float.
901 void Cvt_s_uw(FPURegister fd, FPURegister fs);
902 void Cvt_s_uw(FPURegister fd, Register rs);
903
904 // Convert unsigned long to float.
905 void Cvt_s_ul(FPURegister fd, FPURegister fs);
906 void Cvt_s_ul(FPURegister fd, Register rs);
907
908 // Convert double to unsigned long.
909 void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
910
911 void Trunc_l_d(FPURegister fd, FPURegister fs);
912 void Round_l_d(FPURegister fd, FPURegister fs);
913 void Floor_l_d(FPURegister fd, FPURegister fs);
914 void Ceil_l_d(FPURegister fd, FPURegister fs);
915
916 // Convert double to unsigned word.
917 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
918 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
919
920 // Convert single to unsigned word.
921 void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
922 void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
923
924 // Convert double to unsigned long.
925 void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
926 Register result = no_reg);
927 void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
928 Register result = no_reg);
929
930 // Convert single to unsigned long.
931 void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
932 Register result = no_reg);
933 void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
934 Register result = no_reg);
935
936 void Trunc_w_d(FPURegister fd, FPURegister fs);
937 void Round_w_d(FPURegister fd, FPURegister fs);
938 void Floor_w_d(FPURegister fd, FPURegister fs);
939 void Ceil_w_d(FPURegister fd, FPURegister fs);
940
941 // Preserve value of a NaN operand
942 void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
943 FPURegister ft);
944 void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
945 FPURegister ft);
946
947 void Madd_d(FPURegister fd,
948 FPURegister fr,
949 FPURegister fs,
950 FPURegister ft,
951 FPURegister scratch);
952
953 // Wrapper functions for the different cmp/branch types.
954 inline void BranchF32(Label* target, Label* nan, Condition cc,
955 FPURegister cmp1, FPURegister cmp2,
956 BranchDelaySlot bd = PROTECT) {
957 BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
958 }
959
960 inline void BranchF64(Label* target, Label* nan, Condition cc,
961 FPURegister cmp1, FPURegister cmp2,
962 BranchDelaySlot bd = PROTECT) {
963 BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
964 }
965
966 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)967 inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
968 Condition cc, FPURegister cmp1, FPURegister cmp2) {
969 BranchF64(target, nan, cc, cmp1, cmp2, bd);
970 }
971
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)972 inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
973 Condition cc, FPURegister cmp1, FPURegister cmp2) {
974 BranchF32(target, nan, cc, cmp1, cmp2, bd);
975 }
976
977 // Alias functions for backward compatibility.
978 inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
979 FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
980 BranchF64(target, nan, cc, cmp1, cmp2, bd);
981 }
982
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)983 inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
984 Condition cc, FPURegister cmp1, FPURegister cmp2) {
985 BranchF64(bd, target, nan, cc, cmp1, cmp2);
986 }
987
988 // Truncates a double using a specific rounding mode, and writes the value
989 // to the result register.
990 // The except_flag will contain any exceptions caused by the instruction.
991 // If check_inexact is kDontCheckForInexactConversion, then the inexact
992 // exception is masked.
993 void EmitFPUTruncate(FPURoundingMode rounding_mode,
994 Register result,
995 DoubleRegister double_input,
996 Register scratch,
997 DoubleRegister double_scratch,
998 Register except_flag,
999 CheckForInexactConversion check_inexact
1000 = kDontCheckForInexactConversion);
1001
1002 // Performs a truncating conversion of a floating point number as used by
1003 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1004 // succeeds, otherwise falls through if result is saturated. On return
1005 // 'result' either holds answer, or is clobbered on fall through.
1006 //
1007 // Only public for the test code in test-code-stubs-arm.cc.
1008 void TryInlineTruncateDoubleToI(Register result,
1009 DoubleRegister input,
1010 Label* done);
1011
1012 // Performs a truncating conversion of a floating point number as used by
1013 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1014 // Exits with 'result' holding the answer.
1015 void TruncateDoubleToI(Register result, DoubleRegister double_input);
1016
1017 // Performs a truncating conversion of a heap number as used by
1018 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1019 // must be different registers. Exits with 'result' holding the answer.
1020 void TruncateHeapNumberToI(Register result, Register object);
1021
1022 // Converts the smi or heap number in object to an int32 using the rules
1023 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1024 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1025 // different registers.
1026 void TruncateNumberToI(Register object,
1027 Register result,
1028 Register heap_number_map,
1029 Register scratch,
1030 Label* not_int32);
1031
1032 // Loads the number from object into dst register.
1033 // If |object| is neither smi nor heap number, |not_number| is jumped to
1034 // with |object| still intact.
1035 void LoadNumber(Register object,
1036 FPURegister dst,
1037 Register heap_number_map,
1038 Register scratch,
1039 Label* not_number);
1040
1041 // Loads the number from object into double_dst in the double format.
1042 // Control will jump to not_int32 if the value cannot be exactly represented
1043 // by a 32-bit integer.
1044 // Floating point value in the 32-bit integer range that are not exact integer
1045 // won't be loaded.
1046 void LoadNumberAsInt32Double(Register object,
1047 DoubleRegister double_dst,
1048 Register heap_number_map,
1049 Register scratch1,
1050 Register scratch2,
1051 FPURegister double_scratch,
1052 Label* not_int32);
1053
1054 // Loads the number from object into dst as a 32-bit integer.
1055 // Control will jump to not_int32 if the object cannot be exactly represented
1056 // by a 32-bit integer.
1057 // Floating point value in the 32-bit integer range that are not exact integer
1058 // won't be converted.
1059 void LoadNumberAsInt32(Register object,
1060 Register dst,
1061 Register heap_number_map,
1062 Register scratch1,
1063 Register scratch2,
1064 FPURegister double_scratch0,
1065 FPURegister double_scratch1,
1066 Label* not_int32);
1067
1068 // Enter exit frame.
1069 // argc - argument count to be dropped by LeaveExitFrame.
1070 // save_doubles - saves FPU registers on stack, currently disabled.
1071 // stack_space - extra stack space.
1072 void EnterExitFrame(bool save_doubles, int stack_space = 0,
1073 StackFrame::Type frame_type = StackFrame::EXIT);
1074
1075 // Leave the current exit frame.
1076 void LeaveExitFrame(bool save_doubles, Register arg_count,
1077 bool restore_context, bool do_return = NO_EMIT_RETURN,
1078 bool argument_count_is_length = false);
1079
1080 // Get the actual activation frame alignment for target environment.
1081 static int ActivationFrameAlignment();
1082
1083 // Make sure the stack is aligned. Only emits code in debug mode.
1084 void AssertStackIsAligned();
1085
1086 void LoadContext(Register dst, int context_chain_length);
1087
1088 // Load the global object from the current context.
LoadGlobalObject(Register dst)1089 void LoadGlobalObject(Register dst) {
1090 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1091 }
1092
1093 // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1094 void LoadGlobalProxy(Register dst) {
1095 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1096 }
1097
1098 // Conditionally load the cached Array transitioned map of type
1099 // transitioned_kind from the native context if the map in register
1100 // map_in_out is the cached Array map in the native context of
1101 // expected_kind.
1102 void LoadTransitionedArrayMapConditional(
1103 ElementsKind expected_kind,
1104 ElementsKind transitioned_kind,
1105 Register map_in_out,
1106 Register scratch,
1107 Label* no_map_match);
1108
1109 void LoadNativeContextSlot(int index, Register dst);
1110
1111 // Load the initial map from the global function. The registers
1112 // function and map can be the same, function is then overwritten.
1113 void LoadGlobalFunctionInitialMap(Register function,
1114 Register map,
1115 Register scratch);
1116
InitializeRootRegister()1117 void InitializeRootRegister() {
1118 ExternalReference roots_array_start =
1119 ExternalReference::roots_array_start(isolate());
1120 li(kRootRegister, Operand(roots_array_start));
1121 }
1122
1123 // -------------------------------------------------------------------------
1124 // JavaScript invokes.
1125
1126 // Removes current frame and its arguments from the stack preserving
1127 // the arguments and a return address pushed to the stack for the next call.
1128 // Both |callee_args_count| and |caller_args_count_reg| do not include
1129 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1130 // is trashed.
1131 void PrepareForTailCall(const ParameterCount& callee_args_count,
1132 Register caller_args_count_reg, Register scratch0,
1133 Register scratch1);
1134
1135 // Invoke the JavaScript function code by either calling or jumping.
1136 void InvokeFunctionCode(Register function, Register new_target,
1137 const ParameterCount& expected,
1138 const ParameterCount& actual, InvokeFlag flag,
1139 const CallWrapper& call_wrapper);
1140
1141 void FloodFunctionIfStepping(Register fun, Register new_target,
1142 const ParameterCount& expected,
1143 const ParameterCount& actual);
1144
1145 // Invoke the JavaScript function in the given register. Changes the
1146 // current context to the context in the function before invoking.
1147 void InvokeFunction(Register function,
1148 Register new_target,
1149 const ParameterCount& actual,
1150 InvokeFlag flag,
1151 const CallWrapper& call_wrapper);
1152
1153 void InvokeFunction(Register function,
1154 const ParameterCount& expected,
1155 const ParameterCount& actual,
1156 InvokeFlag flag,
1157 const CallWrapper& call_wrapper);
1158
1159 void InvokeFunction(Handle<JSFunction> function,
1160 const ParameterCount& expected,
1161 const ParameterCount& actual,
1162 InvokeFlag flag,
1163 const CallWrapper& call_wrapper);
1164
1165
1166 void IsObjectJSStringType(Register object,
1167 Register scratch,
1168 Label* fail);
1169
1170 void IsObjectNameType(Register object,
1171 Register scratch,
1172 Label* fail);
1173
1174 // -------------------------------------------------------------------------
1175 // Debugger Support.
1176
1177 void DebugBreak();
1178
1179 // -------------------------------------------------------------------------
1180 // Exception handling.
1181
1182 // Push a new stack handler and link into stack handler chain.
1183 void PushStackHandler();
1184
1185 // Unlink the stack handler on top of the stack from the stack handler chain.
1186 // Must preserve the result register.
1187 void PopStackHandler();
1188
1189 // Initialize fields with filler values. Fields starting at |current_address|
1190 // not including |end_address| are overwritten with the value in |filler|. At
1191 // the end the loop, |current_address| takes the value of |end_address|.
1192 void InitializeFieldsWithFiller(Register current_address,
1193 Register end_address, Register filler);
1194
1195 // -------------------------------------------------------------------------
1196 // Support functions.
1197
1198 // Machine code version of Map::GetConstructor().
1199 // |temp| holds |result|'s map when done, and |temp2| its instance type.
1200 void GetMapConstructor(Register result, Register map, Register temp,
1201 Register temp2);
1202
1203 // Try to get function prototype of a function and puts the value in
1204 // the result register. Checks that the function really is a
1205 // function and jumps to the miss label if the fast checks fail. The
1206 // function register will be untouched; the other registers may be
1207 // clobbered.
1208 void TryGetFunctionPrototype(Register function, Register result,
1209 Register scratch, Label* miss);
1210
1211 void GetObjectType(Register function,
1212 Register map,
1213 Register type_reg);
1214
GetInstanceType(Register object_map,Register object_instance_type)1215 void GetInstanceType(Register object_map, Register object_instance_type) {
1216 lbu(object_instance_type,
1217 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1218 }
1219
1220 // Check if a map for a JSObject indicates that the object can have both smi
1221 // and HeapObject elements. Jump to the specified label if it does not.
1222 void CheckFastObjectElements(Register map,
1223 Register scratch,
1224 Label* fail);
1225
1226 // Check if a map for a JSObject indicates that the object has fast smi only
1227 // elements. Jump to the specified label if it does not.
1228 void CheckFastSmiElements(Register map,
1229 Register scratch,
1230 Label* fail);
1231
1232 // Check to see if maybe_number can be stored as a double in
1233 // FastDoubleElements. If it can, store it at the index specified by key in
1234 // the FastDoubleElements array elements. Otherwise jump to fail.
1235 void StoreNumberToDoubleElements(Register value_reg,
1236 Register key_reg,
1237 Register elements_reg,
1238 Register scratch1,
1239 Register scratch2,
1240 Label* fail,
1241 int elements_offset = 0);
1242
1243 // Compare an object's map with the specified map and its transitioned
1244 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1245 // "branch_to" if the result of the comparison is "cond". If multiple map
1246 // compares are required, the compare sequences branches to early_success.
1247 void CompareMapAndBranch(Register obj,
1248 Register scratch,
1249 Handle<Map> map,
1250 Label* early_success,
1251 Condition cond,
1252 Label* branch_to);
1253
1254 // As above, but the map of the object is already loaded into the register
1255 // which is preserved by the code generated.
1256 void CompareMapAndBranch(Register obj_map,
1257 Handle<Map> map,
1258 Label* early_success,
1259 Condition cond,
1260 Label* branch_to);
1261
1262 // Check if the map of an object is equal to a specified map and branch to
1263 // label if not. Skip the smi check if not required (object is known to be a
1264 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1265 // against maps that are ElementsKind transition maps of the specificed map.
1266 void CheckMap(Register obj,
1267 Register scratch,
1268 Handle<Map> map,
1269 Label* fail,
1270 SmiCheckType smi_check_type);
1271
1272
1273 void CheckMap(Register obj,
1274 Register scratch,
1275 Heap::RootListIndex index,
1276 Label* fail,
1277 SmiCheckType smi_check_type);
1278
1279 // Check if the map of an object is equal to a specified weak map and branch
1280 // to a specified target if equal. Skip the smi check if not required
1281 // (object is known to be a heap object)
1282 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1283 Handle<WeakCell> cell, Handle<Code> success,
1284 SmiCheckType smi_check_type);
1285
1286 // If the value is a NaN, canonicalize the value else, do nothing.
1287 void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1288
1289
1290 // Get value of the weak cell.
1291 void GetWeakValue(Register value, Handle<WeakCell> cell);
1292
1293 // Load the value of the weak cell in the value register. Branch to the
1294 // given miss label is the weak cell was cleared.
1295 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1296
1297 // Load and check the instance type of an object for being a string.
1298 // Loads the type into the second argument register.
1299 // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1300 Condition IsObjectStringType(Register obj,
1301 Register type,
1302 Register result) {
1303 ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1304 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1305 And(type, type, Operand(kIsNotStringMask));
1306 DCHECK_EQ(0u, kStringTag);
1307 return eq;
1308 }
1309
1310 // Get the number of least significant bits from a register.
1311 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1312 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1313
1314 // Load the value of a number object into a FPU double register. If the
1315 // object is not a number a jump to the label not_number is performed
1316 // and the FPU double register is unchanged.
1317 void ObjectToDoubleFPURegister(
1318 Register object,
1319 FPURegister value,
1320 Register scratch1,
1321 Register scratch2,
1322 Register heap_number_map,
1323 Label* not_number,
1324 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1325
1326 // Load the value of a smi object into a FPU double register. The register
1327 // scratch1 can be the same register as smi in which case smi will hold the
1328 // untagged value afterwards.
1329 void SmiToDoubleFPURegister(Register smi,
1330 FPURegister value,
1331 Register scratch1);
1332
1333 // -------------------------------------------------------------------------
1334 // Overflow handling functions.
1335 // Usage: first call the appropriate arithmetic function, then call one of the
1336 // jump functions with the overflow_dst register as the second parameter.
1337
1338 inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1339 Label* overflow_label, Register scratch = at) {
1340 AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1341 }
1342
1343 inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1344 Label* no_overflow_label, Register scratch = at) {
1345 AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1346 }
1347
1348 void AddBranchOvf(Register dst, Register left, const Operand& right,
1349 Label* overflow_label, Label* no_overflow_label,
1350 Register scratch = at);
1351
1352 void AddBranchOvf(Register dst, Register left, Register right,
1353 Label* overflow_label, Label* no_overflow_label,
1354 Register scratch = at);
1355
1356 inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1357 Label* overflow_label, Register scratch = at) {
1358 SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1359 }
1360
1361 inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1362 Label* no_overflow_label, Register scratch = at) {
1363 SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1364 }
1365
1366 void SubBranchOvf(Register dst, Register left, const Operand& right,
1367 Label* overflow_label, Label* no_overflow_label,
1368 Register scratch = at);
1369
1370 void SubBranchOvf(Register dst, Register left, Register right,
1371 Label* overflow_label, Label* no_overflow_label,
1372 Register scratch = at);
1373
1374 inline void MulBranchOvf(Register dst, Register left, const Operand& right,
1375 Label* overflow_label, Register scratch = at) {
1376 MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1377 }
1378
1379 inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
1380 Label* no_overflow_label, Register scratch = at) {
1381 MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1382 }
1383
1384 void MulBranchOvf(Register dst, Register left, const Operand& right,
1385 Label* overflow_label, Label* no_overflow_label,
1386 Register scratch = at);
1387
1388 void MulBranchOvf(Register dst, Register left, Register right,
1389 Label* overflow_label, Label* no_overflow_label,
1390 Register scratch = at);
1391
1392 inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1393 Label* overflow_label, Register scratch = at) {
1394 DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1395 }
1396
1397 inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1398 Label* no_overflow_label, Register scratch = at) {
1399 DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1400 }
1401
1402 void DaddBranchOvf(Register dst, Register left, const Operand& right,
1403 Label* overflow_label, Label* no_overflow_label,
1404 Register scratch = at);
1405
1406 void DaddBranchOvf(Register dst, Register left, Register right,
1407 Label* overflow_label, Label* no_overflow_label,
1408 Register scratch = at);
1409
1410 inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1411 Label* overflow_label, Register scratch = at) {
1412 DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1413 }
1414
1415 inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1416 Label* no_overflow_label, Register scratch = at) {
1417 DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1418 }
1419
1420 void DsubBranchOvf(Register dst, Register left, const Operand& right,
1421 Label* overflow_label, Label* no_overflow_label,
1422 Register scratch = at);
1423
1424 void DsubBranchOvf(Register dst, Register left, Register right,
1425 Label* overflow_label, Label* no_overflow_label,
1426 Register scratch = at);
1427
1428 void BranchOnOverflow(Label* label,
1429 Register overflow_check,
1430 BranchDelaySlot bd = PROTECT) {
1431 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1432 }
1433
1434 void BranchOnNoOverflow(Label* label,
1435 Register overflow_check,
1436 BranchDelaySlot bd = PROTECT) {
1437 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1438 }
1439
1440 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1441 Ret(lt, overflow_check, Operand(zero_reg), bd);
1442 }
1443
1444 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1445 Ret(ge, overflow_check, Operand(zero_reg), bd);
1446 }
1447
1448 // -------------------------------------------------------------------------
1449 // Runtime calls.
1450
1451 // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1452 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1453
PrepareCEntryFunction(const ExternalReference & ref)1454 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1455 li(a1, Operand(ref));
1456 }
1457
1458 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1459 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1460
1461 // Call a code stub.
1462 void CallStub(CodeStub* stub,
1463 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1464 COND_ARGS);
1465
1466 // Tail call a code stub (jump).
1467 void TailCallStub(CodeStub* stub, COND_ARGS);
1468
1469 #undef COND_ARGS
1470
1471 void CallJSExitStub(CodeStub* stub);
1472
1473 // Call a runtime routine.
1474 void CallRuntime(const Runtime::Function* f, int num_arguments,
1475 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1476 BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1477 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1478 const Runtime::Function* function = Runtime::FunctionForId(fid);
1479 CallRuntime(function, function->nargs, kSaveFPRegs);
1480 }
1481
1482 // Convenience function: Same as above, but takes the fid instead.
1483 void CallRuntime(Runtime::FunctionId fid,
1484 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1485 BranchDelaySlot bd = PROTECT) {
1486 const Runtime::Function* function = Runtime::FunctionForId(fid);
1487 CallRuntime(function, function->nargs, save_doubles, bd);
1488 }
1489
1490 // Convenience function: Same as above, but takes the fid instead.
1491 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1492 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1493 BranchDelaySlot bd = PROTECT) {
1494 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1495 }
1496
1497 // Convenience function: call an external reference.
1498 void CallExternalReference(const ExternalReference& ext,
1499 int num_arguments,
1500 BranchDelaySlot bd = PROTECT);
1501
1502 // Convenience function: tail call a runtime routine (jump).
1503 void TailCallRuntime(Runtime::FunctionId fid);
1504
1505 int CalculateStackPassedWords(int num_reg_arguments,
1506 int num_double_arguments);
1507
1508 // Before calling a C-function from generated code, align arguments on stack
1509 // and add space for the four mips argument slots.
1510 // After aligning the frame, non-register arguments must be stored on the
1511 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1512 // The argument count assumes all arguments are word sized.
1513 // Some compilers/platforms require the stack to be aligned when calling
1514 // C++ code.
1515 // Needs a scratch register to do some arithmetic. This register will be
1516 // trashed.
1517 void PrepareCallCFunction(int num_reg_arguments,
1518 int num_double_registers,
1519 Register scratch);
1520 void PrepareCallCFunction(int num_reg_arguments,
1521 Register scratch);
1522
1523 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1524 // Arguments 5..n are stored to stack using following:
1525 // sw(a4, CFunctionArgumentOperand(5));
1526
1527 // Calls a C function and cleans up the space for arguments allocated
1528 // by PrepareCallCFunction. The called function is not allowed to trigger a
1529 // garbage collection, since that might move the code and invalidate the
1530 // return address (unless this is somehow accounted for by the called
1531 // function).
1532 void CallCFunction(ExternalReference function, int num_arguments);
1533 void CallCFunction(Register function, int num_arguments);
1534 void CallCFunction(ExternalReference function,
1535 int num_reg_arguments,
1536 int num_double_arguments);
1537 void CallCFunction(Register function,
1538 int num_reg_arguments,
1539 int num_double_arguments);
1540 void MovFromFloatResult(DoubleRegister dst);
1541 void MovFromFloatParameter(DoubleRegister dst);
1542
1543 // There are two ways of passing double arguments on MIPS, depending on
1544 // whether soft or hard floating point ABI is used. These functions
1545 // abstract parameter passing for the three different ways we call
1546 // C functions from generated code.
1547 void MovToFloatParameter(DoubleRegister src);
1548 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1549 void MovToFloatResult(DoubleRegister src);
1550
1551 // Jump to the builtin routine.
1552 void JumpToExternalReference(const ExternalReference& builtin,
1553 BranchDelaySlot bd = PROTECT,
1554 bool builtin_exit_frame = false);
1555
1556 struct Unresolved {
1557 int pc;
1558 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1559 const char* name;
1560 };
1561
CodeObject()1562 Handle<Object> CodeObject() {
1563 DCHECK(!code_object_.is_null());
1564 return code_object_;
1565 }
1566
1567 // Emit code for a truncating division by a constant. The dividend register is
1568 // unchanged and at gets clobbered. Dividend and result must be different.
1569 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1570
1571 // -------------------------------------------------------------------------
1572 // StatsCounter support.
1573
1574 void SetCounter(StatsCounter* counter, int value,
1575 Register scratch1, Register scratch2);
1576 void IncrementCounter(StatsCounter* counter, int value,
1577 Register scratch1, Register scratch2);
1578 void DecrementCounter(StatsCounter* counter, int value,
1579 Register scratch1, Register scratch2);
1580
1581
1582 // -------------------------------------------------------------------------
1583 // Debugging.
1584
1585 // Calls Abort(msg) if the condition cc is not satisfied.
1586 // Use --debug_code to enable.
1587 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1588 void AssertFastElements(Register elements);
1589
1590 // Like Assert(), but always enabled.
1591 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1592
1593 // Print a message to stdout and abort execution.
1594 void Abort(BailoutReason msg);
1595
1596 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1597 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1598 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1599 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1600 bool has_frame() { return has_frame_; }
1601 inline bool AllowThisStubCall(CodeStub* stub);
1602
1603 // ---------------------------------------------------------------------------
1604 // Number utilities.
1605
1606 // Check whether the value of reg is a power of two and not zero. If not
1607 // control continues at the label not_power_of_two. If reg is a power of two
1608 // the register scratch contains the value of (reg - 1) when control falls
1609 // through.
1610 void JumpIfNotPowerOfTwoOrZero(Register reg,
1611 Register scratch,
1612 Label* not_power_of_two_or_zero);
1613
1614 // -------------------------------------------------------------------------
1615 // Smi utilities.
1616
1617 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1618 void SmiTagCheckOverflow(Register reg, Register overflow);
1619 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1620
SmiTag(Register dst,Register src)1621 void SmiTag(Register dst, Register src) {
1622 STATIC_ASSERT(kSmiTag == 0);
1623 if (SmiValuesAre32Bits()) {
1624 STATIC_ASSERT(kSmiShift == 32);
1625 dsll32(dst, src, 0);
1626 } else {
1627 Addu(dst, src, src);
1628 }
1629 }
1630
SmiTag(Register reg)1631 void SmiTag(Register reg) {
1632 SmiTag(reg, reg);
1633 }
1634
1635 // Try to convert int32 to smi. If the value is to large, preserve
1636 // the original value and jump to not_a_smi. Destroys scratch and
1637 // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1638 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1639 TrySmiTag(reg, reg, scratch, not_a_smi);
1640 }
1641
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1642 void TrySmiTag(Register dst,
1643 Register src,
1644 Register scratch,
1645 Label* not_a_smi) {
1646 if (SmiValuesAre32Bits()) {
1647 SmiTag(dst, src);
1648 } else {
1649 SmiTagCheckOverflow(at, src, scratch);
1650 BranchOnOverflow(not_a_smi, scratch);
1651 mov(dst, at);
1652 }
1653 }
1654
SmiUntag(Register dst,Register src)1655 void SmiUntag(Register dst, Register src) {
1656 if (SmiValuesAre32Bits()) {
1657 STATIC_ASSERT(kSmiShift == 32);
1658 dsra32(dst, src, 0);
1659 } else {
1660 sra(dst, src, kSmiTagSize);
1661 }
1662 }
1663
SmiUntag(Register reg)1664 void SmiUntag(Register reg) {
1665 SmiUntag(reg, reg);
1666 }
1667
1668 // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1669 void SmiScale(Register dst, Register src, int scale) {
1670 if (SmiValuesAre32Bits()) {
1671 // The int portion is upper 32-bits of 64-bit word.
1672 dsra(dst, src, kSmiShift - scale);
1673 } else {
1674 DCHECK(scale >= kSmiTagSize);
1675 sll(dst, src, scale - kSmiTagSize);
1676 }
1677 }
1678
1679 // Combine load with untagging or scaling.
1680 void SmiLoadUntag(Register dst, MemOperand src);
1681
1682 void SmiLoadScale(Register dst, MemOperand src, int scale);
1683
1684 // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1685 void SmiLoadWithScale(Register d_smi,
1686 Register d_scaled,
1687 MemOperand src,
1688 int scale);
1689
1690 // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1691 void SmiLoadUntagWithScale(Register d_int,
1692 Register d_scaled,
1693 MemOperand src,
1694 int scale);
1695
1696
1697 // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1698 inline void SmiTst(Register value, Register scratch) {
1699 And(scratch, value, Operand(kSmiTagMask));
1700 }
NonNegativeSmiTst(Register value,Register scratch)1701 inline void NonNegativeSmiTst(Register value, Register scratch) {
1702 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1703 }
1704
1705 // Untag the source value into destination and jump if source is a smi.
1706 // Source and destination can be the same register.
1707 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1708
1709 // Untag the source value into destination and jump if source is not a smi.
1710 // Source and destination can be the same register.
1711 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1712
1713 // Jump the register contains a smi.
1714 void JumpIfSmi(Register value,
1715 Label* smi_label,
1716 Register scratch = at,
1717 BranchDelaySlot bd = PROTECT);
1718
1719 // Jump if the register contains a non-smi.
1720 void JumpIfNotSmi(Register value,
1721 Label* not_smi_label,
1722 Register scratch = at,
1723 BranchDelaySlot bd = PROTECT);
1724
1725 // Jump if either of the registers contain a non-smi.
1726 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1727 // Jump if either of the registers contain a smi.
1728 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1729
1730 // Abort execution if argument is a number, enabled via --debug-code.
1731 void AssertNotNumber(Register object);
1732
1733 // Abort execution if argument is a smi, enabled via --debug-code.
1734 void AssertNotSmi(Register object);
1735 void AssertSmi(Register object);
1736
1737 // Abort execution if argument is not a string, enabled via --debug-code.
1738 void AssertString(Register object);
1739
1740 // Abort execution if argument is not a name, enabled via --debug-code.
1741 void AssertName(Register object);
1742
1743 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1744 void AssertFunction(Register object);
1745
1746 // Abort execution if argument is not a JSBoundFunction,
1747 // enabled via --debug-code.
1748 void AssertBoundFunction(Register object);
1749
1750 // Abort execution if argument is not a JSGeneratorObject,
1751 // enabled via --debug-code.
1752 void AssertGeneratorObject(Register object);
1753
1754 // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1755 void AssertReceiver(Register object);
1756
1757 // Abort execution if argument is not undefined or an AllocationSite, enabled
1758 // via --debug-code.
1759 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1760
1761 // Abort execution if reg is not the root value with the given index,
1762 // enabled via --debug-code.
1763 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1764
1765 // ---------------------------------------------------------------------------
1766 // HeapNumber utilities.
1767
1768 void JumpIfNotHeapNumber(Register object,
1769 Register heap_number_map,
1770 Register scratch,
1771 Label* on_not_heap_number);
1772
1773 // -------------------------------------------------------------------------
1774 // String utilities.
1775
1776 // Checks if both instance types are sequential one-byte strings and jumps to
1777 // label if either is not.
1778 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1779 Register first_object_instance_type, Register second_object_instance_type,
1780 Register scratch1, Register scratch2, Label* failure);
1781
1782 // Check if instance type is sequential one-byte string and jump to label if
1783 // it is not.
1784 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1785 Label* failure);
1786
1787 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1788
1789 void EmitSeqStringSetCharCheck(Register string,
1790 Register index,
1791 Register value,
1792 Register scratch,
1793 uint32_t encoding_mask);
1794
1795 // Checks if both objects are sequential one-byte strings and jumps to label
1796 // if either is not. Assumes that neither object is a smi.
1797 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1798 Register second,
1799 Register scratch1,
1800 Register scratch2,
1801 Label* failure);
1802
1803 // Checks if both objects are sequential one-byte strings and jumps to label
1804 // if either is not.
1805 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1806 Register scratch1,
1807 Register scratch2,
1808 Label* not_flat_one_byte_strings);
1809
1810 void ClampUint8(Register output_reg, Register input_reg);
1811
1812 void ClampDoubleToUint8(Register result_reg,
1813 DoubleRegister input_reg,
1814 DoubleRegister temp_double_reg);
1815
1816
1817 void LoadInstanceDescriptors(Register map, Register descriptors);
1818 void EnumLength(Register dst, Register map);
1819 void NumberOfOwnDescriptors(Register dst, Register map);
1820 void LoadAccessor(Register dst, Register holder, int accessor_index,
1821 AccessorComponent accessor);
1822
1823 template<typename Field>
DecodeField(Register dst,Register src)1824 void DecodeField(Register dst, Register src) {
1825 Ext(dst, src, Field::kShift, Field::kSize);
1826 }
1827
1828 template<typename Field>
DecodeField(Register reg)1829 void DecodeField(Register reg) {
1830 DecodeField<Field>(reg, reg);
1831 }
1832
1833 template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1834 void DecodeFieldToSmi(Register dst, Register src) {
1835 static const int shift = Field::kShift;
1836 static const int mask = Field::kMask >> shift;
1837 dsrl(dst, src, shift);
1838 And(dst, dst, Operand(mask));
1839 dsll32(dst, dst, 0);
1840 }
1841
1842 template<typename Field>
DecodeFieldToSmi(Register reg)1843 void DecodeFieldToSmi(Register reg) {
1844 DecodeField<Field>(reg, reg);
1845 }
1846 // Generates function and stub prologue code.
1847 void StubPrologue(StackFrame::Type type);
1848 void Prologue(bool code_pre_aging);
1849
1850 // Load the type feedback vector from a JavaScript frame.
1851 void EmitLoadTypeFeedbackVector(Register vector);
1852
1853 // Activation support.
1854 void EnterFrame(StackFrame::Type type);
1855 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1856 void LeaveFrame(StackFrame::Type type);
1857
1858 void EnterBuiltinFrame(Register context, Register target, Register argc);
1859 void LeaveBuiltinFrame(Register context, Register target, Register argc);
1860
1861 // Expects object in a0 and returns map with validated enum cache
1862 // in a0. Assumes that any other register can be used as a scratch.
1863 void CheckEnumCache(Label* call_runtime);
1864
1865 // AllocationMemento support. Arrays may have an associated AllocationMemento
1866 // object that can be checked for in order to pretransition to another type.
1867 // On entry, receiver_reg should point to the array object. scratch_reg gets
1868 // clobbered. If no info is present jump to no_memento_found, otherwise fall
1869 // through.
1870 void TestJSArrayForAllocationMemento(Register receiver_reg,
1871 Register scratch_reg,
1872 Label* no_memento_found);
1873
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1874 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1875 Register scratch_reg,
1876 Label* memento_found) {
1877 Label no_memento_found;
1878 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1879 &no_memento_found);
1880 Branch(memento_found);
1881 bind(&no_memento_found);
1882 }
1883
1884 // Jumps to found label if a prototype map has dictionary elements.
1885 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1886 Register scratch1, Label* found);
1887
IsDoubleZeroRegSet()1888 bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1889
1890 private:
1891 void CallCFunctionHelper(Register function,
1892 int num_reg_arguments,
1893 int num_double_arguments);
1894
1895 inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1896 inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1897 void BranchShortHelperR6(int32_t offset, Label* L);
1898 void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1899 bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1900 Register rs, const Operand& rt);
1901 bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1902 const Operand& rt, BranchDelaySlot bdslot);
1903 bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1904 const Operand& rt, BranchDelaySlot bdslot);
1905
1906 void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1907 void BranchAndLinkShortHelper(int16_t offset, Label* L,
1908 BranchDelaySlot bdslot);
1909 void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1910 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1911 bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1912 Register rs, const Operand& rt);
1913 bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1914 Register rs, const Operand& rt,
1915 BranchDelaySlot bdslot);
1916 bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1917 Register rs, const Operand& rt,
1918 BranchDelaySlot bdslot);
1919 void BranchLong(Label* L, BranchDelaySlot bdslot);
1920 void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1921
1922 // Common implementation of BranchF functions for the different formats.
1923 void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1924 Condition cc, FPURegister cmp1, FPURegister cmp2,
1925 BranchDelaySlot bd = PROTECT);
1926
1927 void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1928 FPURegister cmp1, FPURegister cmp2,
1929 BranchDelaySlot bd = PROTECT);
1930
1931
1932 // Helper functions for generating invokes.
1933 void InvokePrologue(const ParameterCount& expected,
1934 const ParameterCount& actual,
1935 Label* done,
1936 bool* definitely_mismatches,
1937 InvokeFlag flag,
1938 const CallWrapper& call_wrapper);
1939
1940 void InitializeNewString(Register string,
1941 Register length,
1942 Heap::RootListIndex map_index,
1943 Register scratch1,
1944 Register scratch2);
1945
1946 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1947 void InNewSpace(Register object, Register scratch,
1948 Condition cond, // ne for new space, eq otherwise.
1949 Label* branch);
1950
1951 // Helper for finding the mark bits for an address. Afterwards, the
1952 // bitmap register points at the word with the mark bits and the mask
1953 // the position of the first bit. Leaves addr_reg unchanged.
1954 inline void GetMarkBits(Register addr_reg,
1955 Register bitmap_reg,
1956 Register mask_reg);
1957
1958 // Compute memory operands for safepoint stack slots.
1959 static int SafepointRegisterStackIndex(int reg_code);
1960 MemOperand SafepointRegisterSlot(Register reg);
1961 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1962
1963 bool generating_stub_;
1964 bool has_frame_;
1965 bool has_double_zero_reg_set_;
1966 // This handle will be patched with the code object on installation.
1967 Handle<Object> code_object_;
1968
1969 // Needs access to SafepointRegisterStackIndex for compiled frame
1970 // traversal.
1971 friend class StandardFrame;
1972 };
1973
1974
1975 // The code patcher is used to patch (typically) small parts of code e.g. for
1976 // debugging and other types of instrumentation. When using the code patcher
1977 // the exact number of bytes specified must be emitted. It is not legal to emit
1978 // relocation information. If any of these constraints are violated it causes
1979 // an assertion to fail.
1980 class CodePatcher {
1981 public:
1982 enum FlushICache {
1983 FLUSH,
1984 DONT_FLUSH
1985 };
1986
1987 CodePatcher(Isolate* isolate, byte* address, int instructions,
1988 FlushICache flush_cache = FLUSH);
1989 ~CodePatcher();
1990
1991 // Macro assembler to emit code.
masm()1992 MacroAssembler* masm() { return &masm_; }
1993
1994 // Emit an instruction directly.
1995 void Emit(Instr instr);
1996
1997 // Emit an address directly.
1998 void Emit(Address addr);
1999
2000 // Change the condition part of an instruction leaving the rest of the current
2001 // instruction unchanged.
2002 void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
2003
2004 private:
2005 byte* address_; // The address of the code being patched.
2006 int size_; // Number of bytes of the expected patch size.
2007 MacroAssembler masm_; // Macro assembler used to generate the code.
2008 FlushICache flush_cache_; // Whether to flush the I cache after patching.
2009 };
2010
2011 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)2012 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
2013 Func GetLabelFunction) {
2014 // Ensure that dd-ed labels following this instruction use 8 bytes aligned
2015 // addresses.
2016 if (kArchVariant >= kMips64r6) {
2017 BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 6);
2018 // Opposite of Align(8) as we have odd number of instructions in this case.
2019 if ((pc_offset() & 7) == 0) {
2020 nop();
2021 }
2022 addiupc(at, 5);
2023 Dlsa(at, at, index, kPointerSizeLog2);
2024 ld(at, MemOperand(at));
2025 } else {
2026 Label here;
2027 BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 11);
2028 Align(8);
2029 push(ra);
2030 bal(&here);
2031 dsll(at, index, kPointerSizeLog2); // Branch delay slot.
2032 bind(&here);
2033 daddu(at, at, ra);
2034 pop(ra);
2035 ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
2036 }
2037 jr(at);
2038 nop(); // Branch delay slot nop.
2039 for (size_t index = 0; index < case_count; ++index) {
2040 dd(GetLabelFunction(index));
2041 }
2042 }
2043
2044 #define ACCESS_MASM(masm) masm->
2045
2046 } // namespace internal
2047 } // namespace v8
2048
2049 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
2050