• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
18 #define ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
19 
20 #include <deque>
21 #include <utility>
22 #include <vector>
23 
24 #include "arch/mips64/instruction_set_features_mips64.h"
25 #include "base/arena_containers.h"
26 #include "base/enums.h"
27 #include "base/macros.h"
28 #include "constants_mips64.h"
29 #include "globals.h"
30 #include "managed_register_mips64.h"
31 #include "offsets.h"
32 #include "utils/assembler.h"
33 #include "utils/jni_macro_assembler.h"
34 #include "utils/label.h"
35 
36 namespace art {
37 namespace mips64 {
38 
39 enum LoadConst64Path {
40   kLoadConst64PathZero           = 0x0,
41   kLoadConst64PathOri            = 0x1,
42   kLoadConst64PathDaddiu         = 0x2,
43   kLoadConst64PathLui            = 0x4,
44   kLoadConst64PathLuiOri         = 0x8,
45   kLoadConst64PathOriDahi        = 0x10,
46   kLoadConst64PathOriDati        = 0x20,
47   kLoadConst64PathLuiDahi        = 0x40,
48   kLoadConst64PathLuiDati        = 0x80,
49   kLoadConst64PathDaddiuDsrlX    = 0x100,
50   kLoadConst64PathOriDsllX       = 0x200,
51   kLoadConst64PathDaddiuDsllX    = 0x400,
52   kLoadConst64PathLuiOriDsllX    = 0x800,
53   kLoadConst64PathOriDsllXOri    = 0x1000,
54   kLoadConst64PathDaddiuDsllXOri = 0x2000,
55   kLoadConst64PathDaddiuDahi     = 0x4000,
56   kLoadConst64PathDaddiuDati     = 0x8000,
57   kLoadConst64PathDinsu1         = 0x10000,
58   kLoadConst64PathDinsu2         = 0x20000,
59   kLoadConst64PathCatchAll       = 0x40000,
60   kLoadConst64PathAllPaths       = 0x7ffff,
61 };
62 
63 template <typename Asm>
TemplateLoadConst32(Asm * a,GpuRegister rd,int32_t value)64 void TemplateLoadConst32(Asm* a, GpuRegister rd, int32_t value) {
65   if (IsUint<16>(value)) {
66     // Use OR with (unsigned) immediate to encode 16b unsigned int.
67     a->Ori(rd, ZERO, value);
68   } else if (IsInt<16>(value)) {
69     // Use ADD with (signed) immediate to encode 16b signed int.
70     a->Addiu(rd, ZERO, value);
71   } else {
72     // Set 16 most significant bits of value. The "lui" instruction
73     // also clears the 16 least significant bits to zero.
74     a->Lui(rd, value >> 16);
75     if (value & 0xFFFF) {
76       // If the 16 least significant bits are non-zero, set them
77       // here.
78       a->Ori(rd, rd, value);
79     }
80   }
81 }
82 
InstrCountForLoadReplicatedConst32(int64_t value)83 static inline int InstrCountForLoadReplicatedConst32(int64_t value) {
84   int32_t x = Low32Bits(value);
85   int32_t y = High32Bits(value);
86 
87   if (x == y) {
88     return (IsUint<16>(x) || IsInt<16>(x) || ((x & 0xFFFF) == 0 && IsInt<16>(value >> 16))) ? 2 : 3;
89   }
90 
91   return INT_MAX;
92 }
93 
94 template <typename Asm, typename Rtype, typename Vtype>
TemplateLoadConst64(Asm * a,Rtype rd,Vtype value)95 void TemplateLoadConst64(Asm* a, Rtype rd, Vtype value) {
96   int bit31 = (value & UINT64_C(0x80000000)) != 0;
97   int rep32_count = InstrCountForLoadReplicatedConst32(value);
98 
99   // Loads with 1 instruction.
100   if (IsUint<16>(value)) {
101     // 64-bit value can be loaded as an unsigned 16-bit number.
102     a->RecordLoadConst64Path(kLoadConst64PathOri);
103     a->Ori(rd, ZERO, value);
104   } else if (IsInt<16>(value)) {
105     // 64-bit value can be loaded as an signed 16-bit number.
106     a->RecordLoadConst64Path(kLoadConst64PathDaddiu);
107     a->Daddiu(rd, ZERO, value);
108   } else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) {
109     // 64-bit value can be loaded as an signed 32-bit number which has all
110     // of its 16 least significant bits set to zero.
111     a->RecordLoadConst64Path(kLoadConst64PathLui);
112     a->Lui(rd, value >> 16);
113   } else if (IsInt<32>(value)) {
114     // Loads with 2 instructions.
115     // 64-bit value can be loaded as an signed 32-bit number which has some
116     // or all of its 16 least significant bits set to one.
117     a->RecordLoadConst64Path(kLoadConst64PathLuiOri);
118     a->Lui(rd, value >> 16);
119     a->Ori(rd, rd, value);
120   } else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) {
121     // 64-bit value which consists of an unsigned 16-bit value in its
122     // least significant 32-bits, and a signed 16-bit value in its
123     // most significant 32-bits.
124     a->RecordLoadConst64Path(kLoadConst64PathOriDahi);
125     a->Ori(rd, ZERO, value);
126     a->Dahi(rd, value >> 32);
127   } else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) {
128     // 64-bit value which consists of an unsigned 16-bit value in its
129     // least significant 48-bits, and a signed 16-bit value in its
130     // most significant 16-bits.
131     a->RecordLoadConst64Path(kLoadConst64PathOriDati);
132     a->Ori(rd, ZERO, value);
133     a->Dati(rd, value >> 48);
134   } else if ((value & 0xFFFF) == 0 &&
135              (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
136     // 16 LSBs (Least Significant Bits) all set to zero.
137     // 48 MSBs (Most Significant Bits) hold a signed 32-bit value.
138     a->RecordLoadConst64Path(kLoadConst64PathLuiDahi);
139     a->Lui(rd, value >> 16);
140     a->Dahi(rd, (value >> 32) + bit31);
141   } else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
142     // 16 LSBs all set to zero.
143     // 48 MSBs hold a signed value which can't be represented by signed
144     // 32-bit number, and the middle 16 bits are all zero, or all one.
145     a->RecordLoadConst64Path(kLoadConst64PathLuiDati);
146     a->Lui(rd, value >> 16);
147     a->Dati(rd, (value >> 48) + bit31);
148   } else if (IsInt<16>(static_cast<int32_t>(value)) &&
149              (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
150     // 32 LSBs contain an unsigned 16-bit number.
151     // 32 MSBs contain a signed 16-bit number.
152     a->RecordLoadConst64Path(kLoadConst64PathDaddiuDahi);
153     a->Daddiu(rd, ZERO, value);
154     a->Dahi(rd, (value >> 32) + bit31);
155   } else if (IsInt<16>(static_cast<int32_t>(value)) &&
156              ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
157     // 48 LSBs contain an unsigned 16-bit number.
158     // 16 MSBs contain a signed 16-bit number.
159     a->RecordLoadConst64Path(kLoadConst64PathDaddiuDati);
160     a->Daddiu(rd, ZERO, value);
161     a->Dati(rd, (value >> 48) + bit31);
162   } else if (IsPowerOfTwo(value + UINT64_C(1))) {
163     // 64-bit values which have their "n" MSBs set to one, and their
164     // "64-n" LSBs set to zero. "n" must meet the restrictions 0 < n < 64.
165     int shift_cnt = 64 - CTZ(value + UINT64_C(1));
166     a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsrlX);
167     a->Daddiu(rd, ZERO, -1);
168     if (shift_cnt < 32) {
169       a->Dsrl(rd, rd, shift_cnt);
170     } else {
171       a->Dsrl32(rd, rd, shift_cnt & 31);
172     }
173   } else {
174     int shift_cnt = CTZ(value);
175     int64_t tmp = value >> shift_cnt;
176     a->RecordLoadConst64Path(kLoadConst64PathOriDsllX);
177     if (IsUint<16>(tmp)) {
178       // Value can be computed by loading a 16-bit unsigned value, and
179       // then shifting left.
180       a->Ori(rd, ZERO, tmp);
181       if (shift_cnt < 32) {
182         a->Dsll(rd, rd, shift_cnt);
183       } else {
184         a->Dsll32(rd, rd, shift_cnt & 31);
185       }
186     } else if (IsInt<16>(tmp)) {
187       // Value can be computed by loading a 16-bit signed value, and
188       // then shifting left.
189       a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllX);
190       a->Daddiu(rd, ZERO, tmp);
191       if (shift_cnt < 32) {
192         a->Dsll(rd, rd, shift_cnt);
193       } else {
194         a->Dsll32(rd, rd, shift_cnt & 31);
195       }
196     } else if (rep32_count < 3) {
197       // Value being loaded has 32 LSBs equal to the 32 MSBs, and the
198       // value loaded into the 32 LSBs can be loaded with a single
199       // MIPS instruction.
200       a->LoadConst32(rd, value);
201       a->Dinsu(rd, rd, 32, 32);
202       a->RecordLoadConst64Path(kLoadConst64PathDinsu1);
203     } else if (IsInt<32>(tmp)) {
204       // Loads with 3 instructions.
205       // Value can be computed by loading a 32-bit signed value, and
206       // then shifting left.
207       a->RecordLoadConst64Path(kLoadConst64PathLuiOriDsllX);
208       a->Lui(rd, tmp >> 16);
209       a->Ori(rd, rd, tmp);
210       if (shift_cnt < 32) {
211         a->Dsll(rd, rd, shift_cnt);
212       } else {
213         a->Dsll32(rd, rd, shift_cnt & 31);
214       }
215     } else {
216       shift_cnt = 16 + CTZ(value >> 16);
217       tmp = value >> shift_cnt;
218       if (IsUint<16>(tmp)) {
219         // Value can be computed by loading a 16-bit unsigned value,
220         // shifting left, and "or"ing in another 16-bit unsigned value.
221         a->RecordLoadConst64Path(kLoadConst64PathOriDsllXOri);
222         a->Ori(rd, ZERO, tmp);
223         if (shift_cnt < 32) {
224           a->Dsll(rd, rd, shift_cnt);
225         } else {
226           a->Dsll32(rd, rd, shift_cnt & 31);
227         }
228         a->Ori(rd, rd, value);
229       } else if (IsInt<16>(tmp)) {
230         // Value can be computed by loading a 16-bit signed value,
231         // shifting left, and "or"ing in a 16-bit unsigned value.
232         a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllXOri);
233         a->Daddiu(rd, ZERO, tmp);
234         if (shift_cnt < 32) {
235           a->Dsll(rd, rd, shift_cnt);
236         } else {
237           a->Dsll32(rd, rd, shift_cnt & 31);
238         }
239         a->Ori(rd, rd, value);
240       } else if (rep32_count < 4) {
241         // Value being loaded has 32 LSBs equal to the 32 MSBs, and the
242         // value in the 32 LSBs requires 2 MIPS instructions to load.
243         a->LoadConst32(rd, value);
244         a->Dinsu(rd, rd, 32, 32);
245         a->RecordLoadConst64Path(kLoadConst64PathDinsu2);
246       } else {
247         // Loads with 3-4 instructions.
248         // Catch-all case to get any other 64-bit values which aren't
249         // handled by special cases above.
250         uint64_t tmp2 = value;
251         a->RecordLoadConst64Path(kLoadConst64PathCatchAll);
252         a->LoadConst32(rd, value);
253         if (bit31) {
254           tmp2 += UINT64_C(0x100000000);
255         }
256         if (((tmp2 >> 32) & 0xFFFF) != 0) {
257           a->Dahi(rd, tmp2 >> 32);
258         }
259         if (tmp2 & UINT64_C(0x800000000000)) {
260           tmp2 += UINT64_C(0x1000000000000);
261         }
262         if ((tmp2 >> 48) != 0) {
263           a->Dati(rd, tmp2 >> 48);
264         }
265       }
266     }
267   }
268 }
269 
270 static constexpr size_t kMips64HalfwordSize = 2;
271 static constexpr size_t kMips64WordSize = 4;
272 static constexpr size_t kMips64DoublewordSize = 8;
273 
274 enum LoadOperandType {
275   kLoadSignedByte,
276   kLoadUnsignedByte,
277   kLoadSignedHalfword,
278   kLoadUnsignedHalfword,
279   kLoadWord,
280   kLoadUnsignedWord,
281   kLoadDoubleword
282 };
283 
284 enum StoreOperandType {
285   kStoreByte,
286   kStoreHalfword,
287   kStoreWord,
288   kStoreDoubleword
289 };
290 
291 // Used to test the values returned by ClassS/ClassD.
292 enum FPClassMaskType {
293   kSignalingNaN      = 0x001,
294   kQuietNaN          = 0x002,
295   kNegativeInfinity  = 0x004,
296   kNegativeNormal    = 0x008,
297   kNegativeSubnormal = 0x010,
298   kNegativeZero      = 0x020,
299   kPositiveInfinity  = 0x040,
300   kPositiveNormal    = 0x080,
301   kPositiveSubnormal = 0x100,
302   kPositiveZero      = 0x200,
303 };
304 
305 class Mips64Label : public Label {
306  public:
Mips64Label()307   Mips64Label() : prev_branch_id_plus_one_(0) {}
308 
Mips64Label(Mips64Label && src)309   Mips64Label(Mips64Label&& src)
310       : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
311 
312  private:
313   uint32_t prev_branch_id_plus_one_;  // To get distance from preceding branch, if any.
314 
315   friend class Mips64Assembler;
316   DISALLOW_COPY_AND_ASSIGN(Mips64Label);
317 };
318 
319 // Assembler literal is a value embedded in code, retrieved using a PC-relative load.
320 class Literal {
321  public:
322   static constexpr size_t kMaxSize = 8;
323 
Literal(uint32_t size,const uint8_t * data)324   Literal(uint32_t size, const uint8_t* data)
325       : label_(), size_(size) {
326     DCHECK_LE(size, Literal::kMaxSize);
327     memcpy(data_, data, size);
328   }
329 
330   template <typename T>
GetValue()331   T GetValue() const {
332     DCHECK_EQ(size_, sizeof(T));
333     T value;
334     memcpy(&value, data_, sizeof(T));
335     return value;
336   }
337 
GetSize()338   uint32_t GetSize() const {
339     return size_;
340   }
341 
GetData()342   const uint8_t* GetData() const {
343     return data_;
344   }
345 
GetLabel()346   Mips64Label* GetLabel() {
347     return &label_;
348   }
349 
GetLabel()350   const Mips64Label* GetLabel() const {
351     return &label_;
352   }
353 
354  private:
355   Mips64Label label_;
356   const uint32_t size_;
357   uint8_t data_[kMaxSize];
358 
359   DISALLOW_COPY_AND_ASSIGN(Literal);
360 };
361 
362 // Jump table: table of labels emitted after the code and before the literals. Similar to literals.
363 class JumpTable {
364  public:
JumpTable(std::vector<Mips64Label * > && labels)365   explicit JumpTable(std::vector<Mips64Label*>&& labels)
366       : label_(), labels_(std::move(labels)) {
367   }
368 
GetSize()369   size_t GetSize() const {
370     return labels_.size() * sizeof(uint32_t);
371   }
372 
GetData()373   const std::vector<Mips64Label*>& GetData() const {
374     return labels_;
375   }
376 
GetLabel()377   Mips64Label* GetLabel() {
378     return &label_;
379   }
380 
GetLabel()381   const Mips64Label* GetLabel() const {
382     return &label_;
383   }
384 
385  private:
386   Mips64Label label_;
387   std::vector<Mips64Label*> labels_;
388 
389   DISALLOW_COPY_AND_ASSIGN(JumpTable);
390 };
391 
392 // Slowpath entered when Thread::Current()->_exception is non-null.
393 class Mips64ExceptionSlowPath {
394  public:
Mips64ExceptionSlowPath(Mips64ManagedRegister scratch,size_t stack_adjust)395   explicit Mips64ExceptionSlowPath(Mips64ManagedRegister scratch, size_t stack_adjust)
396       : scratch_(scratch), stack_adjust_(stack_adjust) {}
397 
Mips64ExceptionSlowPath(Mips64ExceptionSlowPath && src)398   Mips64ExceptionSlowPath(Mips64ExceptionSlowPath&& src)
399       : scratch_(src.scratch_),
400         stack_adjust_(src.stack_adjust_),
401         exception_entry_(std::move(src.exception_entry_)) {}
402 
403  private:
Entry()404   Mips64Label* Entry() { return &exception_entry_; }
405   const Mips64ManagedRegister scratch_;
406   const size_t stack_adjust_;
407   Mips64Label exception_entry_;
408 
409   friend class Mips64Assembler;
410   DISALLOW_COPY_AND_ASSIGN(Mips64ExceptionSlowPath);
411 };
412 
413 class Mips64Assembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k64> {
414  public:
415   using JNIBase = JNIMacroAssembler<PointerSize::k64>;
416 
417   explicit Mips64Assembler(ArenaAllocator* arena,
418                            const Mips64InstructionSetFeatures* instruction_set_features = nullptr)
Assembler(arena)419       : Assembler(arena),
420         overwriting_(false),
421         overwrite_location_(0),
422         literals_(arena->Adapter(kArenaAllocAssembler)),
423         long_literals_(arena->Adapter(kArenaAllocAssembler)),
424         jump_tables_(arena->Adapter(kArenaAllocAssembler)),
425         last_position_adjustment_(0),
426         last_old_position_(0),
427         last_branch_id_(0),
428         has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false) {
429     cfi().DelayEmittingAdvancePCs();
430   }
431 
~Mips64Assembler()432   virtual ~Mips64Assembler() {
433     for (auto& branch : branches_) {
434       CHECK(branch.IsResolved());
435     }
436   }
437 
CodeSize()438   size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
cfi()439   DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
440 
441   // Emit Machine Instructions.
442   void Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
443   void Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
444   void Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
445   void Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);  // MIPS64
446   void Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
447   void Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
448 
449   void MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
450   void MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
451   void DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
452   void ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
453   void DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
454   void ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
455   void Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
456   void Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
457   void Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
458   void Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
459   void Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
460   void Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt);  // MIPS64
461 
462   void And(GpuRegister rd, GpuRegister rs, GpuRegister rt);
463   void Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16);
464   void Or(GpuRegister rd, GpuRegister rs, GpuRegister rt);
465   void Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16);
466   void Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt);
467   void Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16);
468   void Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt);
469 
470   void Bitswap(GpuRegister rd, GpuRegister rt);
471   void Dbitswap(GpuRegister rd, GpuRegister rt);  // MIPS64
472   void Seb(GpuRegister rd, GpuRegister rt);
473   void Seh(GpuRegister rd, GpuRegister rt);
474   void Dsbh(GpuRegister rd, GpuRegister rt);  // MIPS64
475   void Dshd(GpuRegister rd, GpuRegister rt);  // MIPS64
476   void Dext(GpuRegister rs, GpuRegister rt, int pos, int size);  // MIPS64
477   void Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size);  // MIPS64
478   void Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne);
479   void Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne);  // MIPS64
480   void Wsbh(GpuRegister rd, GpuRegister rt);
481   void Sc(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);
482   void Scd(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);  // MIPS64
483   void Ll(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);
484   void Lld(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);  // MIPS64
485 
486   void Sll(GpuRegister rd, GpuRegister rt, int shamt);
487   void Srl(GpuRegister rd, GpuRegister rt, int shamt);
488   void Rotr(GpuRegister rd, GpuRegister rt, int shamt);
489   void Sra(GpuRegister rd, GpuRegister rt, int shamt);
490   void Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
491   void Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
492   void Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
493   void Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs);
494   void Dsll(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
495   void Dsrl(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
496   void Drotr(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
497   void Dsra(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
498   void Dsll32(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
499   void Dsrl32(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
500   void Drotr32(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
501   void Dsra32(GpuRegister rd, GpuRegister rt, int shamt);  // MIPS64
502   void Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs);  // MIPS64
503   void Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs);  // MIPS64
504   void Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs);  // MIPS64
505   void Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs);  // MIPS64
506 
507   void Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16);
508   void Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16);
509   void Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16);
510   void Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16);  // MIPS64
511   void Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
512   void Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
513   void Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16);  // MIPS64
514   void Lwpc(GpuRegister rs, uint32_t imm19);
515   void Lwupc(GpuRegister rs, uint32_t imm19);  // MIPS64
516   void Ldpc(GpuRegister rs, uint32_t imm18);  // MIPS64
517   void Lui(GpuRegister rt, uint16_t imm16);
518   void Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16);
519   void Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16);  // MIPS64
520   void Dahi(GpuRegister rs, uint16_t imm16);  // MIPS64
521   void Dati(GpuRegister rs, uint16_t imm16);  // MIPS64
522   void Sync(uint32_t stype);
523 
524   void Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16);
525   void Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16);
526   void Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16);
527   void Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16);  // MIPS64
528 
529   void Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt);
530   void Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
531   void Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16);
532   void Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
533   void Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt);
534   void Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt);
535   void Clz(GpuRegister rd, GpuRegister rs);
536   void Clo(GpuRegister rd, GpuRegister rs);
537   void Dclz(GpuRegister rd, GpuRegister rs);  // MIPS64
538   void Dclo(GpuRegister rd, GpuRegister rs);  // MIPS64
539 
540   void Jalr(GpuRegister rd, GpuRegister rs);
541   void Jalr(GpuRegister rs);
542   void Jr(GpuRegister rs);
543   void Auipc(GpuRegister rs, uint16_t imm16);
544   void Addiupc(GpuRegister rs, uint32_t imm19);
545   void Bc(uint32_t imm26);
546   void Balc(uint32_t imm26);
547   void Jic(GpuRegister rt, uint16_t imm16);
548   void Jialc(GpuRegister rt, uint16_t imm16);
549   void Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
550   void Bltzc(GpuRegister rt, uint16_t imm16);
551   void Bgtzc(GpuRegister rt, uint16_t imm16);
552   void Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16);
553   void Bgezc(GpuRegister rt, uint16_t imm16);
554   void Blezc(GpuRegister rt, uint16_t imm16);
555   void Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
556   void Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
557   void Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
558   void Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16);
559   void Beqzc(GpuRegister rs, uint32_t imm21);
560   void Bnezc(GpuRegister rs, uint32_t imm21);
561   void Bc1eqz(FpuRegister ft, uint16_t imm16);
562   void Bc1nez(FpuRegister ft, uint16_t imm16);
563 
564   void AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
565   void SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
566   void MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
567   void DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
568   void AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
569   void SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
570   void MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
571   void DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
572   void SqrtS(FpuRegister fd, FpuRegister fs);
573   void SqrtD(FpuRegister fd, FpuRegister fs);
574   void AbsS(FpuRegister fd, FpuRegister fs);
575   void AbsD(FpuRegister fd, FpuRegister fs);
576   void MovS(FpuRegister fd, FpuRegister fs);
577   void MovD(FpuRegister fd, FpuRegister fs);
578   void NegS(FpuRegister fd, FpuRegister fs);
579   void NegD(FpuRegister fd, FpuRegister fs);
580   void RoundLS(FpuRegister fd, FpuRegister fs);
581   void RoundLD(FpuRegister fd, FpuRegister fs);
582   void RoundWS(FpuRegister fd, FpuRegister fs);
583   void RoundWD(FpuRegister fd, FpuRegister fs);
584   void TruncLS(FpuRegister fd, FpuRegister fs);
585   void TruncLD(FpuRegister fd, FpuRegister fs);
586   void TruncWS(FpuRegister fd, FpuRegister fs);
587   void TruncWD(FpuRegister fd, FpuRegister fs);
588   void CeilLS(FpuRegister fd, FpuRegister fs);
589   void CeilLD(FpuRegister fd, FpuRegister fs);
590   void CeilWS(FpuRegister fd, FpuRegister fs);
591   void CeilWD(FpuRegister fd, FpuRegister fs);
592   void FloorLS(FpuRegister fd, FpuRegister fs);
593   void FloorLD(FpuRegister fd, FpuRegister fs);
594   void FloorWS(FpuRegister fd, FpuRegister fs);
595   void FloorWD(FpuRegister fd, FpuRegister fs);
596   void SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
597   void SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
598   void RintS(FpuRegister fd, FpuRegister fs);
599   void RintD(FpuRegister fd, FpuRegister fs);
600   void ClassS(FpuRegister fd, FpuRegister fs);
601   void ClassD(FpuRegister fd, FpuRegister fs);
602   void MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
603   void MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
604   void MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
605   void MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
606   void CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
607   void CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
608   void CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
609   void CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
610   void CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
611   void CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
612   void CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
613   void CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
614   void CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
615   void CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
616   void CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
617   void CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
618   void CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
619   void CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
620   void CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
621   void CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
622   void CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
623   void CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
624   void CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
625   void CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
626 
627   void Cvtsw(FpuRegister fd, FpuRegister fs);
628   void Cvtdw(FpuRegister fd, FpuRegister fs);
629   void Cvtsd(FpuRegister fd, FpuRegister fs);
630   void Cvtds(FpuRegister fd, FpuRegister fs);
631   void Cvtsl(FpuRegister fd, FpuRegister fs);
632   void Cvtdl(FpuRegister fd, FpuRegister fs);
633 
634   void Mfc1(GpuRegister rt, FpuRegister fs);
635   void Mfhc1(GpuRegister rt, FpuRegister fs);
636   void Mtc1(GpuRegister rt, FpuRegister fs);
637   void Mthc1(GpuRegister rt, FpuRegister fs);
638   void Dmfc1(GpuRegister rt, FpuRegister fs);  // MIPS64
639   void Dmtc1(GpuRegister rt, FpuRegister fs);  // MIPS64
640   void Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
641   void Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
642   void Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
643   void Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
644 
645   void Break();
646   void Nop();
647   void Move(GpuRegister rd, GpuRegister rs);
648   void Clear(GpuRegister rd);
649   void Not(GpuRegister rd, GpuRegister rs);
650 
651   // MSA instructions.
652   void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
653   void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
654   void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
655   void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
656 
657   void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
658   void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
659   void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
660   void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
661   void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
662   void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
663   void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
664   void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
665   void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
666   void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
667   void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
668   void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
669   void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
670   void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
671   void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
672   void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
673   void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
674   void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
675   void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
676   void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
677   void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
678   void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
679   void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
680   void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
681   void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
682   void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
683   void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
684   void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
685 
686   void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
687   void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
688   void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
689   void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
690   void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
691   void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
692   void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
693   void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
694 
695   void Ffint_sW(VectorRegister wd, VectorRegister ws);
696   void Ffint_sD(VectorRegister wd, VectorRegister ws);
697   void Ftint_sW(VectorRegister wd, VectorRegister ws);
698   void Ftint_sD(VectorRegister wd, VectorRegister ws);
699 
700   void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
701   void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
702   void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
703   void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
704   void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
705   void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
706   void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
707   void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
708   void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
709   void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
710   void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
711   void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
712 
713   // Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1).
714   void SlliB(VectorRegister wd, VectorRegister ws, int shamt3);
715   void SlliH(VectorRegister wd, VectorRegister ws, int shamt4);
716   void SlliW(VectorRegister wd, VectorRegister ws, int shamt5);
717   void SlliD(VectorRegister wd, VectorRegister ws, int shamt6);
718   void SraiB(VectorRegister wd, VectorRegister ws, int shamt3);
719   void SraiH(VectorRegister wd, VectorRegister ws, int shamt4);
720   void SraiW(VectorRegister wd, VectorRegister ws, int shamt5);
721   void SraiD(VectorRegister wd, VectorRegister ws, int shamt6);
722   void SrliB(VectorRegister wd, VectorRegister ws, int shamt3);
723   void SrliH(VectorRegister wd, VectorRegister ws, int shamt4);
724   void SrliW(VectorRegister wd, VectorRegister ws, int shamt5);
725   void SrliD(VectorRegister wd, VectorRegister ws, int shamt6);
726 
727   void MoveV(VectorRegister wd, VectorRegister ws);
728   void SplatiB(VectorRegister wd, VectorRegister ws, int n4);
729   void SplatiH(VectorRegister wd, VectorRegister ws, int n3);
730   void SplatiW(VectorRegister wd, VectorRegister ws, int n2);
731   void SplatiD(VectorRegister wd, VectorRegister ws, int n1);
732   void FillB(VectorRegister wd, GpuRegister rs);
733   void FillH(VectorRegister wd, GpuRegister rs);
734   void FillW(VectorRegister wd, GpuRegister rs);
735   void FillD(VectorRegister wd, GpuRegister rs);
736 
737   void LdiB(VectorRegister wd, int imm8);
738   void LdiH(VectorRegister wd, int imm10);
739   void LdiW(VectorRegister wd, int imm10);
740   void LdiD(VectorRegister wd, int imm10);
741   void LdB(VectorRegister wd, GpuRegister rs, int offset);
742   void LdH(VectorRegister wd, GpuRegister rs, int offset);
743   void LdW(VectorRegister wd, GpuRegister rs, int offset);
744   void LdD(VectorRegister wd, GpuRegister rs, int offset);
745   void StB(VectorRegister wd, GpuRegister rs, int offset);
746   void StH(VectorRegister wd, GpuRegister rs, int offset);
747   void StW(VectorRegister wd, GpuRegister rs, int offset);
748   void StD(VectorRegister wd, GpuRegister rs, int offset);
749 
750   // Higher level composite instructions.
751   int InstrCountForLoadReplicatedConst32(int64_t);
752   void LoadConst32(GpuRegister rd, int32_t value);
753   void LoadConst64(GpuRegister rd, int64_t value);  // MIPS64
754 
755   // This function is only used for testing purposes.
756   void RecordLoadConst64Path(int value);
757 
758   void Addiu32(GpuRegister rt, GpuRegister rs, int32_t value);
759   void Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp = AT);  // MIPS64
760 
761   //
762   // Heap poisoning.
763   //
764 
765   // Poison a heap reference contained in `src` and store it in `dst`.
PoisonHeapReference(GpuRegister dst,GpuRegister src)766   void PoisonHeapReference(GpuRegister dst, GpuRegister src) {
767     // dst = -src.
768     // Negate the 32-bit ref.
769     Dsubu(dst, ZERO, src);
770     // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64.
771     Dext(dst, dst, 0, 32);
772   }
773   // Poison a heap reference contained in `reg`.
PoisonHeapReference(GpuRegister reg)774   void PoisonHeapReference(GpuRegister reg) {
775     // reg = -reg.
776     PoisonHeapReference(reg, reg);
777   }
778   // Unpoison a heap reference contained in `reg`.
UnpoisonHeapReference(GpuRegister reg)779   void UnpoisonHeapReference(GpuRegister reg) {
780     // reg = -reg.
781     // Negate the 32-bit ref.
782     Dsubu(reg, ZERO, reg);
783     // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64.
784     Dext(reg, reg, 0, 32);
785   }
786   // Poison a heap reference contained in `reg` if heap poisoning is enabled.
MaybePoisonHeapReference(GpuRegister reg)787   void MaybePoisonHeapReference(GpuRegister reg) {
788     if (kPoisonHeapReferences) {
789       PoisonHeapReference(reg);
790     }
791   }
792   // Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
MaybeUnpoisonHeapReference(GpuRegister reg)793   void MaybeUnpoisonHeapReference(GpuRegister reg) {
794     if (kPoisonHeapReferences) {
795       UnpoisonHeapReference(reg);
796     }
797   }
798 
Bind(Label * label)799   void Bind(Label* label) OVERRIDE {
800     Bind(down_cast<Mips64Label*>(label));
801   }
Jump(Label * label ATTRIBUTE_UNUSED)802   void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
803     UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS64";
804   }
805 
806   void Bind(Mips64Label* label);
807 
808   // Don't warn about a different virtual Bind/Jump in the base class.
809   using JNIBase::Bind;
810   using JNIBase::Jump;
811 
812   // Create a new label that can be used with Jump/Bind calls.
CreateLabel()813   std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
814     LOG(FATAL) << "Not implemented on MIPS64";
815     UNREACHABLE();
816   }
817   // Emit an unconditional jump to the label.
Jump(JNIMacroLabel * label ATTRIBUTE_UNUSED)818   void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
819     LOG(FATAL) << "Not implemented on MIPS64";
820     UNREACHABLE();
821   }
822   // Emit a conditional jump to the label by applying a unary condition test to the register.
Jump(JNIMacroLabel * label ATTRIBUTE_UNUSED,JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,ManagedRegister test ATTRIBUTE_UNUSED)823   void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
824             JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
825             ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
826     LOG(FATAL) << "Not implemented on MIPS64";
827     UNREACHABLE();
828   }
829 
830   // Code at this offset will serve as the target for the Jump call.
Bind(JNIMacroLabel * label ATTRIBUTE_UNUSED)831   void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
832     LOG(FATAL) << "Not implemented on MIPS64";
833     UNREACHABLE();
834   }
835 
836   // Create a new literal with a given value.
837   // NOTE: Force the template parameter to be explicitly specified.
838   template <typename T>
NewLiteral(typename Identity<T>::type value)839   Literal* NewLiteral(typename Identity<T>::type value) {
840     static_assert(std::is_integral<T>::value, "T must be an integral type.");
841     return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
842   }
843 
844   // Load label address using PC-relative loads. To be used with data labels in the literal /
845   // jump table area only and not with regular code labels.
846   void LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label);
847 
848   // Create a new literal with the given data.
849   Literal* NewLiteral(size_t size, const uint8_t* data);
850 
851   // Load literal using PC-relative loads.
852   void LoadLiteral(GpuRegister dest_reg, LoadOperandType load_type, Literal* literal);
853 
854   // Create a jump table for the given labels that will be emitted when finalizing.
855   // When the table is emitted, offsets will be relative to the location of the table.
856   // The table location is determined by the location of its label (the label precedes
857   // the table data) and should be loaded using LoadLabelAddress().
858   JumpTable* CreateJumpTable(std::vector<Mips64Label*>&& labels);
859 
860   void Bc(Mips64Label* label);
861   void Balc(Mips64Label* label);
862   void Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
863   void Bltzc(GpuRegister rt, Mips64Label* label);
864   void Bgtzc(GpuRegister rt, Mips64Label* label);
865   void Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label);
866   void Bgezc(GpuRegister rt, Mips64Label* label);
867   void Blezc(GpuRegister rt, Mips64Label* label);
868   void Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
869   void Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
870   void Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
871   void Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label);
872   void Beqzc(GpuRegister rs, Mips64Label* label);
873   void Bnezc(GpuRegister rs, Mips64Label* label);
874   void Bc1eqz(FpuRegister ft, Mips64Label* label);
875   void Bc1nez(FpuRegister ft, Mips64Label* label);
876 
877   void EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size);
878   void AdjustBaseAndOffset(GpuRegister& base, int32_t& offset, bool is_doubleword);
879 
880  private:
881   // This will be used as an argument for loads/stores
882   // when there is no need for implicit null checks.
883   struct NoImplicitNullChecker {
operatorNoImplicitNullChecker884     void operator()() const {}
885   };
886 
887  public:
888   template <typename ImplicitNullChecker = NoImplicitNullChecker>
889   void StoreConstToOffset(StoreOperandType type,
890                           int64_t value,
891                           GpuRegister base,
892                           int32_t offset,
893                           GpuRegister temp,
894                           ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
895     // We permit `base` and `temp` to coincide (however, we check that neither is AT),
896     // in which case the `base` register may be overwritten in the process.
897     CHECK_NE(temp, AT);  // Must not use AT as temp, so as not to overwrite the adjusted base.
898     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
899     GpuRegister reg;
900     // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
901     // to load and hold the value but we can use AT instead as AT hasn't been used yet.
902     // Otherwise, `temp` can be used for the value. And if `temp` is the same as the
903     // original `base` (that is, `base` prior to the adjustment), the original `base`
904     // register will be overwritten.
905     if (base == temp) {
906       temp = AT;
907     }
908 
909     if (type == kStoreDoubleword && IsAligned<kMips64DoublewordSize>(offset)) {
910       if (value == 0) {
911         reg = ZERO;
912       } else {
913         reg = temp;
914         LoadConst64(reg, value);
915       }
916       Sd(reg, base, offset);
917       null_checker();
918     } else {
919       uint32_t low = Low32Bits(value);
920       uint32_t high = High32Bits(value);
921       if (low == 0) {
922         reg = ZERO;
923       } else {
924         reg = temp;
925         LoadConst32(reg, low);
926       }
927       switch (type) {
928         case kStoreByte:
929           Sb(reg, base, offset);
930           break;
931         case kStoreHalfword:
932           Sh(reg, base, offset);
933           break;
934         case kStoreWord:
935           Sw(reg, base, offset);
936           break;
937         case kStoreDoubleword:
938           // not aligned to kMips64DoublewordSize
939           CHECK_ALIGNED(offset, kMips64WordSize);
940           Sw(reg, base, offset);
941           null_checker();
942           if (high == 0) {
943             reg = ZERO;
944           } else {
945             reg = temp;
946             if (high != low) {
947               LoadConst32(reg, high);
948             }
949           }
950           Sw(reg, base, offset + kMips64WordSize);
951           break;
952         default:
953           LOG(FATAL) << "UNREACHABLE";
954       }
955       if (type != kStoreDoubleword) {
956         null_checker();
957       }
958     }
959   }
960 
961   template <typename ImplicitNullChecker = NoImplicitNullChecker>
962   void LoadFromOffset(LoadOperandType type,
963                       GpuRegister reg,
964                       GpuRegister base,
965                       int32_t offset,
966                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
967     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
968 
969     switch (type) {
970       case kLoadSignedByte:
971         Lb(reg, base, offset);
972         break;
973       case kLoadUnsignedByte:
974         Lbu(reg, base, offset);
975         break;
976       case kLoadSignedHalfword:
977         Lh(reg, base, offset);
978         break;
979       case kLoadUnsignedHalfword:
980         Lhu(reg, base, offset);
981         break;
982       case kLoadWord:
983         CHECK_ALIGNED(offset, kMips64WordSize);
984         Lw(reg, base, offset);
985         break;
986       case kLoadUnsignedWord:
987         CHECK_ALIGNED(offset, kMips64WordSize);
988         Lwu(reg, base, offset);
989         break;
990       case kLoadDoubleword:
991         if (!IsAligned<kMips64DoublewordSize>(offset)) {
992           CHECK_ALIGNED(offset, kMips64WordSize);
993           Lwu(reg, base, offset);
994           null_checker();
995           Lwu(TMP2, base, offset + kMips64WordSize);
996           Dinsu(reg, TMP2, 32, 32);
997         } else {
998           Ld(reg, base, offset);
999           null_checker();
1000         }
1001         break;
1002     }
1003     if (type != kLoadDoubleword) {
1004       null_checker();
1005     }
1006   }
1007 
1008   template <typename ImplicitNullChecker = NoImplicitNullChecker>
1009   void LoadFpuFromOffset(LoadOperandType type,
1010                          FpuRegister reg,
1011                          GpuRegister base,
1012                          int32_t offset,
1013                          ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1014     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
1015 
1016     switch (type) {
1017       case kLoadWord:
1018         CHECK_ALIGNED(offset, kMips64WordSize);
1019         Lwc1(reg, base, offset);
1020         null_checker();
1021         break;
1022       case kLoadDoubleword:
1023         if (!IsAligned<kMips64DoublewordSize>(offset)) {
1024           CHECK_ALIGNED(offset, kMips64WordSize);
1025           Lwc1(reg, base, offset);
1026           null_checker();
1027           Lw(TMP2, base, offset + kMips64WordSize);
1028           Mthc1(TMP2, reg);
1029         } else {
1030           Ldc1(reg, base, offset);
1031           null_checker();
1032         }
1033         break;
1034       default:
1035         LOG(FATAL) << "UNREACHABLE";
1036     }
1037   }
1038 
1039   template <typename ImplicitNullChecker = NoImplicitNullChecker>
1040   void StoreToOffset(StoreOperandType type,
1041                      GpuRegister reg,
1042                      GpuRegister base,
1043                      int32_t offset,
1044                      ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1045     // Must not use AT as `reg`, so as not to overwrite the value being stored
1046     // with the adjusted `base`.
1047     CHECK_NE(reg, AT);
1048     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
1049 
1050     switch (type) {
1051       case kStoreByte:
1052         Sb(reg, base, offset);
1053         break;
1054       case kStoreHalfword:
1055         Sh(reg, base, offset);
1056         break;
1057       case kStoreWord:
1058         CHECK_ALIGNED(offset, kMips64WordSize);
1059         Sw(reg, base, offset);
1060         break;
1061       case kStoreDoubleword:
1062         if (!IsAligned<kMips64DoublewordSize>(offset)) {
1063           CHECK_ALIGNED(offset, kMips64WordSize);
1064           Sw(reg, base, offset);
1065           null_checker();
1066           Dsrl32(TMP2, reg, 0);
1067           Sw(TMP2, base, offset + kMips64WordSize);
1068         } else {
1069           Sd(reg, base, offset);
1070           null_checker();
1071         }
1072         break;
1073       default:
1074         LOG(FATAL) << "UNREACHABLE";
1075     }
1076     if (type != kStoreDoubleword) {
1077       null_checker();
1078     }
1079   }
1080 
1081   template <typename ImplicitNullChecker = NoImplicitNullChecker>
1082   void StoreFpuToOffset(StoreOperandType type,
1083                         FpuRegister reg,
1084                         GpuRegister base,
1085                         int32_t offset,
1086                         ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
1087     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
1088 
1089     switch (type) {
1090       case kStoreWord:
1091         CHECK_ALIGNED(offset, kMips64WordSize);
1092         Swc1(reg, base, offset);
1093         null_checker();
1094         break;
1095       case kStoreDoubleword:
1096         if (!IsAligned<kMips64DoublewordSize>(offset)) {
1097           CHECK_ALIGNED(offset, kMips64WordSize);
1098           Mfhc1(TMP2, reg);
1099           Swc1(reg, base, offset);
1100           null_checker();
1101           Sw(TMP2, base, offset + kMips64WordSize);
1102         } else {
1103           Sdc1(reg, base, offset);
1104           null_checker();
1105         }
1106         break;
1107       default:
1108         LOG(FATAL) << "UNREACHABLE";
1109     }
1110   }
1111 
1112   void LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset);
1113   void LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset);
1114   void StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset);
1115   void StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset);
1116 
1117   // Emit data (e.g. encoded instruction or immediate) to the instruction stream.
1118   void Emit(uint32_t value);
1119 
1120   //
1121   // Overridden common assembler high-level functionality.
1122   //
1123 
1124   // Emit code that will create an activation on the stack.
1125   void BuildFrame(size_t frame_size,
1126                   ManagedRegister method_reg,
1127                   ArrayRef<const ManagedRegister> callee_save_regs,
1128                   const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
1129 
1130   // Emit code that will remove an activation from the stack.
1131   void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs) OVERRIDE;
1132 
1133   void IncreaseFrameSize(size_t adjust) OVERRIDE;
1134   void DecreaseFrameSize(size_t adjust) OVERRIDE;
1135 
1136   // Store routines.
1137   void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
1138   void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
1139   void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
1140 
1141   void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
1142 
1143   void StoreStackOffsetToThread(ThreadOffset64 thr_offs,
1144                                 FrameOffset fr_offs,
1145                                 ManagedRegister mscratch) OVERRIDE;
1146 
1147   void StoreStackPointerToThread(ThreadOffset64 thr_offs) OVERRIDE;
1148 
1149   void StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off,
1150                      ManagedRegister mscratch) OVERRIDE;
1151 
1152   // Load routines.
1153   void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
1154 
1155   void LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) OVERRIDE;
1156 
1157   void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
1158 
1159   void LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
1160                bool unpoison_reference) OVERRIDE;
1161 
1162   void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
1163 
1164   void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) OVERRIDE;
1165 
1166   // Copying routines.
1167   void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
1168 
1169   void CopyRawPtrFromThread(FrameOffset fr_offs,
1170                             ThreadOffset64 thr_offs,
1171                             ManagedRegister mscratch) OVERRIDE;
1172 
1173   void CopyRawPtrToThread(ThreadOffset64 thr_offs,
1174                           FrameOffset fr_offs,
1175                           ManagedRegister mscratch) OVERRIDE;
1176 
1177   void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
1178 
1179   void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
1180 
1181   void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch,
1182             size_t size) OVERRIDE;
1183 
1184   void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
1185             ManagedRegister mscratch, size_t size) OVERRIDE;
1186 
1187   void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch,
1188             size_t size) OVERRIDE;
1189 
1190   void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset,
1191             ManagedRegister mscratch, size_t size) OVERRIDE;
1192 
1193   void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
1194             ManagedRegister mscratch, size_t size) OVERRIDE;
1195 
1196   void MemoryBarrier(ManagedRegister) OVERRIDE;
1197 
1198   // Sign extension.
1199   void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
1200 
1201   // Zero extension.
1202   void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
1203 
1204   // Exploit fast access in managed code to Thread::Current().
1205   void GetCurrentThread(ManagedRegister tr) OVERRIDE;
1206   void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
1207 
1208   // Set up out_reg to hold a Object** into the handle scope, or to be null if the
1209   // value is null and null_allowed. in_reg holds a possibly stale reference
1210   // that can be used to avoid loading the handle scope entry to see if the value is
1211   // null.
1212   void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset,
1213                               ManagedRegister in_reg, bool null_allowed) OVERRIDE;
1214 
1215   // Set up out_off to hold a Object** into the handle scope, or to be null if the
1216   // value is null and null_allowed.
1217   void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, ManagedRegister
1218                               mscratch, bool null_allowed) OVERRIDE;
1219 
1220   // src holds a handle scope entry (Object**) load this into dst.
1221   void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
1222 
1223   // Heap::VerifyObject on src. In some cases (such as a reference to this) we
1224   // know that src may not be null.
1225   void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
1226   void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
1227 
1228   // Call to address held at [base+offset].
1229   void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
1230   void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
1231   void CallFromThread(ThreadOffset64 offset, ManagedRegister mscratch) OVERRIDE;
1232 
1233   // Generate code to check if Thread::Current()->exception_ is non-null
1234   // and branch to a ExceptionSlowPath if it is.
1235   void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
1236 
1237   // Emit slow paths queued during assembly and promote short branches to long if needed.
1238   void FinalizeCode() OVERRIDE;
1239 
1240   // Emit branches and finalize all instructions.
1241   void FinalizeInstructions(const MemoryRegion& region);
1242 
1243   // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS64,
1244   // must be used instead of Mips64Label::GetPosition()).
1245   uint32_t GetLabelLocation(const Mips64Label* label) const;
1246 
1247   // Get the final position of a label after local fixup based on the old position
1248   // recorded before FinalizeCode().
1249   uint32_t GetAdjustedPosition(uint32_t old_position);
1250 
1251   // Note that PC-relative literal loads are handled as pseudo branches because they need very
1252   // similar relocation and may similarly expand in size to accomodate for larger offsets relative
1253   // to PC.
1254   enum BranchCondition {
1255     kCondLT,
1256     kCondGE,
1257     kCondLE,
1258     kCondGT,
1259     kCondLTZ,
1260     kCondGEZ,
1261     kCondLEZ,
1262     kCondGTZ,
1263     kCondEQ,
1264     kCondNE,
1265     kCondEQZ,
1266     kCondNEZ,
1267     kCondLTU,
1268     kCondGEU,
1269     kCondF,    // Floating-point predicate false.
1270     kCondT,    // Floating-point predicate true.
1271     kUncond,
1272   };
1273   friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
1274 
1275  private:
1276   class Branch {
1277    public:
1278     enum Type {
1279       // Short branches.
1280       kUncondBranch,
1281       kCondBranch,
1282       kCall,
1283       // Near label.
1284       kLabel,
1285       // Near literals.
1286       kLiteral,
1287       kLiteralUnsigned,
1288       kLiteralLong,
1289       // Long branches.
1290       kLongUncondBranch,
1291       kLongCondBranch,
1292       kLongCall,
1293       // Far label.
1294       kFarLabel,
1295       // Far literals.
1296       kFarLiteral,
1297       kFarLiteralUnsigned,
1298       kFarLiteralLong,
1299     };
1300 
1301     // Bit sizes of offsets defined as enums to minimize chance of typos.
1302     enum OffsetBits {
1303       kOffset16 = 16,
1304       kOffset18 = 18,
1305       kOffset21 = 21,
1306       kOffset23 = 23,
1307       kOffset28 = 28,
1308       kOffset32 = 32,
1309     };
1310 
1311     static constexpr uint32_t kUnresolved = 0xffffffff;  // Unresolved target_
1312     static constexpr int32_t kMaxBranchLength = 32;
1313     static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
1314 
1315     struct BranchInfo {
1316       // Branch length as a number of 4-byte-long instructions.
1317       uint32_t length;
1318       // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
1319       // PC-relative offset (or its most significant 16-bit half, which goes first).
1320       uint32_t instr_offset;
1321       // Different MIPS instructions with PC-relative offsets apply said offsets to slightly
1322       // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
1323       // instructions) from the instruction containing the offset.
1324       uint32_t pc_org;
1325       // How large (in bits) a PC-relative offset can be for a given type of branch (kCondBranch is
1326       // an exception: use kOffset23 for beqzc/bnezc).
1327       OffsetBits offset_size;
1328       // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
1329       // count.
1330       int offset_shift;
1331     };
1332     static const BranchInfo branch_info_[/* Type */];
1333 
1334     // Unconditional branch or call.
1335     Branch(uint32_t location, uint32_t target, bool is_call);
1336     // Conditional branch.
1337     Branch(uint32_t location,
1338            uint32_t target,
1339            BranchCondition condition,
1340            GpuRegister lhs_reg,
1341            GpuRegister rhs_reg);
1342     // Label address (in literal area) or literal.
1343     Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type);
1344 
1345     // Some conditional branches with lhs = rhs are effectively NOPs, while some
1346     // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
1347     // So, we need a way to identify such branches in order to emit no instructions for them
1348     // or change them to unconditional.
1349     static bool IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs);
1350     static bool IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs);
1351 
1352     static BranchCondition OppositeCondition(BranchCondition cond);
1353 
1354     Type GetType() const;
1355     BranchCondition GetCondition() const;
1356     GpuRegister GetLeftRegister() const;
1357     GpuRegister GetRightRegister() const;
1358     uint32_t GetTarget() const;
1359     uint32_t GetLocation() const;
1360     uint32_t GetOldLocation() const;
1361     uint32_t GetLength() const;
1362     uint32_t GetOldLength() const;
1363     uint32_t GetSize() const;
1364     uint32_t GetOldSize() const;
1365     uint32_t GetEndLocation() const;
1366     uint32_t GetOldEndLocation() const;
1367     bool IsLong() const;
1368     bool IsResolved() const;
1369 
1370     // Returns the bit size of the signed offset that the branch instruction can handle.
1371     OffsetBits GetOffsetSize() const;
1372 
1373     // Calculates the distance between two byte locations in the assembler buffer and
1374     // returns the number of bits needed to represent the distance as a signed integer.
1375     //
1376     // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
1377     // and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
1378     //
1379     // Composite branches (made of several instructions) with longer reach have 32-bit
1380     // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
1381     // The composite branches cover the range of PC + ~+/-2GB. The range is not end-to-end,
1382     // however. Consider the following implementation of a long unconditional branch, for
1383     // example:
1384     //
1385     //   auipc at, offset_31_16  // at = pc + sign_extend(offset_31_16) << 16
1386     //   jic   at, offset_15_0   // pc = at + sign_extend(offset_15_0)
1387     //
1388     // Both of the above instructions take 16-bit signed offsets as immediate operands.
1389     // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
1390     // due to sign extension. This must be compensated for by incrementing offset_31_16
1391     // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
1392     // 0x7FFF, adding 1 will overflow the positive offset into the negative range.
1393     // Therefore, the long branch range is something like from PC - 0x80000000 to
1394     // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
1395     //
1396     // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
1397     // case with the addiu instruction and a 16 bit offset.
1398     static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
1399 
1400     // Resolve a branch when the target is known.
1401     void Resolve(uint32_t target);
1402 
1403     // Relocate a branch by a given delta if needed due to expansion of this or another
1404     // branch at a given location by this delta (just changes location_ and target_).
1405     void Relocate(uint32_t expand_location, uint32_t delta);
1406 
1407     // If the branch is short, changes its type to long.
1408     void PromoteToLong();
1409 
1410     // If necessary, updates the type by promoting a short branch to a long branch
1411     // based on the branch location and target. Returns the amount (in bytes) by
1412     // which the branch size has increased.
1413     // max_short_distance caps the maximum distance between location_ and target_
1414     // that is allowed for short branches. This is for debugging/testing purposes.
1415     // max_short_distance = 0 forces all short branches to become long.
1416     // Use the implicit default argument when not debugging/testing.
1417     uint32_t PromoteIfNeeded(uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
1418 
1419     // Returns the location of the instruction(s) containing the offset.
1420     uint32_t GetOffsetLocation() const;
1421 
1422     // Calculates and returns the offset ready for encoding in the branch instruction(s).
1423     uint32_t GetOffset() const;
1424 
1425    private:
1426     // Completes branch construction by determining and recording its type.
1427     void InitializeType(Type initial_type);
1428     // Helper for the above.
1429     void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
1430 
1431     uint32_t old_location_;      // Offset into assembler buffer in bytes.
1432     uint32_t location_;          // Offset into assembler buffer in bytes.
1433     uint32_t target_;            // Offset into assembler buffer in bytes.
1434 
1435     GpuRegister lhs_reg_;        // Left-hand side register in conditional branches or
1436                                  // destination register in literals.
1437     GpuRegister rhs_reg_;        // Right-hand side register in conditional branches.
1438     BranchCondition condition_;  // Condition for conditional branches.
1439 
1440     Type type_;                  // Current type of the branch.
1441     Type old_type_;              // Initial type of the branch.
1442   };
1443   friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
1444   friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
1445 
1446   void EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct);
1447   void EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct);
1448   void EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct);
1449   void EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm);
1450   void EmitI21(int opcode, GpuRegister rs, uint32_t imm21);
1451   void EmitI26(int opcode, uint32_t imm26);
1452   void EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct);
1453   void EmitFI(int opcode, int fmt, FpuRegister rt, uint16_t imm);
1454   void EmitBcondc(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21);
1455   void EmitMsa3R(int operation,
1456                  int df,
1457                  VectorRegister wt,
1458                  VectorRegister ws,
1459                  VectorRegister wd,
1460                  int minor_opcode);
1461   void EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode);
1462   void EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode);
1463   void EmitMsaMI10(int s10, GpuRegister rs, VectorRegister wd, int minor_opcode, int df);
1464   void EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode);
1465   void EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
1466   void EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
1467 
1468   void Buncond(Mips64Label* label);
1469   void Bcond(Mips64Label* label,
1470              BranchCondition condition,
1471              GpuRegister lhs,
1472              GpuRegister rhs = ZERO);
1473   void Call(Mips64Label* label);
1474   void FinalizeLabeledBranch(Mips64Label* label);
1475 
1476   Branch* GetBranch(uint32_t branch_id);
1477   const Branch* GetBranch(uint32_t branch_id) const;
1478 
1479   void EmitLiterals();
1480   void ReserveJumpTableSpace();
1481   void EmitJumpTables();
1482   void PromoteBranches();
1483   void EmitBranch(Branch* branch);
1484   void EmitBranches();
1485   void PatchCFI();
1486 
1487   // Emits exception block.
1488   void EmitExceptionPoll(Mips64ExceptionSlowPath* exception);
1489 
HasMsa()1490   bool HasMsa() const {
1491     return has_msa_;
1492   }
1493 
1494   // List of exception blocks to generate at the end of the code cache.
1495   std::vector<Mips64ExceptionSlowPath> exception_blocks_;
1496 
1497   std::vector<Branch> branches_;
1498 
1499   // Whether appending instructions at the end of the buffer or overwriting the existing ones.
1500   bool overwriting_;
1501   // The current overwrite location.
1502   uint32_t overwrite_location_;
1503 
1504   // Use std::deque<> for literal labels to allow insertions at the end
1505   // without invalidating pointers and references to existing elements.
1506   ArenaDeque<Literal> literals_;
1507   ArenaDeque<Literal> long_literals_;  // 64-bit literals separated for alignment reasons.
1508 
1509   // Jump table list.
1510   ArenaDeque<JumpTable> jump_tables_;
1511 
1512   // Data for AdjustedPosition(), see the description there.
1513   uint32_t last_position_adjustment_;
1514   uint32_t last_old_position_;
1515   uint32_t last_branch_id_;
1516 
1517   const bool has_msa_;
1518 
1519   DISALLOW_COPY_AND_ASSIGN(Mips64Assembler);
1520 };
1521 
1522 }  // namespace mips64
1523 }  // namespace art
1524 
1525 #endif  // ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
1526