• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7 
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30 
31 // Forward declaration.
32 class JumpTarget;
33 
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45 
46 
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49   EMIT_RETURN = true,
50   NO_EMIT_RETURN = false
51 };
52 
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55   // Tag the result.
56   TAG_RESULT,
57   // Don't tag
58   DONT_TAG_RESULT
59 };
60 
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63   // No special flags.
64   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65   // Object is known to be a non smi.
66   OBJECT_NOT_SMI = 1 << 0,
67   // Don't load NaNs or infinities, branch to the non number case instead.
68   AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70 
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73   USE_DELAY_SLOT,
74   PROTECT
75 };
76 
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79   // If the constant value can be represented in just 16 bits, then
80   // optimize the li to use a single instruction, rather than lui/ori/dsll
81   // sequence.
82   OPTIMIZE_SIZE = 0,
83   // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
84   // could be loaded with just one, so that this value is patchable later.
85   CONSTANT_SIZE = 1,
86   // For address loads only 4 instruction are required. Used to mark
87   // constant load that will be used as address without relocation
88   // information. It ensures predictable code size, so specific sites
89   // in code are patchable.
90   ADDRESS_LOAD  = 2
91 };
92 
93 
94 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
95 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
96 enum PointersToHereCheck {
97   kPointersToHereMaybeInteresting,
98   kPointersToHereAreAlwaysInteresting
99 };
100 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
101 
102 Register GetRegisterThatIsNotOneOf(Register reg1,
103                                    Register reg2 = no_reg,
104                                    Register reg3 = no_reg,
105                                    Register reg4 = no_reg,
106                                    Register reg5 = no_reg,
107                                    Register reg6 = no_reg);
108 
109 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
110                 Register reg4 = no_reg, Register reg5 = no_reg,
111                 Register reg6 = no_reg, Register reg7 = no_reg,
112                 Register reg8 = no_reg, Register reg9 = no_reg,
113                 Register reg10 = no_reg);
114 
115 
116 // -----------------------------------------------------------------------------
117 // Static helper functions.
118 
119 #if defined(V8_TARGET_LITTLE_ENDIAN)
120 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
121 #else
122 #define SmiWordOffset(offset) offset
123 #endif
124 
125 
ContextMemOperand(Register context,int index)126 inline MemOperand ContextMemOperand(Register context, int index) {
127   return MemOperand(context, Context::SlotOffset(index));
128 }
129 
130 
NativeContextMemOperand()131 inline MemOperand NativeContextMemOperand() {
132   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
133 }
134 
135 
136 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)137 inline MemOperand FieldMemOperand(Register object, int offset) {
138   return MemOperand(object, offset - kHeapObjectTag);
139 }
140 
141 
UntagSmiMemOperand(Register rm,int offset)142 inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
143   // Assumes that Smis are shifted by 32 bits.
144   STATIC_ASSERT(kSmiShift == 32);
145   return MemOperand(rm, SmiWordOffset(offset));
146 }
147 
148 
UntagSmiFieldMemOperand(Register rm,int offset)149 inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
150   return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
151 }
152 
153 
154 // Generate a MemOperand for storing arguments 5..N on the stack
155 // when calling CallCFunction().
156 // TODO(plind): Currently ONLY used for O32. Should be fixed for
157 //              n64, and used in RegExp code, and other places
158 //              with more than 8 arguments.
CFunctionArgumentOperand(int index)159 inline MemOperand CFunctionArgumentOperand(int index) {
160   DCHECK(index > kCArgSlotCount);
161   // Argument 5 takes the slot just past the four Arg-slots.
162   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
163   return MemOperand(sp, offset);
164 }
165 
166 
167 // MacroAssembler implements a collection of frequently used macros.
168 class MacroAssembler: public Assembler {
169  public:
170   MacroAssembler(Isolate* isolate, void* buffer, int size,
171                  CodeObjectRequired create_code_object);
172 
173   // Arguments macros.
174 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
175 #define COND_ARGS cond, r1, r2
176 
177   // Cases when relocation is not needed.
178 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
179   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
180   inline void Name(BranchDelaySlot bd, target_type target) { \
181     Name(target, bd); \
182   } \
183   void Name(target_type target, \
184             COND_TYPED_ARGS, \
185             BranchDelaySlot bd = PROTECT); \
186   inline void Name(BranchDelaySlot bd, \
187                    target_type target, \
188                    COND_TYPED_ARGS) { \
189     Name(target, COND_ARGS, bd); \
190   }
191 
192 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
193   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
194   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
195 
196   DECLARE_BRANCH_PROTOTYPES(Branch)
197   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
198   DECLARE_BRANCH_PROTOTYPES(BranchShort)
199 
200 #undef DECLARE_BRANCH_PROTOTYPES
201 #undef COND_TYPED_ARGS
202 #undef COND_ARGS
203 
204 
205   // Jump, Call, and Ret pseudo instructions implementing inter-working.
206 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
207   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
208 
209   void Jump(Register target, COND_ARGS);
210   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
211   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
212   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
213   static int CallSize(Register target, COND_ARGS);
214   void Call(Register target, COND_ARGS);
215   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
216   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
217   int CallSize(Handle<Code> code,
218                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
219                TypeFeedbackId ast_id = TypeFeedbackId::None(),
220                COND_ARGS);
221   void Call(Handle<Code> code,
222             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
223             TypeFeedbackId ast_id = TypeFeedbackId::None(),
224             COND_ARGS);
225   void Ret(COND_ARGS);
226   inline void Ret(BranchDelaySlot bd, Condition cond = al,
227     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
228     Ret(cond, rs, rt, bd);
229   }
230 
231   bool IsNear(Label* L, Condition cond, int rs_reg);
232 
233   void Branch(Label* L,
234               Condition cond,
235               Register rs,
236               Heap::RootListIndex index,
237               BranchDelaySlot bdslot = PROTECT);
238 
239   // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
240   // functor/function with 'Label *func(size_t index)' declaration.
241   template <typename Func>
242   void GenerateSwitchTable(Register index, size_t case_count,
243                            Func GetLabelFunction);
244 #undef COND_ARGS
245 
246   // Emit code that loads |parameter_index|'th parameter from the stack to
247   // the register according to the CallInterfaceDescriptor definition.
248   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
249   // below the caller's sp.
250   template <class Descriptor>
251   void LoadParameterFromStack(
252       Register reg, typename Descriptor::ParameterIndices parameter_index,
253       int sp_to_ra_offset_in_words = 0) {
254     DCHECK(Descriptor::kPassLastArgsOnStack);
255     UNIMPLEMENTED();
256   }
257 
258   // Emit code to discard a non-negative number of pointer-sized elements
259   // from the stack, clobbering only the sp register.
260   void Drop(int count,
261             Condition cond = cc_always,
262             Register reg = no_reg,
263             const Operand& op = Operand(no_reg));
264 
265   // Trivial case of DropAndRet that utilizes the delay slot and only emits
266   // 2 instructions.
267   void DropAndRet(int drop);
268 
269   void DropAndRet(int drop,
270                   Condition cond,
271                   Register reg,
272                   const Operand& op);
273 
274   // Swap two registers.  If the scratch register is omitted then a slightly
275   // less efficient form using xor instead of mov is emitted.
276   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
277 
278   void Call(Label* target);
279 
Move(Register dst,Handle<Object> handle)280   inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)281   inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
282 
Move(Register dst,Register src)283   inline void Move(Register dst, Register src) {
284     if (!dst.is(src)) {
285       mov(dst, src);
286     }
287   }
288 
Move_d(FPURegister dst,FPURegister src)289   inline void Move_d(FPURegister dst, FPURegister src) {
290     if (!dst.is(src)) {
291       mov_d(dst, src);
292     }
293   }
294 
Move_s(FPURegister dst,FPURegister src)295   inline void Move_s(FPURegister dst, FPURegister src) {
296     if (!dst.is(src)) {
297       mov_s(dst, src);
298     }
299   }
300 
Move(FPURegister dst,FPURegister src)301   inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
302 
Move(Register dst_low,Register dst_high,FPURegister src)303   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
304     mfc1(dst_low, src);
305     mfhc1(dst_high, src);
306   }
307 
Move(Register dst,FPURegister src)308   inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
309 
Move(FPURegister dst,Register src)310   inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
311 
FmoveHigh(Register dst_high,FPURegister src)312   inline void FmoveHigh(Register dst_high, FPURegister src) {
313     mfhc1(dst_high, src);
314   }
315 
FmoveHigh(FPURegister dst,Register src_high)316   inline void FmoveHigh(FPURegister dst, Register src_high) {
317     mthc1(src_high, dst);
318   }
319 
FmoveLow(Register dst_low,FPURegister src)320   inline void FmoveLow(Register dst_low, FPURegister src) {
321     mfc1(dst_low, src);
322   }
323 
324   void FmoveLow(FPURegister dst, Register src_low);
325 
Move(FPURegister dst,Register src_low,Register src_high)326   inline void Move(FPURegister dst, Register src_low, Register src_high) {
327     mtc1(src_low, dst);
328     mthc1(src_high, dst);
329   }
330 
331   void Move(FPURegister dst, float imm);
332   void Move(FPURegister dst, double imm);
333 
334   // Conditional move.
335   void Movz(Register rd, Register rs, Register rt);
336   void Movn(Register rd, Register rs, Register rt);
337   void Movt(Register rd, Register rs, uint16_t cc = 0);
338   void Movf(Register rd, Register rs, uint16_t cc = 0);
339 
340   // Min, Max macros.
341   // On pre-r6 these functions may modify at and t8 registers.
342   void MinNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
343                      Label* nan = nullptr);
344   void MaxNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
345                      Label* nan = nullptr);
346   void MinNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
347                      Label* nan = nullptr);
348   void MaxNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
349                      Label* nan = nullptr);
350 
351   void Clz(Register rd, Register rs);
352 
353   // Jump unconditionally to given label.
354   // We NEED a nop in the branch delay slot, as it used by v8, for example in
355   // CodeGenerator::ProcessDeferred().
356   // Currently the branch delay slot is filled by the MacroAssembler.
357   // Use rather b(Label) for code generation.
jmp(Label * L)358   void jmp(Label* L) {
359     Branch(L);
360   }
361 
362   void Load(Register dst, const MemOperand& src, Representation r);
363   void Store(Register src, const MemOperand& dst, Representation r);
364 
PushRoot(Heap::RootListIndex index)365   void PushRoot(Heap::RootListIndex index) {
366     LoadRoot(at, index);
367     Push(at);
368   }
369 
370   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)371   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
372     LoadRoot(at, index);
373     Branch(if_equal, eq, with, Operand(at));
374   }
375 
376   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)377   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
378                      Label* if_not_equal) {
379     LoadRoot(at, index);
380     Branch(if_not_equal, ne, with, Operand(at));
381   }
382 
383   // Load an object from the root table.
384   void LoadRoot(Register destination,
385                 Heap::RootListIndex index);
386   void LoadRoot(Register destination,
387                 Heap::RootListIndex index,
388                 Condition cond, Register src1, const Operand& src2);
389 
390   // Store an object to the root table.
391   void StoreRoot(Register source,
392                  Heap::RootListIndex index);
393   void StoreRoot(Register source,
394                  Heap::RootListIndex index,
395                  Condition cond, Register src1, const Operand& src2);
396 
397   // ---------------------------------------------------------------------------
398   // GC Support
399 
400   void IncrementalMarkingRecordWriteHelper(Register object,
401                                            Register value,
402                                            Register address);
403 
404   enum RememberedSetFinalAction {
405     kReturnAtEnd,
406     kFallThroughAtEnd
407   };
408 
409 
410   // Record in the remembered set the fact that we have a pointer to new space
411   // at the address pointed to by the addr register.  Only works if addr is not
412   // in new space.
413   void RememberedSetHelper(Register object,  // Used for debug code.
414                            Register addr,
415                            Register scratch,
416                            SaveFPRegsMode save_fp,
417                            RememberedSetFinalAction and_then);
418 
419   void CheckPageFlag(Register object,
420                      Register scratch,
421                      int mask,
422                      Condition cc,
423                      Label* condition_met);
424 
425   // Check if object is in new space.  Jumps if the object is not in new space.
426   // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)427   void JumpIfNotInNewSpace(Register object,
428                            Register scratch,
429                            Label* branch) {
430     InNewSpace(object, scratch, eq, branch);
431   }
432 
433   // Check if object is in new space.  Jumps if the object is in new space.
434   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)435   void JumpIfInNewSpace(Register object,
436                         Register scratch,
437                         Label* branch) {
438     InNewSpace(object, scratch, ne, branch);
439   }
440 
441   // Check if an object has a given incremental marking color.
442   void HasColor(Register object,
443                 Register scratch0,
444                 Register scratch1,
445                 Label* has_color,
446                 int first_bit,
447                 int second_bit);
448 
449   void JumpIfBlack(Register object,
450                    Register scratch0,
451                    Register scratch1,
452                    Label* on_black);
453 
454   // Checks the color of an object.  If the object is white we jump to the
455   // incremental marker.
456   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
457                    Register scratch3, Label* value_is_white);
458 
459   // Notify the garbage collector that we wrote a pointer into an object.
460   // |object| is the object being stored into, |value| is the object being
461   // stored.  value and scratch registers are clobbered by the operation.
462   // The offset is the offset from the start of the object, not the offset from
463   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
464   void RecordWriteField(
465       Register object,
466       int offset,
467       Register value,
468       Register scratch,
469       RAStatus ra_status,
470       SaveFPRegsMode save_fp,
471       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
472       SmiCheck smi_check = INLINE_SMI_CHECK,
473       PointersToHereCheck pointers_to_here_check_for_value =
474           kPointersToHereMaybeInteresting);
475 
476   // As above, but the offset has the tag presubtracted.  For use with
477   // MemOperand(reg, off).
478   inline void RecordWriteContextSlot(
479       Register context,
480       int offset,
481       Register value,
482       Register scratch,
483       RAStatus ra_status,
484       SaveFPRegsMode save_fp,
485       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
486       SmiCheck smi_check = INLINE_SMI_CHECK,
487       PointersToHereCheck pointers_to_here_check_for_value =
488           kPointersToHereMaybeInteresting) {
489     RecordWriteField(context,
490                      offset + kHeapObjectTag,
491                      value,
492                      scratch,
493                      ra_status,
494                      save_fp,
495                      remembered_set_action,
496                      smi_check,
497                      pointers_to_here_check_for_value);
498   }
499 
500   // Notify the garbage collector that we wrote a code entry into a
501   // JSFunction. Only scratch is clobbered by the operation.
502   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
503                                  Register scratch);
504 
505   void RecordWriteForMap(
506       Register object,
507       Register map,
508       Register dst,
509       RAStatus ra_status,
510       SaveFPRegsMode save_fp);
511 
512   // For a given |object| notify the garbage collector that the slot |address|
513   // has been written.  |value| is the object being stored. The value and
514   // address registers are clobbered by the operation.
515   void RecordWrite(
516       Register object,
517       Register address,
518       Register value,
519       RAStatus ra_status,
520       SaveFPRegsMode save_fp,
521       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
522       SmiCheck smi_check = INLINE_SMI_CHECK,
523       PointersToHereCheck pointers_to_here_check_for_value =
524           kPointersToHereMaybeInteresting);
525 
526 
527   // ---------------------------------------------------------------------------
528   // Inline caching support.
529 
530   void GetNumberHash(Register reg0, Register scratch);
531 
MarkCode(NopMarkerTypes type)532   inline void MarkCode(NopMarkerTypes type) {
533     nop(type);
534   }
535 
536   // Check if the given instruction is a 'type' marker.
537   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
538   // nop(type)). These instructions are generated to mark special location in
539   // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)540   static inline bool IsMarkedCode(Instr instr, int type) {
541     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
542     return IsNop(instr, type);
543   }
544 
545 
GetCodeMarker(Instr instr)546   static inline int GetCodeMarker(Instr instr) {
547     uint32_t opcode = ((instr & kOpcodeMask));
548     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
549     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
550     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
551 
552     // Return <n> if we have a sll zero_reg, zero_reg, n
553     // else return -1.
554     bool sllzz = (opcode == SLL &&
555                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
556                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
557     int type =
558         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
559     DCHECK((type == -1) ||
560            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
561     return type;
562   }
563 
564 
565 
566   // ---------------------------------------------------------------------------
567   // Allocation support.
568 
569   // Allocate an object in new space or old space. The object_size is
570   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
571   // is passed. If the space is exhausted control continues at the gc_required
572   // label. The allocated object is returned in result. If the flag
573   // tag_allocated_object is true the result is tagged as as a heap object.
574   // All registers are clobbered also when control continues at the gc_required
575   // label.
576   void Allocate(int object_size,
577                 Register result,
578                 Register scratch1,
579                 Register scratch2,
580                 Label* gc_required,
581                 AllocationFlags flags);
582 
583   void Allocate(Register object_size, Register result, Register result_end,
584                 Register scratch, Label* gc_required, AllocationFlags flags);
585 
586   // FastAllocate is right now only used for folded allocations. It just
587   // increments the top pointer without checking against limit. This can only
588   // be done if it was proved earlier that the allocation will succeed.
589   void FastAllocate(int object_size, Register result, Register scratch1,
590                     Register scratch2, AllocationFlags flags);
591 
592   void FastAllocate(Register object_size, Register result, Register result_new,
593                     Register scratch, AllocationFlags flags);
594 
595   void AllocateTwoByteString(Register result,
596                              Register length,
597                              Register scratch1,
598                              Register scratch2,
599                              Register scratch3,
600                              Label* gc_required);
601   void AllocateOneByteString(Register result, Register length,
602                              Register scratch1, Register scratch2,
603                              Register scratch3, Label* gc_required);
604   void AllocateTwoByteConsString(Register result,
605                                  Register length,
606                                  Register scratch1,
607                                  Register scratch2,
608                                  Label* gc_required);
609   void AllocateOneByteConsString(Register result, Register length,
610                                  Register scratch1, Register scratch2,
611                                  Label* gc_required);
612   void AllocateTwoByteSlicedString(Register result,
613                                    Register length,
614                                    Register scratch1,
615                                    Register scratch2,
616                                    Label* gc_required);
617   void AllocateOneByteSlicedString(Register result, Register length,
618                                    Register scratch1, Register scratch2,
619                                    Label* gc_required);
620 
621   // Allocates a heap number or jumps to the gc_required label if the young
622   // space is full and a scavenge is needed. All registers are clobbered also
623   // when control continues at the gc_required label.
624   void AllocateHeapNumber(Register result,
625                           Register scratch1,
626                           Register scratch2,
627                           Register heap_number_map,
628                           Label* gc_required,
629                           MutableMode mode = IMMUTABLE);
630 
631   void AllocateHeapNumberWithValue(Register result,
632                                    FPURegister value,
633                                    Register scratch1,
634                                    Register scratch2,
635                                    Label* gc_required);
636 
637   // Allocate and initialize a JSValue wrapper with the specified {constructor}
638   // and {value}.
639   void AllocateJSValue(Register result, Register constructor, Register value,
640                        Register scratch1, Register scratch2,
641                        Label* gc_required);
642 
643   // ---------------------------------------------------------------------------
644   // Instruction macros.
645 
646 #define DEFINE_INSTRUCTION(instr)                                              \
647   void instr(Register rd, Register rs, const Operand& rt);                     \
648   void instr(Register rd, Register rs, Register rt) {                          \
649     instr(rd, rs, Operand(rt));                                                \
650   }                                                                            \
651   void instr(Register rs, Register rt, int32_t j) {                            \
652     instr(rs, rt, Operand(j));                                                 \
653   }
654 
655 #define DEFINE_INSTRUCTION2(instr)                                             \
656   void instr(Register rs, const Operand& rt);                                  \
657   void instr(Register rs, Register rt) {                                       \
658     instr(rs, Operand(rt));                                                    \
659   }                                                                            \
660   void instr(Register rs, int32_t j) {                                         \
661     instr(rs, Operand(j));                                                     \
662   }
663 
664   DEFINE_INSTRUCTION(Addu);
665   DEFINE_INSTRUCTION(Daddu);
666   DEFINE_INSTRUCTION(Div);
667   DEFINE_INSTRUCTION(Divu);
668   DEFINE_INSTRUCTION(Ddivu);
669   DEFINE_INSTRUCTION(Mod);
670   DEFINE_INSTRUCTION(Modu);
671   DEFINE_INSTRUCTION(Ddiv);
672   DEFINE_INSTRUCTION(Subu);
673   DEFINE_INSTRUCTION(Dsubu);
674   DEFINE_INSTRUCTION(Dmod);
675   DEFINE_INSTRUCTION(Dmodu);
676   DEFINE_INSTRUCTION(Mul);
677   DEFINE_INSTRUCTION(Mulh);
678   DEFINE_INSTRUCTION(Mulhu);
679   DEFINE_INSTRUCTION(Dmul);
680   DEFINE_INSTRUCTION(Dmulh);
681   DEFINE_INSTRUCTION2(Mult);
682   DEFINE_INSTRUCTION2(Dmult);
683   DEFINE_INSTRUCTION2(Multu);
684   DEFINE_INSTRUCTION2(Dmultu);
685   DEFINE_INSTRUCTION2(Div);
686   DEFINE_INSTRUCTION2(Ddiv);
687   DEFINE_INSTRUCTION2(Divu);
688   DEFINE_INSTRUCTION2(Ddivu);
689 
690   DEFINE_INSTRUCTION(And);
691   DEFINE_INSTRUCTION(Or);
692   DEFINE_INSTRUCTION(Xor);
693   DEFINE_INSTRUCTION(Nor);
694   DEFINE_INSTRUCTION2(Neg);
695 
696   DEFINE_INSTRUCTION(Slt);
697   DEFINE_INSTRUCTION(Sltu);
698 
699   // MIPS32 R2 instruction macro.
700   DEFINE_INSTRUCTION(Ror);
701   DEFINE_INSTRUCTION(Dror);
702 
703 #undef DEFINE_INSTRUCTION
704 #undef DEFINE_INSTRUCTION2
705 #undef DEFINE_INSTRUCTION3
706 
707   // Load Scaled Address instructions. Parameter sa (shift argument) must be
708   // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
709   // may be clobbered.
710   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
711            Register scratch = at);
712   void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
713             Register scratch = at);
714 
715   void Pref(int32_t hint, const MemOperand& rs);
716 
717 
718   // ---------------------------------------------------------------------------
719   // Pseudo-instructions.
720 
721   // Change endianness
722   void ByteSwapSigned(Register dest, Register src, int operand_size);
723   void ByteSwapUnsigned(Register dest, Register src, int operand_size);
724 
mov(Register rd,Register rt)725   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
726 
727   void Ulh(Register rd, const MemOperand& rs);
728   void Ulhu(Register rd, const MemOperand& rs);
729   void Ush(Register rd, const MemOperand& rs, Register scratch);
730 
731   void Ulw(Register rd, const MemOperand& rs);
732   void Ulwu(Register rd, const MemOperand& rs);
733   void Usw(Register rd, const MemOperand& rs);
734 
735   void Uld(Register rd, const MemOperand& rs);
736   void Usd(Register rd, const MemOperand& rs);
737 
738   void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
739   void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
740 
741   void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
742   void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
743 
744   void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
745   void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
746 
747   // Load int32 in the rd register.
748   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
749   inline bool LiLower32BitHelper(Register rd, Operand j);
750   inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
751     li(rd, Operand(j), mode);
752   }
753   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
754 
755   // Push multiple registers on the stack.
756   // Registers are saved in numerical order, with higher numbered registers
757   // saved in higher memory addresses.
758   void MultiPush(RegList regs);
759   void MultiPushReversed(RegList regs);
760 
761   void MultiPushFPU(RegList regs);
762   void MultiPushReversedFPU(RegList regs);
763 
push(Register src)764   void push(Register src) {
765     Daddu(sp, sp, Operand(-kPointerSize));
766     sd(src, MemOperand(sp, 0));
767   }
Push(Register src)768   void Push(Register src) { push(src); }
769 
770   // Push a handle.
771   void Push(Handle<Object> handle);
Push(Smi * smi)772   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
773 
774   // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)775   void Push(Register src1, Register src2) {
776     Dsubu(sp, sp, Operand(2 * kPointerSize));
777     sd(src1, MemOperand(sp, 1 * kPointerSize));
778     sd(src2, MemOperand(sp, 0 * kPointerSize));
779   }
780 
781   // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)782   void Push(Register src1, Register src2, Register src3) {
783     Dsubu(sp, sp, Operand(3 * kPointerSize));
784     sd(src1, MemOperand(sp, 2 * kPointerSize));
785     sd(src2, MemOperand(sp, 1 * kPointerSize));
786     sd(src3, MemOperand(sp, 0 * kPointerSize));
787   }
788 
789   // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)790   void Push(Register src1, Register src2, Register src3, Register src4) {
791     Dsubu(sp, sp, Operand(4 * kPointerSize));
792     sd(src1, MemOperand(sp, 3 * kPointerSize));
793     sd(src2, MemOperand(sp, 2 * kPointerSize));
794     sd(src3, MemOperand(sp, 1 * kPointerSize));
795     sd(src4, MemOperand(sp, 0 * kPointerSize));
796   }
797 
798   // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)799   void Push(Register src1, Register src2, Register src3, Register src4,
800             Register src5) {
801     Dsubu(sp, sp, Operand(5 * kPointerSize));
802     sd(src1, MemOperand(sp, 4 * kPointerSize));
803     sd(src2, MemOperand(sp, 3 * kPointerSize));
804     sd(src3, MemOperand(sp, 2 * kPointerSize));
805     sd(src4, MemOperand(sp, 1 * kPointerSize));
806     sd(src5, MemOperand(sp, 0 * kPointerSize));
807   }
808 
Push(Register src,Condition cond,Register tst1,Register tst2)809   void Push(Register src, Condition cond, Register tst1, Register tst2) {
810     // Since we don't have conditional execution we use a Branch.
811     Branch(3, cond, tst1, Operand(tst2));
812     Dsubu(sp, sp, Operand(kPointerSize));
813     sd(src, MemOperand(sp, 0));
814   }
815 
816   void PushRegisterAsTwoSmis(Register src, Register scratch = at);
817   void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
818 
819   // Pops multiple values from the stack and load them in the
820   // registers specified in regs. Pop order is the opposite as in MultiPush.
821   void MultiPop(RegList regs);
822   void MultiPopReversed(RegList regs);
823 
824   void MultiPopFPU(RegList regs);
825   void MultiPopReversedFPU(RegList regs);
826 
pop(Register dst)827   void pop(Register dst) {
828     ld(dst, MemOperand(sp, 0));
829     Daddu(sp, sp, Operand(kPointerSize));
830   }
Pop(Register dst)831   void Pop(Register dst) { pop(dst); }
832 
833   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)834   void Pop(Register src1, Register src2) {
835     DCHECK(!src1.is(src2));
836     ld(src2, MemOperand(sp, 0 * kPointerSize));
837     ld(src1, MemOperand(sp, 1 * kPointerSize));
838     Daddu(sp, sp, 2 * kPointerSize);
839   }
840 
841   // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)842   void Pop(Register src1, Register src2, Register src3) {
843     ld(src3, MemOperand(sp, 0 * kPointerSize));
844     ld(src2, MemOperand(sp, 1 * kPointerSize));
845     ld(src1, MemOperand(sp, 2 * kPointerSize));
846     Daddu(sp, sp, 3 * kPointerSize);
847   }
848 
849   void Pop(uint32_t count = 1) {
850     Daddu(sp, sp, Operand(count * kPointerSize));
851   }
852 
853   // Push a fixed frame, consisting of ra, fp.
854   void PushCommonFrame(Register marker_reg = no_reg);
855 
856   // Push a standard frame, consisting of ra, fp, context and JS function.
857   void PushStandardFrame(Register function_reg);
858 
859   void PopCommonFrame(Register marker_reg = no_reg);
860 
861   // Push and pop the registers that can hold pointers, as defined by the
862   // RegList constant kSafepointSavedRegisters.
863   void PushSafepointRegisters();
864   void PopSafepointRegisters();
865   // Store value in register src in the safepoint stack slot for
866   // register dst.
867   void StoreToSafepointRegisterSlot(Register src, Register dst);
868   // Load the value of the src register from its safepoint stack slot
869   // into register dst.
870   void LoadFromSafepointRegisterSlot(Register dst, Register src);
871 
872   // MIPS64 R2 instruction macro.
873   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
874   void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
875   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
876 
877   void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size);
878 
879   void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
880   void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
881   void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
882   void Neg_s(FPURegister fd, FPURegister fs);
883   void Neg_d(FPURegister fd, FPURegister fs);
884 
885   // MIPS64 R6 instruction macros.
886   void Bovc(Register rt, Register rs, Label* L);
887   void Bnvc(Register rt, Register rs, Label* L);
888 
889   // ---------------------------------------------------------------------------
890   // FPU macros. These do not handle special cases like NaN or +- inf.
891 
892   // Convert unsigned word to double.
893   void Cvt_d_uw(FPURegister fd, FPURegister fs);
894   void Cvt_d_uw(FPURegister fd, Register rs);
895 
896   // Convert unsigned long to double.
897   void Cvt_d_ul(FPURegister fd, FPURegister fs);
898   void Cvt_d_ul(FPURegister fd, Register rs);
899 
900   // Convert unsigned word to float.
901   void Cvt_s_uw(FPURegister fd, FPURegister fs);
902   void Cvt_s_uw(FPURegister fd, Register rs);
903 
904   // Convert unsigned long to float.
905   void Cvt_s_ul(FPURegister fd, FPURegister fs);
906   void Cvt_s_ul(FPURegister fd, Register rs);
907 
908   // Convert double to unsigned long.
909   void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
910 
911   void Trunc_l_d(FPURegister fd, FPURegister fs);
912   void Round_l_d(FPURegister fd, FPURegister fs);
913   void Floor_l_d(FPURegister fd, FPURegister fs);
914   void Ceil_l_d(FPURegister fd, FPURegister fs);
915 
916   // Convert double to unsigned word.
917   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
918   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
919 
920   // Convert single to unsigned word.
921   void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
922   void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
923 
924   // Convert double to unsigned long.
925   void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
926                   Register result = no_reg);
927   void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
928                   Register result = no_reg);
929 
930   // Convert single to unsigned long.
931   void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
932                   Register result = no_reg);
933   void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
934                   Register result = no_reg);
935 
936   void Trunc_w_d(FPURegister fd, FPURegister fs);
937   void Round_w_d(FPURegister fd, FPURegister fs);
938   void Floor_w_d(FPURegister fd, FPURegister fs);
939   void Ceil_w_d(FPURegister fd, FPURegister fs);
940 
941   // Preserve value of a NaN operand
942   void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
943                                       FPURegister ft);
944   void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
945                                       FPURegister ft);
946 
947   void Madd_d(FPURegister fd,
948               FPURegister fr,
949               FPURegister fs,
950               FPURegister ft,
951               FPURegister scratch);
952 
953   // Wrapper functions for the different cmp/branch types.
954   inline void BranchF32(Label* target, Label* nan, Condition cc,
955                         FPURegister cmp1, FPURegister cmp2,
956                         BranchDelaySlot bd = PROTECT) {
957     BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
958   }
959 
960   inline void BranchF64(Label* target, Label* nan, Condition cc,
961                         FPURegister cmp1, FPURegister cmp2,
962                         BranchDelaySlot bd = PROTECT) {
963     BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
964   }
965 
966   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)967   inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
968                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
969     BranchF64(target, nan, cc, cmp1, cmp2, bd);
970   }
971 
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)972   inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
973                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
974     BranchF32(target, nan, cc, cmp1, cmp2, bd);
975   }
976 
977   // Alias functions for backward compatibility.
978   inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
979                       FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
980     BranchF64(target, nan, cc, cmp1, cmp2, bd);
981   }
982 
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)983   inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
984                       Condition cc, FPURegister cmp1, FPURegister cmp2) {
985     BranchF64(bd, target, nan, cc, cmp1, cmp2);
986   }
987 
988   // Truncates a double using a specific rounding mode, and writes the value
989   // to the result register.
990   // The except_flag will contain any exceptions caused by the instruction.
991   // If check_inexact is kDontCheckForInexactConversion, then the inexact
992   // exception is masked.
993   void EmitFPUTruncate(FPURoundingMode rounding_mode,
994                        Register result,
995                        DoubleRegister double_input,
996                        Register scratch,
997                        DoubleRegister double_scratch,
998                        Register except_flag,
999                        CheckForInexactConversion check_inexact
1000                            = kDontCheckForInexactConversion);
1001 
1002   // Performs a truncating conversion of a floating point number as used by
1003   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1004   // succeeds, otherwise falls through if result is saturated. On return
1005   // 'result' either holds answer, or is clobbered on fall through.
1006   //
1007   // Only public for the test code in test-code-stubs-arm.cc.
1008   void TryInlineTruncateDoubleToI(Register result,
1009                                   DoubleRegister input,
1010                                   Label* done);
1011 
1012   // Performs a truncating conversion of a floating point number as used by
1013   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1014   // Exits with 'result' holding the answer.
1015   void TruncateDoubleToI(Register result, DoubleRegister double_input);
1016 
1017   // Performs a truncating conversion of a heap number as used by
1018   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1019   // must be different registers. Exits with 'result' holding the answer.
1020   void TruncateHeapNumberToI(Register result, Register object);
1021 
1022   // Converts the smi or heap number in object to an int32 using the rules
1023   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1024   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1025   // different registers.
1026   void TruncateNumberToI(Register object,
1027                          Register result,
1028                          Register heap_number_map,
1029                          Register scratch,
1030                          Label* not_int32);
1031 
1032   // Loads the number from object into dst register.
1033   // If |object| is neither smi nor heap number, |not_number| is jumped to
1034   // with |object| still intact.
1035   void LoadNumber(Register object,
1036                   FPURegister dst,
1037                   Register heap_number_map,
1038                   Register scratch,
1039                   Label* not_number);
1040 
1041   // Loads the number from object into double_dst in the double format.
1042   // Control will jump to not_int32 if the value cannot be exactly represented
1043   // by a 32-bit integer.
1044   // Floating point value in the 32-bit integer range that are not exact integer
1045   // won't be loaded.
1046   void LoadNumberAsInt32Double(Register object,
1047                                DoubleRegister double_dst,
1048                                Register heap_number_map,
1049                                Register scratch1,
1050                                Register scratch2,
1051                                FPURegister double_scratch,
1052                                Label* not_int32);
1053 
1054   // Loads the number from object into dst as a 32-bit integer.
1055   // Control will jump to not_int32 if the object cannot be exactly represented
1056   // by a 32-bit integer.
1057   // Floating point value in the 32-bit integer range that are not exact integer
1058   // won't be converted.
1059   void LoadNumberAsInt32(Register object,
1060                          Register dst,
1061                          Register heap_number_map,
1062                          Register scratch1,
1063                          Register scratch2,
1064                          FPURegister double_scratch0,
1065                          FPURegister double_scratch1,
1066                          Label* not_int32);
1067 
1068   // Enter exit frame.
1069   // argc - argument count to be dropped by LeaveExitFrame.
1070   // save_doubles - saves FPU registers on stack, currently disabled.
1071   // stack_space - extra stack space.
1072   void EnterExitFrame(bool save_doubles, int stack_space = 0,
1073                       StackFrame::Type frame_type = StackFrame::EXIT);
1074 
1075   // Leave the current exit frame.
1076   void LeaveExitFrame(bool save_doubles, Register arg_count,
1077                       bool restore_context, bool do_return = NO_EMIT_RETURN,
1078                       bool argument_count_is_length = false);
1079 
1080   // Get the actual activation frame alignment for target environment.
1081   static int ActivationFrameAlignment();
1082 
1083   // Make sure the stack is aligned. Only emits code in debug mode.
1084   void AssertStackIsAligned();
1085 
1086   void LoadContext(Register dst, int context_chain_length);
1087 
1088   // Load the global object from the current context.
LoadGlobalObject(Register dst)1089   void LoadGlobalObject(Register dst) {
1090     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1091   }
1092 
1093   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1094   void LoadGlobalProxy(Register dst) {
1095     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1096   }
1097 
1098   // Conditionally load the cached Array transitioned map of type
1099   // transitioned_kind from the native context if the map in register
1100   // map_in_out is the cached Array map in the native context of
1101   // expected_kind.
1102   void LoadTransitionedArrayMapConditional(
1103       ElementsKind expected_kind,
1104       ElementsKind transitioned_kind,
1105       Register map_in_out,
1106       Register scratch,
1107       Label* no_map_match);
1108 
1109   void LoadNativeContextSlot(int index, Register dst);
1110 
1111   // Load the initial map from the global function. The registers
1112   // function and map can be the same, function is then overwritten.
1113   void LoadGlobalFunctionInitialMap(Register function,
1114                                     Register map,
1115                                     Register scratch);
1116 
InitializeRootRegister()1117   void InitializeRootRegister() {
1118     ExternalReference roots_array_start =
1119         ExternalReference::roots_array_start(isolate());
1120     li(kRootRegister, Operand(roots_array_start));
1121   }
1122 
1123   // -------------------------------------------------------------------------
1124   // JavaScript invokes.
1125 
1126   // Removes current frame and its arguments from the stack preserving
1127   // the arguments and a return address pushed to the stack for the next call.
1128   // Both |callee_args_count| and |caller_args_count_reg| do not include
1129   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1130   // is trashed.
1131   void PrepareForTailCall(const ParameterCount& callee_args_count,
1132                           Register caller_args_count_reg, Register scratch0,
1133                           Register scratch1);
1134 
1135   // Invoke the JavaScript function code by either calling or jumping.
1136   void InvokeFunctionCode(Register function, Register new_target,
1137                           const ParameterCount& expected,
1138                           const ParameterCount& actual, InvokeFlag flag,
1139                           const CallWrapper& call_wrapper);
1140 
1141   void FloodFunctionIfStepping(Register fun, Register new_target,
1142                                const ParameterCount& expected,
1143                                const ParameterCount& actual);
1144 
1145   // Invoke the JavaScript function in the given register. Changes the
1146   // current context to the context in the function before invoking.
1147   void InvokeFunction(Register function,
1148                       Register new_target,
1149                       const ParameterCount& actual,
1150                       InvokeFlag flag,
1151                       const CallWrapper& call_wrapper);
1152 
1153   void InvokeFunction(Register function,
1154                       const ParameterCount& expected,
1155                       const ParameterCount& actual,
1156                       InvokeFlag flag,
1157                       const CallWrapper& call_wrapper);
1158 
1159   void InvokeFunction(Handle<JSFunction> function,
1160                       const ParameterCount& expected,
1161                       const ParameterCount& actual,
1162                       InvokeFlag flag,
1163                       const CallWrapper& call_wrapper);
1164 
1165 
1166   void IsObjectJSStringType(Register object,
1167                             Register scratch,
1168                             Label* fail);
1169 
1170   void IsObjectNameType(Register object,
1171                         Register scratch,
1172                         Label* fail);
1173 
1174   // -------------------------------------------------------------------------
1175   // Debugger Support.
1176 
1177   void DebugBreak();
1178 
1179   // -------------------------------------------------------------------------
1180   // Exception handling.
1181 
1182   // Push a new stack handler and link into stack handler chain.
1183   void PushStackHandler();
1184 
1185   // Unlink the stack handler on top of the stack from the stack handler chain.
1186   // Must preserve the result register.
1187   void PopStackHandler();
1188 
1189   // Initialize fields with filler values.  Fields starting at |current_address|
1190   // not including |end_address| are overwritten with the value in |filler|.  At
1191   // the end the loop, |current_address| takes the value of |end_address|.
1192   void InitializeFieldsWithFiller(Register current_address,
1193                                   Register end_address, Register filler);
1194 
1195   // -------------------------------------------------------------------------
1196   // Support functions.
1197 
1198   // Machine code version of Map::GetConstructor().
1199   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1200   void GetMapConstructor(Register result, Register map, Register temp,
1201                          Register temp2);
1202 
1203   // Try to get function prototype of a function and puts the value in
1204   // the result register. Checks that the function really is a
1205   // function and jumps to the miss label if the fast checks fail. The
1206   // function register will be untouched; the other registers may be
1207   // clobbered.
1208   void TryGetFunctionPrototype(Register function, Register result,
1209                                Register scratch, Label* miss);
1210 
1211   void GetObjectType(Register function,
1212                      Register map,
1213                      Register type_reg);
1214 
GetInstanceType(Register object_map,Register object_instance_type)1215   void GetInstanceType(Register object_map, Register object_instance_type) {
1216     lbu(object_instance_type,
1217         FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1218   }
1219 
1220   // Check if a map for a JSObject indicates that the object can have both smi
1221   // and HeapObject elements.  Jump to the specified label if it does not.
1222   void CheckFastObjectElements(Register map,
1223                                Register scratch,
1224                                Label* fail);
1225 
1226   // Check if a map for a JSObject indicates that the object has fast smi only
1227   // elements.  Jump to the specified label if it does not.
1228   void CheckFastSmiElements(Register map,
1229                             Register scratch,
1230                             Label* fail);
1231 
1232   // Check to see if maybe_number can be stored as a double in
1233   // FastDoubleElements. If it can, store it at the index specified by key in
1234   // the FastDoubleElements array elements. Otherwise jump to fail.
1235   void StoreNumberToDoubleElements(Register value_reg,
1236                                    Register key_reg,
1237                                    Register elements_reg,
1238                                    Register scratch1,
1239                                    Register scratch2,
1240                                    Label* fail,
1241                                    int elements_offset = 0);
1242 
1243   // Compare an object's map with the specified map and its transitioned
1244   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1245   // "branch_to" if the result of the comparison is "cond". If multiple map
1246   // compares are required, the compare sequences branches to early_success.
1247   void CompareMapAndBranch(Register obj,
1248                            Register scratch,
1249                            Handle<Map> map,
1250                            Label* early_success,
1251                            Condition cond,
1252                            Label* branch_to);
1253 
1254   // As above, but the map of the object is already loaded into the register
1255   // which is preserved by the code generated.
1256   void CompareMapAndBranch(Register obj_map,
1257                            Handle<Map> map,
1258                            Label* early_success,
1259                            Condition cond,
1260                            Label* branch_to);
1261 
1262   // Check if the map of an object is equal to a specified map and branch to
1263   // label if not. Skip the smi check if not required (object is known to be a
1264   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1265   // against maps that are ElementsKind transition maps of the specificed map.
1266   void CheckMap(Register obj,
1267                 Register scratch,
1268                 Handle<Map> map,
1269                 Label* fail,
1270                 SmiCheckType smi_check_type);
1271 
1272 
1273   void CheckMap(Register obj,
1274                 Register scratch,
1275                 Heap::RootListIndex index,
1276                 Label* fail,
1277                 SmiCheckType smi_check_type);
1278 
1279   // Check if the map of an object is equal to a specified weak map and branch
1280   // to a specified target if equal. Skip the smi check if not required
1281   // (object is known to be a heap object)
1282   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1283                        Handle<WeakCell> cell, Handle<Code> success,
1284                        SmiCheckType smi_check_type);
1285 
1286   // If the value is a NaN, canonicalize the value else, do nothing.
1287   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1288 
1289 
1290   // Get value of the weak cell.
1291   void GetWeakValue(Register value, Handle<WeakCell> cell);
1292 
1293   // Load the value of the weak cell in the value register. Branch to the
1294   // given miss label is the weak cell was cleared.
1295   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1296 
1297   // Load and check the instance type of an object for being a string.
1298   // Loads the type into the second argument register.
1299   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1300   Condition IsObjectStringType(Register obj,
1301                                Register type,
1302                                Register result) {
1303     ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1304     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1305     And(type, type, Operand(kIsNotStringMask));
1306     DCHECK_EQ(0u, kStringTag);
1307     return eq;
1308   }
1309 
1310   // Get the number of least significant bits from a register.
1311   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1312   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1313 
1314   // Load the value of a number object into a FPU double register. If the
1315   // object is not a number a jump to the label not_number is performed
1316   // and the FPU double register is unchanged.
1317   void ObjectToDoubleFPURegister(
1318       Register object,
1319       FPURegister value,
1320       Register scratch1,
1321       Register scratch2,
1322       Register heap_number_map,
1323       Label* not_number,
1324       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1325 
1326   // Load the value of a smi object into a FPU double register. The register
1327   // scratch1 can be the same register as smi in which case smi will hold the
1328   // untagged value afterwards.
1329   void SmiToDoubleFPURegister(Register smi,
1330                               FPURegister value,
1331                               Register scratch1);
1332 
1333   // -------------------------------------------------------------------------
1334   // Overflow handling functions.
1335   // Usage: first call the appropriate arithmetic function, then call one of the
1336   // jump functions with the overflow_dst register as the second parameter.
1337 
1338   inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1339                            Label* overflow_label, Register scratch = at) {
1340     AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1341   }
1342 
1343   inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1344                              Label* no_overflow_label, Register scratch = at) {
1345     AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1346   }
1347 
1348   void AddBranchOvf(Register dst, Register left, const Operand& right,
1349                     Label* overflow_label, Label* no_overflow_label,
1350                     Register scratch = at);
1351 
1352   void AddBranchOvf(Register dst, Register left, Register right,
1353                     Label* overflow_label, Label* no_overflow_label,
1354                     Register scratch = at);
1355 
1356   inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1357                            Label* overflow_label, Register scratch = at) {
1358     SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1359   }
1360 
1361   inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1362                              Label* no_overflow_label, Register scratch = at) {
1363     SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1364   }
1365 
1366   void SubBranchOvf(Register dst, Register left, const Operand& right,
1367                     Label* overflow_label, Label* no_overflow_label,
1368                     Register scratch = at);
1369 
1370   void SubBranchOvf(Register dst, Register left, Register right,
1371                     Label* overflow_label, Label* no_overflow_label,
1372                     Register scratch = at);
1373 
1374   inline void MulBranchOvf(Register dst, Register left, const Operand& right,
1375                            Label* overflow_label, Register scratch = at) {
1376     MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1377   }
1378 
1379   inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
1380                              Label* no_overflow_label, Register scratch = at) {
1381     MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1382   }
1383 
1384   void MulBranchOvf(Register dst, Register left, const Operand& right,
1385                     Label* overflow_label, Label* no_overflow_label,
1386                     Register scratch = at);
1387 
1388   void MulBranchOvf(Register dst, Register left, Register right,
1389                     Label* overflow_label, Label* no_overflow_label,
1390                     Register scratch = at);
1391 
1392   inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1393                             Label* overflow_label, Register scratch = at) {
1394     DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1395   }
1396 
1397   inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1398                               Label* no_overflow_label, Register scratch = at) {
1399     DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1400   }
1401 
1402   void DaddBranchOvf(Register dst, Register left, const Operand& right,
1403                      Label* overflow_label, Label* no_overflow_label,
1404                      Register scratch = at);
1405 
1406   void DaddBranchOvf(Register dst, Register left, Register right,
1407                      Label* overflow_label, Label* no_overflow_label,
1408                      Register scratch = at);
1409 
1410   inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1411                             Label* overflow_label, Register scratch = at) {
1412     DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1413   }
1414 
1415   inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1416                               Label* no_overflow_label, Register scratch = at) {
1417     DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1418   }
1419 
1420   void DsubBranchOvf(Register dst, Register left, const Operand& right,
1421                      Label* overflow_label, Label* no_overflow_label,
1422                      Register scratch = at);
1423 
1424   void DsubBranchOvf(Register dst, Register left, Register right,
1425                      Label* overflow_label, Label* no_overflow_label,
1426                      Register scratch = at);
1427 
1428   void BranchOnOverflow(Label* label,
1429                         Register overflow_check,
1430                         BranchDelaySlot bd = PROTECT) {
1431     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1432   }
1433 
1434   void BranchOnNoOverflow(Label* label,
1435                           Register overflow_check,
1436                           BranchDelaySlot bd = PROTECT) {
1437     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1438   }
1439 
1440   void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1441     Ret(lt, overflow_check, Operand(zero_reg), bd);
1442   }
1443 
1444   void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1445     Ret(ge, overflow_check, Operand(zero_reg), bd);
1446   }
1447 
1448   // -------------------------------------------------------------------------
1449   // Runtime calls.
1450 
1451   // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1452   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1453 
PrepareCEntryFunction(const ExternalReference & ref)1454   inline void PrepareCEntryFunction(const ExternalReference& ref) {
1455     li(a1, Operand(ref));
1456   }
1457 
1458 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1459 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1460 
1461   // Call a code stub.
1462   void CallStub(CodeStub* stub,
1463                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1464                 COND_ARGS);
1465 
1466   // Tail call a code stub (jump).
1467   void TailCallStub(CodeStub* stub, COND_ARGS);
1468 
1469 #undef COND_ARGS
1470 
1471   void CallJSExitStub(CodeStub* stub);
1472 
1473   // Call a runtime routine.
1474   void CallRuntime(const Runtime::Function* f, int num_arguments,
1475                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1476                    BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1477   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1478     const Runtime::Function* function = Runtime::FunctionForId(fid);
1479     CallRuntime(function, function->nargs, kSaveFPRegs);
1480   }
1481 
1482   // Convenience function: Same as above, but takes the fid instead.
1483   void CallRuntime(Runtime::FunctionId fid,
1484                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1485                    BranchDelaySlot bd = PROTECT) {
1486     const Runtime::Function* function = Runtime::FunctionForId(fid);
1487     CallRuntime(function, function->nargs, save_doubles, bd);
1488   }
1489 
1490   // Convenience function: Same as above, but takes the fid instead.
1491   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1492                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1493                    BranchDelaySlot bd = PROTECT) {
1494     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1495   }
1496 
1497   // Convenience function: call an external reference.
1498   void CallExternalReference(const ExternalReference& ext,
1499                              int num_arguments,
1500                              BranchDelaySlot bd = PROTECT);
1501 
1502   // Convenience function: tail call a runtime routine (jump).
1503   void TailCallRuntime(Runtime::FunctionId fid);
1504 
1505   int CalculateStackPassedWords(int num_reg_arguments,
1506                                 int num_double_arguments);
1507 
1508   // Before calling a C-function from generated code, align arguments on stack
1509   // and add space for the four mips argument slots.
1510   // After aligning the frame, non-register arguments must be stored on the
1511   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1512   // The argument count assumes all arguments are word sized.
1513   // Some compilers/platforms require the stack to be aligned when calling
1514   // C++ code.
1515   // Needs a scratch register to do some arithmetic. This register will be
1516   // trashed.
1517   void PrepareCallCFunction(int num_reg_arguments,
1518                             int num_double_registers,
1519                             Register scratch);
1520   void PrepareCallCFunction(int num_reg_arguments,
1521                             Register scratch);
1522 
1523   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1524   // Arguments 5..n are stored to stack using following:
1525   //  sw(a4, CFunctionArgumentOperand(5));
1526 
1527   // Calls a C function and cleans up the space for arguments allocated
1528   // by PrepareCallCFunction. The called function is not allowed to trigger a
1529   // garbage collection, since that might move the code and invalidate the
1530   // return address (unless this is somehow accounted for by the called
1531   // function).
1532   void CallCFunction(ExternalReference function, int num_arguments);
1533   void CallCFunction(Register function, int num_arguments);
1534   void CallCFunction(ExternalReference function,
1535                      int num_reg_arguments,
1536                      int num_double_arguments);
1537   void CallCFunction(Register function,
1538                      int num_reg_arguments,
1539                      int num_double_arguments);
1540   void MovFromFloatResult(DoubleRegister dst);
1541   void MovFromFloatParameter(DoubleRegister dst);
1542 
1543   // There are two ways of passing double arguments on MIPS, depending on
1544   // whether soft or hard floating point ABI is used. These functions
1545   // abstract parameter passing for the three different ways we call
1546   // C functions from generated code.
1547   void MovToFloatParameter(DoubleRegister src);
1548   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1549   void MovToFloatResult(DoubleRegister src);
1550 
1551   // Jump to the builtin routine.
1552   void JumpToExternalReference(const ExternalReference& builtin,
1553                                BranchDelaySlot bd = PROTECT,
1554                                bool builtin_exit_frame = false);
1555 
1556   struct Unresolved {
1557     int pc;
1558     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1559     const char* name;
1560   };
1561 
CodeObject()1562   Handle<Object> CodeObject() {
1563     DCHECK(!code_object_.is_null());
1564     return code_object_;
1565   }
1566 
1567   // Emit code for a truncating division by a constant. The dividend register is
1568   // unchanged and at gets clobbered. Dividend and result must be different.
1569   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1570 
1571   // -------------------------------------------------------------------------
1572   // StatsCounter support.
1573 
1574   void SetCounter(StatsCounter* counter, int value,
1575                   Register scratch1, Register scratch2);
1576   void IncrementCounter(StatsCounter* counter, int value,
1577                         Register scratch1, Register scratch2);
1578   void DecrementCounter(StatsCounter* counter, int value,
1579                         Register scratch1, Register scratch2);
1580 
1581 
1582   // -------------------------------------------------------------------------
1583   // Debugging.
1584 
1585   // Calls Abort(msg) if the condition cc is not satisfied.
1586   // Use --debug_code to enable.
1587   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1588   void AssertFastElements(Register elements);
1589 
1590   // Like Assert(), but always enabled.
1591   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1592 
1593   // Print a message to stdout and abort execution.
1594   void Abort(BailoutReason msg);
1595 
1596   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1597   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1598   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1599   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1600   bool has_frame() { return has_frame_; }
1601   inline bool AllowThisStubCall(CodeStub* stub);
1602 
1603   // ---------------------------------------------------------------------------
1604   // Number utilities.
1605 
1606   // Check whether the value of reg is a power of two and not zero. If not
1607   // control continues at the label not_power_of_two. If reg is a power of two
1608   // the register scratch contains the value of (reg - 1) when control falls
1609   // through.
1610   void JumpIfNotPowerOfTwoOrZero(Register reg,
1611                                  Register scratch,
1612                                  Label* not_power_of_two_or_zero);
1613 
1614   // -------------------------------------------------------------------------
1615   // Smi utilities.
1616 
1617   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1618   void SmiTagCheckOverflow(Register reg, Register overflow);
1619   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1620 
SmiTag(Register dst,Register src)1621   void SmiTag(Register dst, Register src) {
1622     STATIC_ASSERT(kSmiTag == 0);
1623     if (SmiValuesAre32Bits()) {
1624       STATIC_ASSERT(kSmiShift == 32);
1625       dsll32(dst, src, 0);
1626     } else {
1627       Addu(dst, src, src);
1628     }
1629   }
1630 
SmiTag(Register reg)1631   void SmiTag(Register reg) {
1632     SmiTag(reg, reg);
1633   }
1634 
1635   // Try to convert int32 to smi. If the value is to large, preserve
1636   // the original value and jump to not_a_smi. Destroys scratch and
1637   // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1638   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1639     TrySmiTag(reg, reg, scratch, not_a_smi);
1640   }
1641 
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1642   void TrySmiTag(Register dst,
1643                  Register src,
1644                  Register scratch,
1645                  Label* not_a_smi) {
1646     if (SmiValuesAre32Bits()) {
1647       SmiTag(dst, src);
1648     } else {
1649       SmiTagCheckOverflow(at, src, scratch);
1650       BranchOnOverflow(not_a_smi, scratch);
1651       mov(dst, at);
1652     }
1653   }
1654 
SmiUntag(Register dst,Register src)1655   void SmiUntag(Register dst, Register src) {
1656     if (SmiValuesAre32Bits()) {
1657       STATIC_ASSERT(kSmiShift == 32);
1658       dsra32(dst, src, 0);
1659     } else {
1660       sra(dst, src, kSmiTagSize);
1661     }
1662   }
1663 
SmiUntag(Register reg)1664   void SmiUntag(Register reg) {
1665     SmiUntag(reg, reg);
1666   }
1667 
1668   // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1669   void SmiScale(Register dst, Register src, int scale) {
1670     if (SmiValuesAre32Bits()) {
1671       // The int portion is upper 32-bits of 64-bit word.
1672       dsra(dst, src, kSmiShift - scale);
1673     } else {
1674       DCHECK(scale >= kSmiTagSize);
1675       sll(dst, src, scale - kSmiTagSize);
1676     }
1677   }
1678 
1679   // Combine load with untagging or scaling.
1680   void SmiLoadUntag(Register dst, MemOperand src);
1681 
1682   void SmiLoadScale(Register dst, MemOperand src, int scale);
1683 
1684   // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1685   void SmiLoadWithScale(Register d_smi,
1686                         Register d_scaled,
1687                         MemOperand src,
1688                         int scale);
1689 
1690   // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1691   void SmiLoadUntagWithScale(Register d_int,
1692                              Register d_scaled,
1693                              MemOperand src,
1694                              int scale);
1695 
1696 
1697   // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1698   inline void SmiTst(Register value, Register scratch) {
1699     And(scratch, value, Operand(kSmiTagMask));
1700   }
NonNegativeSmiTst(Register value,Register scratch)1701   inline void NonNegativeSmiTst(Register value, Register scratch) {
1702     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1703   }
1704 
1705   // Untag the source value into destination and jump if source is a smi.
1706   // Source and destination can be the same register.
1707   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1708 
1709   // Untag the source value into destination and jump if source is not a smi.
1710   // Source and destination can be the same register.
1711   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1712 
1713   // Jump the register contains a smi.
1714   void JumpIfSmi(Register value,
1715                  Label* smi_label,
1716                  Register scratch = at,
1717                  BranchDelaySlot bd = PROTECT);
1718 
1719   // Jump if the register contains a non-smi.
1720   void JumpIfNotSmi(Register value,
1721                     Label* not_smi_label,
1722                     Register scratch = at,
1723                     BranchDelaySlot bd = PROTECT);
1724 
1725   // Jump if either of the registers contain a non-smi.
1726   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1727   // Jump if either of the registers contain a smi.
1728   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1729 
1730   // Abort execution if argument is a number, enabled via --debug-code.
1731   void AssertNotNumber(Register object);
1732 
1733   // Abort execution if argument is a smi, enabled via --debug-code.
1734   void AssertNotSmi(Register object);
1735   void AssertSmi(Register object);
1736 
1737   // Abort execution if argument is not a string, enabled via --debug-code.
1738   void AssertString(Register object);
1739 
1740   // Abort execution if argument is not a name, enabled via --debug-code.
1741   void AssertName(Register object);
1742 
1743   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1744   void AssertFunction(Register object);
1745 
1746   // Abort execution if argument is not a JSBoundFunction,
1747   // enabled via --debug-code.
1748   void AssertBoundFunction(Register object);
1749 
1750   // Abort execution if argument is not a JSGeneratorObject,
1751   // enabled via --debug-code.
1752   void AssertGeneratorObject(Register object);
1753 
1754   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1755   void AssertReceiver(Register object);
1756 
1757   // Abort execution if argument is not undefined or an AllocationSite, enabled
1758   // via --debug-code.
1759   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1760 
1761   // Abort execution if reg is not the root value with the given index,
1762   // enabled via --debug-code.
1763   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1764 
1765   // ---------------------------------------------------------------------------
1766   // HeapNumber utilities.
1767 
1768   void JumpIfNotHeapNumber(Register object,
1769                            Register heap_number_map,
1770                            Register scratch,
1771                            Label* on_not_heap_number);
1772 
1773   // -------------------------------------------------------------------------
1774   // String utilities.
1775 
1776   // Checks if both instance types are sequential one-byte strings and jumps to
1777   // label if either is not.
1778   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1779       Register first_object_instance_type, Register second_object_instance_type,
1780       Register scratch1, Register scratch2, Label* failure);
1781 
1782   // Check if instance type is sequential one-byte string and jump to label if
1783   // it is not.
1784   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1785                                                 Label* failure);
1786 
1787   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1788 
1789   void EmitSeqStringSetCharCheck(Register string,
1790                                  Register index,
1791                                  Register value,
1792                                  Register scratch,
1793                                  uint32_t encoding_mask);
1794 
1795   // Checks if both objects are sequential one-byte strings and jumps to label
1796   // if either is not. Assumes that neither object is a smi.
1797   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1798                                                     Register second,
1799                                                     Register scratch1,
1800                                                     Register scratch2,
1801                                                     Label* failure);
1802 
1803   // Checks if both objects are sequential one-byte strings and jumps to label
1804   // if either is not.
1805   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1806                                              Register scratch1,
1807                                              Register scratch2,
1808                                              Label* not_flat_one_byte_strings);
1809 
1810   void ClampUint8(Register output_reg, Register input_reg);
1811 
1812   void ClampDoubleToUint8(Register result_reg,
1813                           DoubleRegister input_reg,
1814                           DoubleRegister temp_double_reg);
1815 
1816 
1817   void LoadInstanceDescriptors(Register map, Register descriptors);
1818   void EnumLength(Register dst, Register map);
1819   void NumberOfOwnDescriptors(Register dst, Register map);
1820   void LoadAccessor(Register dst, Register holder, int accessor_index,
1821                     AccessorComponent accessor);
1822 
1823   template<typename Field>
DecodeField(Register dst,Register src)1824   void DecodeField(Register dst, Register src) {
1825     Ext(dst, src, Field::kShift, Field::kSize);
1826   }
1827 
1828   template<typename Field>
DecodeField(Register reg)1829   void DecodeField(Register reg) {
1830     DecodeField<Field>(reg, reg);
1831   }
1832 
1833   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1834   void DecodeFieldToSmi(Register dst, Register src) {
1835     static const int shift = Field::kShift;
1836     static const int mask = Field::kMask >> shift;
1837     dsrl(dst, src, shift);
1838     And(dst, dst, Operand(mask));
1839     dsll32(dst, dst, 0);
1840   }
1841 
1842   template<typename Field>
DecodeFieldToSmi(Register reg)1843   void DecodeFieldToSmi(Register reg) {
1844     DecodeField<Field>(reg, reg);
1845   }
1846   // Generates function and stub prologue code.
1847   void StubPrologue(StackFrame::Type type);
1848   void Prologue(bool code_pre_aging);
1849 
1850   // Load the type feedback vector from a JavaScript frame.
1851   void EmitLoadTypeFeedbackVector(Register vector);
1852 
1853   // Activation support.
1854   void EnterFrame(StackFrame::Type type);
1855   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1856   void LeaveFrame(StackFrame::Type type);
1857 
1858   void EnterBuiltinFrame(Register context, Register target, Register argc);
1859   void LeaveBuiltinFrame(Register context, Register target, Register argc);
1860 
1861   // Expects object in a0 and returns map with validated enum cache
1862   // in a0.  Assumes that any other register can be used as a scratch.
1863   void CheckEnumCache(Label* call_runtime);
1864 
1865   // AllocationMemento support. Arrays may have an associated AllocationMemento
1866   // object that can be checked for in order to pretransition to another type.
1867   // On entry, receiver_reg should point to the array object. scratch_reg gets
1868   // clobbered. If no info is present jump to no_memento_found, otherwise fall
1869   // through.
1870   void TestJSArrayForAllocationMemento(Register receiver_reg,
1871                                        Register scratch_reg,
1872                                        Label* no_memento_found);
1873 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1874   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1875                                          Register scratch_reg,
1876                                          Label* memento_found) {
1877     Label no_memento_found;
1878     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1879                                     &no_memento_found);
1880     Branch(memento_found);
1881     bind(&no_memento_found);
1882   }
1883 
1884   // Jumps to found label if a prototype map has dictionary elements.
1885   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1886                                         Register scratch1, Label* found);
1887 
IsDoubleZeroRegSet()1888   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1889 
1890  private:
1891   void CallCFunctionHelper(Register function,
1892                            int num_reg_arguments,
1893                            int num_double_arguments);
1894 
1895   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1896   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1897   void BranchShortHelperR6(int32_t offset, Label* L);
1898   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1899   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1900                            Register rs, const Operand& rt);
1901   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1902                          const Operand& rt, BranchDelaySlot bdslot);
1903   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1904                         const Operand& rt, BranchDelaySlot bdslot);
1905 
1906   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1907   void BranchAndLinkShortHelper(int16_t offset, Label* L,
1908                                 BranchDelaySlot bdslot);
1909   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1910   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1911   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1912                                   Register rs, const Operand& rt);
1913   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1914                                 Register rs, const Operand& rt,
1915                                 BranchDelaySlot bdslot);
1916   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1917                                Register rs, const Operand& rt,
1918                                BranchDelaySlot bdslot);
1919   void BranchLong(Label* L, BranchDelaySlot bdslot);
1920   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1921 
1922   // Common implementation of BranchF functions for the different formats.
1923   void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1924                      Condition cc, FPURegister cmp1, FPURegister cmp2,
1925                      BranchDelaySlot bd = PROTECT);
1926 
1927   void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1928                     FPURegister cmp1, FPURegister cmp2,
1929                     BranchDelaySlot bd = PROTECT);
1930 
1931 
1932   // Helper functions for generating invokes.
1933   void InvokePrologue(const ParameterCount& expected,
1934                       const ParameterCount& actual,
1935                       Label* done,
1936                       bool* definitely_mismatches,
1937                       InvokeFlag flag,
1938                       const CallWrapper& call_wrapper);
1939 
1940   void InitializeNewString(Register string,
1941                            Register length,
1942                            Heap::RootListIndex map_index,
1943                            Register scratch1,
1944                            Register scratch2);
1945 
1946   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1947   void InNewSpace(Register object, Register scratch,
1948                   Condition cond,  // ne for new space, eq otherwise.
1949                   Label* branch);
1950 
1951   // Helper for finding the mark bits for an address.  Afterwards, the
1952   // bitmap register points at the word with the mark bits and the mask
1953   // the position of the first bit.  Leaves addr_reg unchanged.
1954   inline void GetMarkBits(Register addr_reg,
1955                           Register bitmap_reg,
1956                           Register mask_reg);
1957 
1958   // Compute memory operands for safepoint stack slots.
1959   static int SafepointRegisterStackIndex(int reg_code);
1960   MemOperand SafepointRegisterSlot(Register reg);
1961   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1962 
1963   bool generating_stub_;
1964   bool has_frame_;
1965   bool has_double_zero_reg_set_;
1966   // This handle will be patched with the code object on installation.
1967   Handle<Object> code_object_;
1968 
1969   // Needs access to SafepointRegisterStackIndex for compiled frame
1970   // traversal.
1971   friend class StandardFrame;
1972 };
1973 
1974 
1975 // The code patcher is used to patch (typically) small parts of code e.g. for
1976 // debugging and other types of instrumentation. When using the code patcher
1977 // the exact number of bytes specified must be emitted. It is not legal to emit
1978 // relocation information. If any of these constraints are violated it causes
1979 // an assertion to fail.
1980 class CodePatcher {
1981  public:
1982   enum FlushICache {
1983     FLUSH,
1984     DONT_FLUSH
1985   };
1986 
1987   CodePatcher(Isolate* isolate, byte* address, int instructions,
1988               FlushICache flush_cache = FLUSH);
1989   ~CodePatcher();
1990 
1991   // Macro assembler to emit code.
masm()1992   MacroAssembler* masm() { return &masm_; }
1993 
1994   // Emit an instruction directly.
1995   void Emit(Instr instr);
1996 
1997   // Emit an address directly.
1998   void Emit(Address addr);
1999 
2000   // Change the condition part of an instruction leaving the rest of the current
2001   // instruction unchanged.
2002   void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
2003 
2004  private:
2005   byte* address_;  // The address of the code being patched.
2006   int size_;  // Number of bytes of the expected patch size.
2007   MacroAssembler masm_;  // Macro assembler used to generate the code.
2008   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
2009 };
2010 
2011 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)2012 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
2013                                          Func GetLabelFunction) {
2014   // Ensure that dd-ed labels following this instruction use 8 bytes aligned
2015   // addresses.
2016   if (kArchVariant >= kMips64r6) {
2017     BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 6);
2018     // Opposite of Align(8) as we have odd number of instructions in this case.
2019     if ((pc_offset() & 7) == 0) {
2020       nop();
2021     }
2022     addiupc(at, 5);
2023     Dlsa(at, at, index, kPointerSizeLog2);
2024     ld(at, MemOperand(at));
2025   } else {
2026     Label here;
2027     BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 11);
2028     Align(8);
2029     push(ra);
2030     bal(&here);
2031     dsll(at, index, kPointerSizeLog2);  // Branch delay slot.
2032     bind(&here);
2033     daddu(at, at, ra);
2034     pop(ra);
2035     ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
2036   }
2037   jr(at);
2038   nop();  // Branch delay slot nop.
2039   for (size_t index = 0; index < case_count; ++index) {
2040     dd(GetLabelFunction(index));
2041   }
2042 }
2043 
2044 #define ACCESS_MASM(masm) masm->
2045 
2046 }  // namespace internal
2047 }  // namespace v8
2048 
2049 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
2050