• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_SORTED_VECTOR_H
18 #define ANDROID_SORTED_VECTOR_H
19 
20 #include <assert.h>
21 #include <stdint.h>
22 #include <sys/types.h>
23 
24 #include <log/log.h>
25 #include <utils/TypeHelpers.h>
26 #include <utils/Vector.h>
27 #include <utils/VectorImpl.h>
28 
29 // ---------------------------------------------------------------------------
30 
31 namespace android {
32 
33 template <class TYPE>
34 class SortedVector : private SortedVectorImpl
35 {
36     friend class Vector<TYPE>;
37 
38 public:
39             typedef TYPE    value_type;
40 
41     /*!
42      * Constructors and destructors
43      */
44 
45                             SortedVector();
46                             SortedVector(const SortedVector<TYPE>& rhs);
47     virtual                 ~SortedVector();
48 
49     /*! copy operator */
50     const SortedVector<TYPE>&   operator = (const SortedVector<TYPE>& rhs) const;
51     SortedVector<TYPE>&         operator = (const SortedVector<TYPE>& rhs);
52 
53     /*
54      * empty the vector
55      */
56 
clear()57     inline  void            clear()             { VectorImpl::clear(); }
58 
59     /*!
60      * vector stats
61      */
62 
63     //! returns number of items in the vector
size()64     inline  size_t          size() const                { return VectorImpl::size(); }
65     //! returns whether or not the vector is empty
isEmpty()66     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
67     //! returns how many items can be stored without reallocating the backing store
capacity()68     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
69     //! sets the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)70     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
71 
72     /*!
73      * C-style array access
74      */
75 
76     //! read-only C-style access
77     inline  const TYPE*     array() const;
78 
79     //! read-write C-style access. BE VERY CAREFUL when modifying the array
80     //! you must keep it sorted! You usually don't use this function.
81             TYPE*           editArray();
82 
83             //! finds the index of an item
84             ssize_t         indexOf(const TYPE& item) const;
85 
86             //! finds where this item should be inserted
87             size_t          orderOf(const TYPE& item) const;
88 
89 
90     /*!
91      * accessors
92      */
93 
94     //! read-only access to an item at a given index
95     inline  const TYPE&     operator [] (size_t index) const;
96     //! alternate name for operator []
97     inline  const TYPE&     itemAt(size_t index) const;
98     //! stack-usage of the vector. returns the top of the stack (last element)
99             const TYPE&     top() const;
100 
101     /*!
102      * modifying the array
103      */
104 
105             //! add an item in the right place (and replace the one that is there)
106             ssize_t         add(const TYPE& item);
107 
108             //! editItemAt() MUST NOT change the order of this item
editItemAt(size_t index)109             TYPE&           editItemAt(size_t index) {
110                 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
111             }
112 
113             //! merges a vector into this one
114             ssize_t         merge(const Vector<TYPE>& vector);
115             ssize_t         merge(const SortedVector<TYPE>& vector);
116 
117             //! removes an item
118             ssize_t         remove(const TYPE&);
119 
120     //! remove several items
121     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
122     //! remove one item
removeAt(size_t index)123     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
124 
125     /*
126      * these inlines add some level of compatibility with STL.
127      */
128     typedef TYPE* iterator;
129     typedef TYPE const* const_iterator;
130 
begin()131     inline iterator begin() { return editArray(); }
end()132     inline iterator end()   { return editArray() + size(); }
begin()133     inline const_iterator begin() const { return array(); }
end()134     inline const_iterator end() const   { return array() + size(); }
reserve(size_t n)135     inline void reserve(size_t n) { setCapacity(n); }
empty()136     inline bool empty() const{ return isEmpty(); }
erase(iterator pos)137     inline iterator erase(iterator pos) {
138         ssize_t index = removeItemsAt(pos-array());
139         return begin() + index;
140     }
141 
142 protected:
143     virtual void    do_construct(void* storage, size_t num) const;
144     virtual void    do_destroy(void* storage, size_t num) const;
145     virtual void    do_copy(void* dest, const void* from, size_t num) const;
146     virtual void    do_splat(void* dest, const void* item, size_t num) const;
147     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
148     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
149     virtual int     do_compare(const void* lhs, const void* rhs) const;
150 };
151 
152 // ---------------------------------------------------------------------------
153 // No user serviceable parts from here...
154 // ---------------------------------------------------------------------------
155 
156 template<class TYPE> inline
SortedVector()157 SortedVector<TYPE>::SortedVector()
158     : SortedVectorImpl(sizeof(TYPE),
159                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
160                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
161                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
162                 )
163 {
164 }
165 
166 template<class TYPE> inline
SortedVector(const SortedVector<TYPE> & rhs)167 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
168     : SortedVectorImpl(rhs) {
169 }
170 
171 template<class TYPE> inline
~SortedVector()172 SortedVector<TYPE>::~SortedVector() {
173     finish_vector();
174 }
175 
176 template<class TYPE> inline
177 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
178     SortedVectorImpl::operator = (rhs);
179     return *this;
180 }
181 
182 template<class TYPE> inline
183 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
184     SortedVectorImpl::operator = (rhs);
185     return *this;
186 }
187 
188 template<class TYPE> inline
array()189 const TYPE* SortedVector<TYPE>::array() const {
190     return static_cast<const TYPE *>(arrayImpl());
191 }
192 
193 template<class TYPE> inline
editArray()194 TYPE* SortedVector<TYPE>::editArray() {
195     return static_cast<TYPE *>(editArrayImpl());
196 }
197 
198 
199 template<class TYPE> inline
200 const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
201     LOG_FATAL_IF(index>=size(),
202             "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
203             int(index), int(size()));
204     return *(array() + index);
205 }
206 
207 template<class TYPE> inline
itemAt(size_t index)208 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
209     return operator[](index);
210 }
211 
212 template<class TYPE> inline
top()213 const TYPE& SortedVector<TYPE>::top() const {
214     return *(array() + size() - 1);
215 }
216 
217 template<class TYPE> inline
add(const TYPE & item)218 ssize_t SortedVector<TYPE>::add(const TYPE& item) {
219     return SortedVectorImpl::add(&item);
220 }
221 
222 template<class TYPE> inline
indexOf(const TYPE & item)223 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
224     return SortedVectorImpl::indexOf(&item);
225 }
226 
227 template<class TYPE> inline
orderOf(const TYPE & item)228 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
229     return SortedVectorImpl::orderOf(&item);
230 }
231 
232 template<class TYPE> inline
merge(const Vector<TYPE> & vector)233 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
234     return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
235 }
236 
237 template<class TYPE> inline
merge(const SortedVector<TYPE> & vector)238 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
239     return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
240 }
241 
242 template<class TYPE> inline
remove(const TYPE & item)243 ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
244     return SortedVectorImpl::remove(&item);
245 }
246 
247 template<class TYPE> inline
removeItemsAt(size_t index,size_t count)248 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
249     return VectorImpl::removeItemsAt(index, count);
250 }
251 
252 // ---------------------------------------------------------------------------
253 
254 template<class TYPE>
do_construct(void * storage,size_t num)255 UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
256     construct_type( reinterpret_cast<TYPE*>(storage), num );
257 }
258 
259 template<class TYPE>
do_destroy(void * storage,size_t num)260 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
261     destroy_type( reinterpret_cast<TYPE*>(storage), num );
262 }
263 
264 template<class TYPE>
do_copy(void * dest,const void * from,size_t num)265 UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
266     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
267 }
268 
269 template<class TYPE>
do_splat(void * dest,const void * item,size_t num)270 UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
271     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
272 }
273 
274 template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)275 UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
276     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
277 }
278 
279 template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)280 UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
281     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
282 }
283 
284 template<class TYPE>
do_compare(const void * lhs,const void * rhs)285 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
286     return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
287 }
288 
289 }; // namespace android
290 
291 
292 // ---------------------------------------------------------------------------
293 
294 #endif // ANDROID_SORTED_VECTOR_H
295