1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
7
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kReturnRegister2 = {Register::kCode_edi};
20 const Register kJSFunctionRegister = {Register::kCode_edi};
21 const Register kContextRegister = {Register::kCode_esi};
22 const Register kAllocateSizeRegister = {Register::kCode_edx};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
31
32 // Spill slots used by interpreter dispatch calling convention.
33 const int kInterpreterDispatchTableSpillSlot = -1;
34
35 // Convenience for platform-independent signatures. We do not normally
36 // distinguish memory operands from other operands on ia32.
37 typedef Operand MemOperand;
38
39 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
40 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
41 enum PointersToHereCheck {
42 kPointersToHereMaybeInteresting,
43 kPointersToHereAreAlwaysInteresting
44 };
45
46 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
47
48 enum class ReturnAddressState { kOnStack, kNotOnStack };
49
50 #ifdef DEBUG
51 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
52 Register reg4 = no_reg, Register reg5 = no_reg,
53 Register reg6 = no_reg, Register reg7 = no_reg,
54 Register reg8 = no_reg);
55 #endif
56
57 // MacroAssembler implements a collection of frequently used macros.
58 class MacroAssembler: public Assembler {
59 public:
60 MacroAssembler(Isolate* isolate, void* buffer, int size,
61 CodeObjectRequired create_code_object);
62
63 void Load(Register dst, const Operand& src, Representation r);
64 void Store(Register src, const Operand& dst, Representation r);
65
66 // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)67 void Set(Register dst, int32_t x) {
68 if (x == 0) {
69 xor_(dst, dst);
70 } else {
71 mov(dst, Immediate(x));
72 }
73 }
Set(const Operand & dst,int32_t x)74 void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
75
76 // Operations on roots in the root-array.
77 void LoadRoot(Register destination, Heap::RootListIndex index);
78 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
79 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
80 // These methods can only be used with constant roots (i.e. non-writable
81 // and not in new space).
82 void CompareRoot(Register with, Heap::RootListIndex index);
83 void CompareRoot(const Operand& with, Heap::RootListIndex index);
84 void PushRoot(Heap::RootListIndex index);
85
86 // Compare the object in a register to a value and jump if they are equal.
87 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
88 Label::Distance if_equal_distance = Label::kFar) {
89 CompareRoot(with, index);
90 j(equal, if_equal, if_equal_distance);
91 }
92 void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
93 Label* if_equal,
94 Label::Distance if_equal_distance = Label::kFar) {
95 CompareRoot(with, index);
96 j(equal, if_equal, if_equal_distance);
97 }
98
99 // Compare the object in a register to a value and jump if they are not equal.
100 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
101 Label* if_not_equal,
102 Label::Distance if_not_equal_distance = Label::kFar) {
103 CompareRoot(with, index);
104 j(not_equal, if_not_equal, if_not_equal_distance);
105 }
106 void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
107 Label* if_not_equal,
108 Label::Distance if_not_equal_distance = Label::kFar) {
109 CompareRoot(with, index);
110 j(not_equal, if_not_equal, if_not_equal_distance);
111 }
112
113 // These functions do not arrange the registers in any particular order so
114 // they are not useful for calls that can cause a GC. The caller can
115 // exclude up to 3 registers that do not need to be saved and restored.
116 void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
117 Register exclusion2 = no_reg,
118 Register exclusion3 = no_reg);
119 void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
120 Register exclusion2 = no_reg,
121 Register exclusion3 = no_reg);
122
123 // ---------------------------------------------------------------------------
124 // GC Support
125 enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
126
127 // Record in the remembered set the fact that we have a pointer to new space
128 // at the address pointed to by the addr register. Only works if addr is not
129 // in new space.
130 void RememberedSetHelper(Register object, // Used for debug code.
131 Register addr, Register scratch,
132 SaveFPRegsMode save_fp,
133 RememberedSetFinalAction and_then);
134
135 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
136 Label* condition_met,
137 Label::Distance condition_met_distance = Label::kFar);
138
139 void CheckPageFlagForMap(
140 Handle<Map> map, int mask, Condition cc, Label* condition_met,
141 Label::Distance condition_met_distance = Label::kFar);
142
143 // Check if object is in new space. Jumps if the object is not in new space.
144 // The register scratch can be object itself, but scratch will be clobbered.
145 void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
146 Label::Distance distance = Label::kFar) {
147 InNewSpace(object, scratch, zero, branch, distance);
148 }
149
150 // Check if object is in new space. Jumps if the object is in new space.
151 // The register scratch can be object itself, but it will be clobbered.
152 void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
153 Label::Distance distance = Label::kFar) {
154 InNewSpace(object, scratch, not_zero, branch, distance);
155 }
156
157 // Check if an object has a given incremental marking color. Also uses ecx!
158 void HasColor(Register object, Register scratch0, Register scratch1,
159 Label* has_color, Label::Distance has_color_distance,
160 int first_bit, int second_bit);
161
162 void JumpIfBlack(Register object, Register scratch0, Register scratch1,
163 Label* on_black,
164 Label::Distance on_black_distance = Label::kFar);
165
166 // Checks the color of an object. If the object is white we jump to the
167 // incremental marker.
168 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
169 Label* value_is_white, Label::Distance distance);
170
171 // Notify the garbage collector that we wrote a pointer into an object.
172 // |object| is the object being stored into, |value| is the object being
173 // stored. value and scratch registers are clobbered by the operation.
174 // The offset is the offset from the start of the object, not the offset from
175 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
176 void RecordWriteField(
177 Register object, int offset, Register value, Register scratch,
178 SaveFPRegsMode save_fp,
179 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
180 SmiCheck smi_check = INLINE_SMI_CHECK,
181 PointersToHereCheck pointers_to_here_check_for_value =
182 kPointersToHereMaybeInteresting);
183
184 // As above, but the offset has the tag presubtracted. For use with
185 // Operand(reg, off).
186 void RecordWriteContextSlot(
187 Register context, int offset, Register value, Register scratch,
188 SaveFPRegsMode save_fp,
189 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
190 SmiCheck smi_check = INLINE_SMI_CHECK,
191 PointersToHereCheck pointers_to_here_check_for_value =
192 kPointersToHereMaybeInteresting) {
193 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
194 remembered_set_action, smi_check,
195 pointers_to_here_check_for_value);
196 }
197
198 // Notify the garbage collector that we wrote a pointer into a fixed array.
199 // |array| is the array being stored into, |value| is the
200 // object being stored. |index| is the array index represented as a
201 // Smi. All registers are clobbered by the operation RecordWriteArray
202 // filters out smis so it does not update the write barrier if the
203 // value is a smi.
204 void RecordWriteArray(
205 Register array, Register value, Register index, SaveFPRegsMode save_fp,
206 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
207 SmiCheck smi_check = INLINE_SMI_CHECK,
208 PointersToHereCheck pointers_to_here_check_for_value =
209 kPointersToHereMaybeInteresting);
210
211 // For page containing |object| mark region covering |address|
212 // dirty. |object| is the object being stored into, |value| is the
213 // object being stored. The address and value registers are clobbered by the
214 // operation. RecordWrite filters out smis so it does not update the
215 // write barrier if the value is a smi.
216 void RecordWrite(
217 Register object, Register address, Register value, SaveFPRegsMode save_fp,
218 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
219 SmiCheck smi_check = INLINE_SMI_CHECK,
220 PointersToHereCheck pointers_to_here_check_for_value =
221 kPointersToHereMaybeInteresting);
222
223 // Notify the garbage collector that we wrote a code entry into a
224 // JSFunction. Only scratch is clobbered by the operation.
225 void RecordWriteCodeEntryField(Register js_function, Register code_entry,
226 Register scratch);
227
228 // For page containing |object| mark the region covering the object's map
229 // dirty. |object| is the object being stored into, |map| is the Map object
230 // that was stored.
231 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
232 Register scratch2, SaveFPRegsMode save_fp);
233
234 // ---------------------------------------------------------------------------
235 // Debugger Support
236
237 void DebugBreak();
238
239 // Generates function and stub prologue code.
240 void StubPrologue(StackFrame::Type type);
241 void Prologue(bool code_pre_aging);
242
243 // Enter specific kind of exit frame. Expects the number of
244 // arguments in register eax and sets up the number of arguments in
245 // register edi and the pointer to the first argument in register
246 // esi.
247 void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);
248
249 void EnterApiExitFrame(int argc);
250
251 // Leave the current exit frame. Expects the return value in
252 // register eax:edx (untouched) and the pointer to the first
253 // argument in register esi (if pop_arguments == true).
254 void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
255
256 // Leave the current exit frame. Expects the return value in
257 // register eax (untouched).
258 void LeaveApiExitFrame(bool restore_context);
259
260 // Find the function context up the context chain.
261 void LoadContext(Register dst, int context_chain_length);
262
263 // Load the global proxy from the current context.
264 void LoadGlobalProxy(Register dst);
265
266 // Conditionally load the cached Array transitioned map of type
267 // transitioned_kind from the native context if the map in register
268 // map_in_out is the cached Array map in the native context of
269 // expected_kind.
270 void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
271 ElementsKind transitioned_kind,
272 Register map_in_out,
273 Register scratch,
274 Label* no_map_match);
275
276 // Load the global function with the given index.
277 void LoadGlobalFunction(int index, Register function);
278
279 // Load the initial map from the global function. The registers
280 // function and map can be the same.
281 void LoadGlobalFunctionInitialMap(Register function, Register map);
282
283 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()284 void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()285 void PopSafepointRegisters() { popad(); }
286 // Store the value in register/immediate src in the safepoint
287 // register stack slot for register dst.
288 void StoreToSafepointRegisterSlot(Register dst, Register src);
289 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
290 void LoadFromSafepointRegisterSlot(Register dst, Register src);
291
292 // Nop, because x87 does not have a root register.
InitializeRootRegister()293 void InitializeRootRegister() {}
294
295 void LoadHeapObject(Register result, Handle<HeapObject> object);
296 void CmpHeapObject(Register reg, Handle<HeapObject> object);
297 void PushHeapObject(Handle<HeapObject> object);
298
LoadObject(Register result,Handle<Object> object)299 void LoadObject(Register result, Handle<Object> object) {
300 AllowDeferredHandleDereference heap_object_check;
301 if (object->IsHeapObject()) {
302 LoadHeapObject(result, Handle<HeapObject>::cast(object));
303 } else {
304 Move(result, Immediate(object));
305 }
306 }
307
CmpObject(Register reg,Handle<Object> object)308 void CmpObject(Register reg, Handle<Object> object) {
309 AllowDeferredHandleDereference heap_object_check;
310 if (object->IsHeapObject()) {
311 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
312 } else {
313 cmp(reg, Immediate(object));
314 }
315 }
316
317 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
318 void GetWeakValue(Register value, Handle<WeakCell> cell);
319 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
320
321 // ---------------------------------------------------------------------------
322 // JavaScript invokes
323
324 // Removes current frame and its arguments from the stack preserving
325 // the arguments and a return address pushed to the stack for the next call.
326 // |ra_state| defines whether return address is already pushed to stack or
327 // not. Both |callee_args_count| and |caller_args_count_reg| do not include
328 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
329 // is trashed. |number_of_temp_values_after_return_address| specifies
330 // the number of words pushed to the stack after the return address. This is
331 // to allow "allocation" of scratch registers that this function requires
332 // by saving their values on the stack.
333 void PrepareForTailCall(const ParameterCount& callee_args_count,
334 Register caller_args_count_reg, Register scratch0,
335 Register scratch1, ReturnAddressState ra_state,
336 int number_of_temp_values_after_return_address);
337
338 // Invoke the JavaScript function code by either calling or jumping.
339
340 void InvokeFunctionCode(Register function, Register new_target,
341 const ParameterCount& expected,
342 const ParameterCount& actual, InvokeFlag flag,
343 const CallWrapper& call_wrapper);
344
345 void FloodFunctionIfStepping(Register fun, Register new_target,
346 const ParameterCount& expected,
347 const ParameterCount& actual);
348
349 // Invoke the JavaScript function in the given register. Changes the
350 // current context to the context in the function before invoking.
351 void InvokeFunction(Register function, Register new_target,
352 const ParameterCount& actual, InvokeFlag flag,
353 const CallWrapper& call_wrapper);
354
355 void InvokeFunction(Register function, const ParameterCount& expected,
356 const ParameterCount& actual, InvokeFlag flag,
357 const CallWrapper& call_wrapper);
358
359 void InvokeFunction(Handle<JSFunction> function,
360 const ParameterCount& expected,
361 const ParameterCount& actual, InvokeFlag flag,
362 const CallWrapper& call_wrapper);
363
364 void ShlPair(Register high, Register low, uint8_t imm8);
365 void ShlPair_cl(Register high, Register low);
366 void ShrPair(Register high, Register low, uint8_t imm8);
367 void ShrPair_cl(Register high, Register src);
368 void SarPair(Register high, Register low, uint8_t imm8);
369 void SarPair_cl(Register high, Register low);
370
371 // Expression support
372 // Support for constant splitting.
373 bool IsUnsafeImmediate(const Immediate& x);
374 void SafeMove(Register dst, const Immediate& x);
375 void SafePush(const Immediate& x);
376
377 // Compare object type for heap object.
378 // Incoming register is heap_object and outgoing register is map.
379 void CmpObjectType(Register heap_object, InstanceType type, Register map);
380
381 // Compare instance type for map.
382 void CmpInstanceType(Register map, InstanceType type);
383
384 // Check if a map for a JSObject indicates that the object can have both smi
385 // and HeapObject elements. Jump to the specified label if it does not.
386 void CheckFastObjectElements(Register map, Label* fail,
387 Label::Distance distance = Label::kFar);
388
389 // Check if a map for a JSObject indicates that the object has fast smi only
390 // elements. Jump to the specified label if it does not.
391 void CheckFastSmiElements(Register map, Label* fail,
392 Label::Distance distance = Label::kFar);
393
394 // Check to see if maybe_number can be stored as a double in
395 // FastDoubleElements. If it can, store it at the index specified by key in
396 // the FastDoubleElements array elements, otherwise jump to fail.
397 void StoreNumberToDoubleElements(Register maybe_number, Register elements,
398 Register key, Register scratch, Label* fail,
399 int offset = 0);
400
401 // Compare an object's map with the specified map.
402 void CompareMap(Register obj, Handle<Map> map);
403
404 // Check if the map of an object is equal to a specified map and branch to
405 // label if not. Skip the smi check if not required (object is known to be a
406 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
407 // against maps that are ElementsKind transition maps of the specified map.
408 void CheckMap(Register obj, Handle<Map> map, Label* fail,
409 SmiCheckType smi_check_type);
410
411 // Check if the map of an object is equal to a specified weak map and branch
412 // to a specified target if equal. Skip the smi check if not required
413 // (object is known to be a heap object)
414 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
415 Handle<WeakCell> cell, Handle<Code> success,
416 SmiCheckType smi_check_type);
417
418 // Check if the object in register heap_object is a string. Afterwards the
419 // register map contains the object map and the register instance_type
420 // contains the instance_type. The registers map and instance_type can be the
421 // same in which case it contains the instance type afterwards. Either of the
422 // registers map and instance_type can be the same as heap_object.
423 Condition IsObjectStringType(Register heap_object, Register map,
424 Register instance_type);
425
426 // Check if the object in register heap_object is a name. Afterwards the
427 // register map contains the object map and the register instance_type
428 // contains the instance_type. The registers map and instance_type can be the
429 // same in which case it contains the instance type afterwards. Either of the
430 // registers map and instance_type can be the same as heap_object.
431 Condition IsObjectNameType(Register heap_object, Register map,
432 Register instance_type);
433
434 // FCmp is similar to integer cmp, but requires unsigned
435 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
436 void FCmp();
437 void FXamMinusZero();
438 void FXamSign();
439 void X87CheckIA();
440 void X87SetRC(int rc);
441 void X87SetFPUCW(int cw);
442
443 void ClampUint8(Register reg);
444 void ClampTOSToUint8(Register result_reg);
445
446 void SlowTruncateToI(Register result_reg, Register input_reg,
447 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
448
449 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
450 void TruncateX87TOSToI(Register result_reg);
451
452 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
453 Label* lost_precision, Label* is_nan, Label* minus_zero,
454 Label::Distance dst = Label::kFar);
455
456 // Smi tagging support.
SmiTag(Register reg)457 void SmiTag(Register reg) {
458 STATIC_ASSERT(kSmiTag == 0);
459 STATIC_ASSERT(kSmiTagSize == 1);
460 add(reg, reg);
461 }
SmiUntag(Register reg)462 void SmiUntag(Register reg) {
463 sar(reg, kSmiTagSize);
464 }
465
466 // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)467 void SmiUntag(Register reg, Label* is_smi) {
468 STATIC_ASSERT(kSmiTagSize == 1);
469 sar(reg, kSmiTagSize);
470 STATIC_ASSERT(kSmiTag == 0);
471 j(not_carry, is_smi);
472 }
473
LoadUint32NoSSE2(Register src)474 void LoadUint32NoSSE2(Register src) {
475 LoadUint32NoSSE2(Operand(src));
476 }
477 void LoadUint32NoSSE2(const Operand& src);
478
479 // Jump the register contains a smi.
480 inline void JumpIfSmi(Register value, Label* smi_label,
481 Label::Distance distance = Label::kFar) {
482 test(value, Immediate(kSmiTagMask));
483 j(zero, smi_label, distance);
484 }
485 // Jump if the operand is a smi.
486 inline void JumpIfSmi(Operand value, Label* smi_label,
487 Label::Distance distance = Label::kFar) {
488 test(value, Immediate(kSmiTagMask));
489 j(zero, smi_label, distance);
490 }
491 // Jump if register contain a non-smi.
492 inline void JumpIfNotSmi(Register value, Label* not_smi_label,
493 Label::Distance distance = Label::kFar) {
494 test(value, Immediate(kSmiTagMask));
495 j(not_zero, not_smi_label, distance);
496 }
497
498 // Jump if the value cannot be represented by a smi.
499 inline void JumpIfNotValidSmiValue(Register value, Register scratch,
500 Label* on_invalid,
501 Label::Distance distance = Label::kFar) {
502 mov(scratch, value);
503 add(scratch, Immediate(0x40000000U));
504 j(sign, on_invalid, distance);
505 }
506
507 // Jump if the unsigned integer value cannot be represented by a smi.
508 inline void JumpIfUIntNotValidSmiValue(
509 Register value, Label* on_invalid,
510 Label::Distance distance = Label::kFar) {
511 cmp(value, Immediate(0x40000000U));
512 j(above_equal, on_invalid, distance);
513 }
514
515 void LoadInstanceDescriptors(Register map, Register descriptors);
516 void EnumLength(Register dst, Register map);
517 void NumberOfOwnDescriptors(Register dst, Register map);
518 void LoadAccessor(Register dst, Register holder, int accessor_index,
519 AccessorComponent accessor);
520
521 template<typename Field>
DecodeField(Register reg)522 void DecodeField(Register reg) {
523 static const int shift = Field::kShift;
524 static const int mask = Field::kMask >> Field::kShift;
525 if (shift != 0) {
526 sar(reg, shift);
527 }
528 and_(reg, Immediate(mask));
529 }
530
531 template<typename Field>
DecodeFieldToSmi(Register reg)532 void DecodeFieldToSmi(Register reg) {
533 static const int shift = Field::kShift;
534 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
535 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
536 STATIC_ASSERT(kSmiTag == 0);
537 if (shift < kSmiTagSize) {
538 shl(reg, kSmiTagSize - shift);
539 } else if (shift > kSmiTagSize) {
540 sar(reg, shift - kSmiTagSize);
541 }
542 and_(reg, Immediate(mask));
543 }
544
545 // Abort execution if argument is not a number, enabled via --debug-code.
546 void AssertNumber(Register object);
547 void AssertNotNumber(Register object);
548
549 // Abort execution if argument is not a smi, enabled via --debug-code.
550 void AssertSmi(Register object);
551
552 // Abort execution if argument is a smi, enabled via --debug-code.
553 void AssertNotSmi(Register object);
554
555 // Abort execution if argument is not a string, enabled via --debug-code.
556 void AssertString(Register object);
557
558 // Abort execution if argument is not a name, enabled via --debug-code.
559 void AssertName(Register object);
560
561 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
562 void AssertFunction(Register object);
563
564 // Abort execution if argument is not a JSBoundFunction,
565 // enabled via --debug-code.
566 void AssertBoundFunction(Register object);
567
568 // Abort execution if argument is not a JSGeneratorObject,
569 // enabled via --debug-code.
570 void AssertGeneratorObject(Register object);
571
572 // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
573 void AssertReceiver(Register object);
574
575 // Abort execution if argument is not undefined or an AllocationSite, enabled
576 // via --debug-code.
577 void AssertUndefinedOrAllocationSite(Register object);
578
579 // ---------------------------------------------------------------------------
580 // Exception handling
581
582 // Push a new stack handler and link it into stack handler chain.
583 void PushStackHandler();
584
585 // Unlink the stack handler on top of the stack from the stack handler chain.
586 void PopStackHandler();
587
588 // ---------------------------------------------------------------------------
589 // Inline caching support
590
591 void GetNumberHash(Register r0, Register scratch);
592
593 // ---------------------------------------------------------------------------
594 // Allocation support
595
596 // Allocate an object in new space or old space. If the given space
597 // is exhausted control continues at the gc_required label. The allocated
598 // object is returned in result and end of the new object is returned in
599 // result_end. The register scratch can be passed as no_reg in which case
600 // an additional object reference will be added to the reloc info. The
601 // returned pointers in result and result_end have not yet been tagged as
602 // heap objects. If result_contains_top_on_entry is true the content of
603 // result is known to be the allocation top on entry (could be result_end
604 // from a previous call). If result_contains_top_on_entry is true scratch
605 // should be no_reg as it is never used.
606 void Allocate(int object_size, Register result, Register result_end,
607 Register scratch, Label* gc_required, AllocationFlags flags);
608
609 void Allocate(int header_size, ScaleFactor element_size,
610 Register element_count, RegisterValueType element_count_type,
611 Register result, Register result_end, Register scratch,
612 Label* gc_required, AllocationFlags flags);
613
614 void Allocate(Register object_size, Register result, Register result_end,
615 Register scratch, Label* gc_required, AllocationFlags flags);
616
617 // FastAllocate is right now only used for folded allocations. It just
618 // increments the top pointer without checking against limit. This can only
619 // be done if it was proved earlier that the allocation will succeed.
620 void FastAllocate(int object_size, Register result, Register result_end,
621 AllocationFlags flags);
622 void FastAllocate(Register object_size, Register result, Register result_end,
623 AllocationFlags flags);
624
625 // Allocate a heap number in new space with undefined value. The
626 // register scratch2 can be passed as no_reg; the others must be
627 // valid registers. Returns tagged pointer in result register, or
628 // jumps to gc_required if new space is full.
629 void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
630 Label* gc_required, MutableMode mode = IMMUTABLE);
631
632 // Allocate a sequential string. All the header fields of the string object
633 // are initialized.
634 void AllocateTwoByteString(Register result, Register length,
635 Register scratch1, Register scratch2,
636 Register scratch3, Label* gc_required);
637 void AllocateOneByteString(Register result, Register length,
638 Register scratch1, Register scratch2,
639 Register scratch3, Label* gc_required);
640 void AllocateOneByteString(Register result, int length, Register scratch1,
641 Register scratch2, Label* gc_required);
642
643 // Allocate a raw cons string object. Only the map field of the result is
644 // initialized.
645 void AllocateTwoByteConsString(Register result, Register scratch1,
646 Register scratch2, Label* gc_required);
647 void AllocateOneByteConsString(Register result, Register scratch1,
648 Register scratch2, Label* gc_required);
649
650 // Allocate a raw sliced string object. Only the map field of the result is
651 // initialized.
652 void AllocateTwoByteSlicedString(Register result, Register scratch1,
653 Register scratch2, Label* gc_required);
654 void AllocateOneByteSlicedString(Register result, Register scratch1,
655 Register scratch2, Label* gc_required);
656
657 // Allocate and initialize a JSValue wrapper with the specified {constructor}
658 // and {value}.
659 void AllocateJSValue(Register result, Register constructor, Register value,
660 Register scratch, Label* gc_required);
661
662 // Initialize fields with filler values. Fields starting at |current_address|
663 // not including |end_address| are overwritten with the value in |filler|. At
664 // the end the loop, |current_address| takes the value of |end_address|.
665 void InitializeFieldsWithFiller(Register current_address,
666 Register end_address, Register filler);
667
668 // ---------------------------------------------------------------------------
669 // Support functions.
670
671 // Check a boolean-bit of a Smi field.
672 void BooleanBitTest(Register object, int field_offset, int bit_index);
673
674 // Check if result is zero and op is negative.
675 void NegativeZeroTest(Register result, Register op, Label* then_label);
676
677 // Check if result is zero and any of op1 and op2 are negative.
678 // Register scratch is destroyed, and it must be different from op2.
679 void NegativeZeroTest(Register result, Register op1, Register op2,
680 Register scratch, Label* then_label);
681
682 // Machine code version of Map::GetConstructor().
683 // |temp| holds |result|'s map when done.
684 void GetMapConstructor(Register result, Register map, Register temp);
685
686 // Try to get function prototype of a function and puts the value in
687 // the result register. Checks that the function really is a
688 // function and jumps to the miss label if the fast checks fail. The
689 // function register will be untouched; the other registers may be
690 // clobbered.
691 void TryGetFunctionPrototype(Register function, Register result,
692 Register scratch, Label* miss);
693
694 // ---------------------------------------------------------------------------
695 // Runtime calls
696
697 // Call a code stub. Generate the code if necessary.
698 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
699
700 // Tail call a code stub (jump). Generate the code if necessary.
701 void TailCallStub(CodeStub* stub);
702
703 // Return from a code stub after popping its arguments.
704 void StubReturn(int argc);
705
706 // Call a runtime routine.
707 void CallRuntime(const Runtime::Function* f, int num_arguments,
708 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)709 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
710 const Runtime::Function* function = Runtime::FunctionForId(fid);
711 CallRuntime(function, function->nargs, kSaveFPRegs);
712 }
713
714 // Convenience function: Same as above, but takes the fid instead.
715 void CallRuntime(Runtime::FunctionId fid,
716 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
717 const Runtime::Function* function = Runtime::FunctionForId(fid);
718 CallRuntime(function, function->nargs, save_doubles);
719 }
720
721 // Convenience function: Same as above, but takes the fid instead.
722 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
723 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
724 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
725 }
726
727 // Convenience function: call an external reference.
728 void CallExternalReference(ExternalReference ref, int num_arguments);
729
730 // Convenience function: tail call a runtime routine (jump).
731 void TailCallRuntime(Runtime::FunctionId fid);
732
733 // Before calling a C-function from generated code, align arguments on stack.
734 // After aligning the frame, arguments must be stored in esp[0], esp[4],
735 // etc., not pushed. The argument count assumes all arguments are word sized.
736 // Some compilers/platforms require the stack to be aligned when calling
737 // C++ code.
738 // Needs a scratch register to do some arithmetic. This register will be
739 // trashed.
740 void PrepareCallCFunction(int num_arguments, Register scratch);
741
742 // Calls a C function and cleans up the space for arguments allocated
743 // by PrepareCallCFunction. The called function is not allowed to trigger a
744 // garbage collection, since that might move the code and invalidate the
745 // return address (unless this is somehow accounted for by the called
746 // function).
747 void CallCFunction(ExternalReference function, int num_arguments);
748 void CallCFunction(Register function, int num_arguments);
749
750 // Jump to a runtime routine.
751 void JumpToExternalReference(const ExternalReference& ext,
752 bool builtin_exit_frame = false);
753
754 // ---------------------------------------------------------------------------
755 // Utilities
756
757 void Ret();
758
759 // Return and drop arguments from stack, where the number of arguments
760 // may be bigger than 2^16 - 1. Requires a scratch register.
761 void Ret(int bytes_dropped, Register scratch);
762
763 // Emit code that loads |parameter_index|'th parameter from the stack to
764 // the register according to the CallInterfaceDescriptor definition.
765 // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
766 // below the caller's sp (on x87 it's at least return address).
767 template <class Descriptor>
768 void LoadParameterFromStack(
769 Register reg, typename Descriptor::ParameterIndices parameter_index,
770 int sp_to_ra_offset_in_words = 1) {
771 DCHECK(Descriptor::kPassLastArgsOnStack);
772 DCHECK_LT(parameter_index, Descriptor::kParameterCount);
773 DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount,
774 parameter_index);
775 int offset = (Descriptor::kParameterCount - parameter_index - 1 +
776 sp_to_ra_offset_in_words) *
777 kPointerSize;
778 mov(reg, Operand(esp, offset));
779 }
780
781 // Emit code to discard a non-negative number of pointer-sized elements
782 // from the stack, clobbering only the esp register.
783 void Drop(int element_count);
784
Call(Label * target)785 void Call(Label* target) { call(target); }
786 void Call(Handle<Code> target, RelocInfo::Mode rmode,
787 TypeFeedbackId id = TypeFeedbackId::None()) {
788 call(target, rmode, id);
789 }
Jump(Handle<Code> target,RelocInfo::Mode rmode)790 void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)791 void Push(Register src) { push(src); }
Push(const Operand & src)792 void Push(const Operand& src) { push(src); }
Push(Immediate value)793 void Push(Immediate value) { push(value); }
Pop(Register dst)794 void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)795 void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)796 void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)797 void PopReturnAddressTo(Register dst) { pop(dst); }
798
Lzcnt(Register dst,Register src)799 void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
800 void Lzcnt(Register dst, const Operand& src);
801
Tzcnt(Register dst,Register src)802 void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
803 void Tzcnt(Register dst, const Operand& src);
804
Popcnt(Register dst,Register src)805 void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
806 void Popcnt(Register dst, const Operand& src);
807
808 // Move if the registers are not identical.
809 void Move(Register target, Register source);
810
811 // Move a constant into a destination using the most efficient encoding.
812 void Move(Register dst, const Immediate& x);
813 void Move(const Operand& dst, const Immediate& x);
814
Move(Register dst,Handle<Object> handle)815 void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
Move(Register dst,Smi * source)816 void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
817
818 // Push a handle value.
Push(Handle<Object> handle)819 void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)820 void Push(Smi* smi) { Push(Immediate(smi)); }
821
CodeObject()822 Handle<Object> CodeObject() {
823 DCHECK(!code_object_.is_null());
824 return code_object_;
825 }
826
827 // Insert code to verify that the x87 stack has the specified depth (0-7)
828 void VerifyX87StackDepth(uint32_t depth);
829
830 // Emit code for a truncating division by a constant. The dividend register is
831 // unchanged, the result is in edx, and eax gets clobbered.
832 void TruncatingDiv(Register dividend, int32_t divisor);
833
834 // ---------------------------------------------------------------------------
835 // StatsCounter support
836
837 void SetCounter(StatsCounter* counter, int value);
838 void IncrementCounter(StatsCounter* counter, int value);
839 void DecrementCounter(StatsCounter* counter, int value);
840 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
841 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
842
843 // ---------------------------------------------------------------------------
844 // Debugging
845
846 // Calls Abort(msg) if the condition cc is not satisfied.
847 // Use --debug_code to enable.
848 void Assert(Condition cc, BailoutReason reason);
849
850 void AssertFastElements(Register elements);
851
852 // Like Assert(), but always enabled.
853 void Check(Condition cc, BailoutReason reason);
854
855 // Print a message to stdout and abort execution.
856 void Abort(BailoutReason reason);
857
858 // Check that the stack is aligned.
859 void CheckStackAlignment();
860
861 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)862 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()863 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)864 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()865 bool has_frame() { return has_frame_; }
866 inline bool AllowThisStubCall(CodeStub* stub);
867
868 // ---------------------------------------------------------------------------
869 // String utilities.
870
871 // Check whether the instance type represents a flat one-byte string. Jump to
872 // the label if not. If the instance type can be scratched specify same
873 // register for both instance type and scratch.
874 void JumpIfInstanceTypeIsNotSequentialOneByte(
875 Register instance_type, Register scratch,
876 Label* on_not_flat_one_byte_string);
877
878 // Checks if both objects are sequential one-byte strings, and jumps to label
879 // if either is not.
880 void JumpIfNotBothSequentialOneByteStrings(
881 Register object1, Register object2, Register scratch1, Register scratch2,
882 Label* on_not_flat_one_byte_strings);
883
884 // Checks if the given register or operand is a unique name
885 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
886 Label::Distance distance = Label::kFar) {
887 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
888 }
889
890 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
891 Label::Distance distance = Label::kFar);
892
893 void EmitSeqStringSetCharCheck(Register string, Register index,
894 Register value, uint32_t encoding_mask);
895
SafepointRegisterStackIndex(Register reg)896 static int SafepointRegisterStackIndex(Register reg) {
897 return SafepointRegisterStackIndex(reg.code());
898 }
899
900 // Load the type feedback vector from a JavaScript frame.
901 void EmitLoadTypeFeedbackVector(Register vector);
902
903 // Activation support.
904 void EnterFrame(StackFrame::Type type);
905 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
906 void LeaveFrame(StackFrame::Type type);
907
908 void EnterBuiltinFrame(Register context, Register target, Register argc);
909 void LeaveBuiltinFrame(Register context, Register target, Register argc);
910
911 // Expects object in eax and returns map with validated enum cache
912 // in eax. Assumes that any other register can be used as a scratch.
913 void CheckEnumCache(Label* call_runtime);
914
915 // AllocationMemento support. Arrays may have an associated
916 // AllocationMemento object that can be checked for in order to pretransition
917 // to another type.
918 // On entry, receiver_reg should point to the array object.
919 // scratch_reg gets clobbered.
920 // If allocation info is present, conditional code is set to equal.
921 void TestJSArrayForAllocationMemento(Register receiver_reg,
922 Register scratch_reg,
923 Label* no_memento_found);
924
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)925 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
926 Register scratch_reg,
927 Label* memento_found) {
928 Label no_memento_found;
929 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
930 &no_memento_found);
931 j(equal, memento_found);
932 bind(&no_memento_found);
933 }
934
935 // Jumps to found label if a prototype map has dictionary elements.
936 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
937 Register scratch1, Label* found);
938
939 private:
940 bool generating_stub_;
941 bool has_frame_;
942 // This handle will be patched with the code object on installation.
943 Handle<Object> code_object_;
944
945 // Helper functions for generating invokes.
946 void InvokePrologue(const ParameterCount& expected,
947 const ParameterCount& actual, Label* done,
948 bool* definitely_mismatches, InvokeFlag flag,
949 Label::Distance done_distance,
950 const CallWrapper& call_wrapper);
951
952 void EnterExitFramePrologue(StackFrame::Type frame_type);
953 void EnterExitFrameEpilogue(int argc, bool save_doubles);
954
955 void LeaveExitFrameEpilogue(bool restore_context);
956
957 // Allocation support helpers.
958 void LoadAllocationTopHelper(Register result, Register scratch,
959 AllocationFlags flags);
960
961 void UpdateAllocationTopHelper(Register result_end, Register scratch,
962 AllocationFlags flags);
963
964 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
965 void InNewSpace(Register object, Register scratch, Condition cc,
966 Label* condition_met,
967 Label::Distance condition_met_distance = Label::kFar);
968
969 // Helper for finding the mark bits for an address. Afterwards, the
970 // bitmap register points at the word with the mark bits and the mask
971 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
972 // unchanged.
973 inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
974 Register mask_reg);
975
976 // Compute memory operands for safepoint stack slots.
977 Operand SafepointRegisterSlot(Register reg);
978 static int SafepointRegisterStackIndex(int reg_code);
979
980 // Needs access to SafepointRegisterStackIndex for compiled frame
981 // traversal.
982 friend class StandardFrame;
983 };
984
985 // The code patcher is used to patch (typically) small parts of code e.g. for
986 // debugging and other types of instrumentation. When using the code patcher
987 // the exact number of bytes specified must be emitted. Is not legal to emit
988 // relocation information. If any of these constraints are violated it causes
989 // an assertion.
990 class CodePatcher {
991 public:
992 CodePatcher(Isolate* isolate, byte* address, int size);
993 ~CodePatcher();
994
995 // Macro assembler to emit code.
masm()996 MacroAssembler* masm() { return &masm_; }
997
998 private:
999 byte* address_; // The address of the code being patched.
1000 int size_; // Number of bytes of the expected patch size.
1001 MacroAssembler masm_; // Macro assembler used to generate the code.
1002 };
1003
1004 // -----------------------------------------------------------------------------
1005 // Static helper functions.
1006
1007 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1008 inline Operand FieldOperand(Register object, int offset) {
1009 return Operand(object, offset - kHeapObjectTag);
1010 }
1011
1012 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1013 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
1014 int offset) {
1015 return Operand(object, index, scale, offset - kHeapObjectTag);
1016 }
1017
1018 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
1019 int additional_offset = 0) {
1020 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1021 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1022 }
1023
ContextOperand(Register context,int index)1024 inline Operand ContextOperand(Register context, int index) {
1025 return Operand(context, Context::SlotOffset(index));
1026 }
1027
ContextOperand(Register context,Register index)1028 inline Operand ContextOperand(Register context, Register index) {
1029 return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
1030 }
1031
NativeContextOperand()1032 inline Operand NativeContextOperand() {
1033 return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
1034 }
1035
1036 #define ACCESS_MASM(masm) masm->
1037
1038 } // namespace internal
1039 } // namespace v8
1040
1041 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_
1042