"""psCharStrings.py -- module implementing various kinds of CharStrings: CFF dictionary data and Type1/Type2 CharStrings. """ from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * import struct DEBUG = 0 t1OperandEncoding = [None] * 256 t1OperandEncoding[0:32] = (32) * ["do_operator"] t1OperandEncoding[32:247] = (247 - 32) * ["read_byte"] t1OperandEncoding[247:251] = (251 - 247) * ["read_smallInt1"] t1OperandEncoding[251:255] = (255 - 251) * ["read_smallInt2"] t1OperandEncoding[255] = "read_longInt" assert len(t1OperandEncoding) == 256 t2OperandEncoding = t1OperandEncoding[:] t2OperandEncoding[28] = "read_shortInt" t2OperandEncoding[255] = "read_fixed1616" cffDictOperandEncoding = t2OperandEncoding[:] cffDictOperandEncoding[29] = "read_longInt" cffDictOperandEncoding[30] = "read_realNumber" cffDictOperandEncoding[255] = "reserved" realNibbles = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '.', 'E', 'E-', None, '-'] realNibblesDict = {} for _i in range(len(realNibbles)): realNibblesDict[realNibbles[_i]] = _i class ByteCodeBase(object): def read_byte(self, b0, data, index): return b0 - 139, index def read_smallInt1(self, b0, data, index): b1 = byteord(data[index]) return (b0-247)*256 + b1 + 108, index+1 def read_smallInt2(self, b0, data, index): b1 = byteord(data[index]) return -(b0-251)*256 - b1 - 108, index+1 def read_shortInt(self, b0, data, index): value, = struct.unpack(">h", data[index:index+2]) return value, index+2 def read_longInt(self, b0, data, index): value, = struct.unpack(">l", data[index:index+4]) return value, index+4 def read_fixed1616(self, b0, data, index): value, = struct.unpack(">l", data[index:index+4]) return value / 65536, index+4 def read_realNumber(self, b0, data, index): number = '' while True: b = byteord(data[index]) index = index + 1 nibble0 = (b & 0xf0) >> 4 nibble1 = b & 0x0f if nibble0 == 0xf: break number = number + realNibbles[nibble0] if nibble1 == 0xf: break number = number + realNibbles[nibble1] return float(number), index def buildOperatorDict(operatorList): oper = {} opc = {} for item in operatorList: if len(item) == 2: oper[item[0]] = item[1] else: oper[item[0]] = item[1:] if isinstance(item[0], tuple): opc[item[1]] = item[0] else: opc[item[1]] = (item[0],) return oper, opc t2Operators = [ # opcode name (1, 'hstem'), (3, 'vstem'), (4, 'vmoveto'), (5, 'rlineto'), (6, 'hlineto'), (7, 'vlineto'), (8, 'rrcurveto'), (10, 'callsubr'), (11, 'return'), (14, 'endchar'), (16, 'blend'), (18, 'hstemhm'), (19, 'hintmask'), (20, 'cntrmask'), (21, 'rmoveto'), (22, 'hmoveto'), (23, 'vstemhm'), (24, 'rcurveline'), (25, 'rlinecurve'), (26, 'vvcurveto'), (27, 'hhcurveto'), # (28, 'shortint'), # not really an operator (29, 'callgsubr'), (30, 'vhcurveto'), (31, 'hvcurveto'), ((12, 0), 'ignore'), # dotsection. Yes, there a few very early OTF/CFF # fonts with this deprecated operator. Just ignore it. ((12, 3), 'and'), ((12, 4), 'or'), ((12, 5), 'not'), ((12, 8), 'store'), ((12, 9), 'abs'), ((12, 10), 'add'), ((12, 11), 'sub'), ((12, 12), 'div'), ((12, 13), 'load'), ((12, 14), 'neg'), ((12, 15), 'eq'), ((12, 18), 'drop'), ((12, 20), 'put'), ((12, 21), 'get'), ((12, 22), 'ifelse'), ((12, 23), 'random'), ((12, 24), 'mul'), ((12, 26), 'sqrt'), ((12, 27), 'dup'), ((12, 28), 'exch'), ((12, 29), 'index'), ((12, 30), 'roll'), ((12, 34), 'hflex'), ((12, 35), 'flex'), ((12, 36), 'hflex1'), ((12, 37), 'flex1'), ] def getIntEncoder(format): if format == "cff": fourByteOp = bytechr(29) elif format == "t1": fourByteOp = bytechr(255) else: assert format == "t2" fourByteOp = None def encodeInt(value, fourByteOp=fourByteOp, bytechr=bytechr, pack=struct.pack, unpack=struct.unpack): if -107 <= value <= 107: code = bytechr(value + 139) elif 108 <= value <= 1131: value = value - 108 code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF) elif -1131 <= value <= -108: value = -value - 108 code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF) elif fourByteOp is None: # T2 only supports 2 byte ints if -32768 <= value <= 32767: code = bytechr(28) + pack(">h", value) else: # Backwards compatible hack: due to a previous bug in FontTools, # 16.16 fixed numbers were written out as 4-byte ints. When # these numbers were small, they were wrongly written back as # small ints instead of 4-byte ints, breaking round-tripping. # This here workaround doesn't do it any better, since we can't # distinguish anymore between small ints that were supposed to # be small fixed numbers and small ints that were just small # ints. Hence the warning. import sys sys.stderr.write("Warning: 4-byte T2 number got passed to the " "IntType handler. This should happen only when reading in " "old XML files.\n") code = bytechr(255) + pack(">l", value) else: code = fourByteOp + pack(">l", value) return code return encodeInt encodeIntCFF = getIntEncoder("cff") encodeIntT1 = getIntEncoder("t1") encodeIntT2 = getIntEncoder("t2") def encodeFixed(f, pack=struct.pack): # For T2 only return b"\xff" + pack(">l", int(round(f * 65536))) def encodeFloat(f): # For CFF only, used in cffLib s = str(f).upper() if s[:2] == "0.": s = s[1:] elif s[:3] == "-0.": s = "-" + s[2:] nibbles = [] while s: c = s[0] s = s[1:] if c == "E" and s[:1] == "-": s = s[1:] c = "E-" nibbles.append(realNibblesDict[c]) nibbles.append(0xf) if len(nibbles) % 2: nibbles.append(0xf) d = bytechr(30) for i in range(0, len(nibbles), 2): d = d + bytechr(nibbles[i] << 4 | nibbles[i+1]) return d class CharStringCompileError(Exception): pass class T2CharString(ByteCodeBase): operandEncoding = t2OperandEncoding operators, opcodes = buildOperatorDict(t2Operators) def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None): if program is None: program = [] self.bytecode = bytecode self.program = program self.private = private self.globalSubrs = globalSubrs if globalSubrs is not None else [] def __repr__(self): if self.bytecode is None: return "<%s (source) at %x>" % (self.__class__.__name__, id(self)) else: return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self)) def getIntEncoder(self): return encodeIntT2 def getFixedEncoder(self): return encodeFixed def decompile(self): if not self.needsDecompilation(): return subrs = getattr(self.private, "Subrs", []) decompiler = SimpleT2Decompiler(subrs, self.globalSubrs) decompiler.execute(self) def draw(self, pen): subrs = getattr(self.private, "Subrs", []) extractor = T2OutlineExtractor(pen, subrs, self.globalSubrs, self.private.nominalWidthX, self.private.defaultWidthX) extractor.execute(self) self.width = extractor.width def compile(self): if self.bytecode is not None: return assert self.program, "illegal CharString: decompiled to empty program" assert self.program[-1] in ("endchar", "return", "callsubr", "callgsubr", "seac"), "illegal CharString" bytecode = [] opcodes = self.opcodes program = self.program encodeInt = self.getIntEncoder() encodeFixed = self.getFixedEncoder() i = 0 end = len(program) while i < end: token = program[i] i = i + 1 tp = type(token) if issubclass(tp, basestring): try: bytecode.extend(bytechr(b) for b in opcodes[token]) except KeyError: raise CharStringCompileError("illegal operator: %s" % token) if token in ('hintmask', 'cntrmask'): bytecode.append(program[i]) # hint mask i = i + 1 elif tp == int: bytecode.append(encodeInt(token)) elif tp == float: bytecode.append(encodeFixed(token)) else: assert 0, "unsupported type: %s" % tp try: bytecode = bytesjoin(bytecode) except TypeError: print(bytecode) raise self.setBytecode(bytecode) def needsDecompilation(self): return self.bytecode is not None def setProgram(self, program): self.program = program self.bytecode = None def setBytecode(self, bytecode): self.bytecode = bytecode self.program = None def getToken(self, index, len=len, byteord=byteord, getattr=getattr, type=type, StringType=str): if self.bytecode is not None: if index >= len(self.bytecode): return None, 0, 0 b0 = byteord(self.bytecode[index]) index = index + 1 code = self.operandEncoding[b0] handler = getattr(self, code) token, index = handler(b0, self.bytecode, index) else: if index >= len(self.program): return None, 0, 0 token = self.program[index] index = index + 1 isOperator = isinstance(token, StringType) return token, isOperator, index def getBytes(self, index, nBytes): if self.bytecode is not None: newIndex = index + nBytes bytes = self.bytecode[index:newIndex] index = newIndex else: bytes = self.program[index] index = index + 1 assert len(bytes) == nBytes return bytes, index def do_operator(self, b0, data, index): if b0 == 12: op = (b0, byteord(data[index])) index = index+1 else: op = b0 operator = self.operators[op] return operator, index def toXML(self, xmlWriter): from fontTools.misc.textTools import num2binary if self.bytecode is not None: xmlWriter.dumphex(self.bytecode) else: index = 0 args = [] while True: token, isOperator, index = self.getToken(index) if token is None: break if isOperator: args = [str(arg) for arg in args] if token in ('hintmask', 'cntrmask'): hintMask, isOperator, index = self.getToken(index) bits = [] for byte in hintMask: bits.append(num2binary(byteord(byte), 8)) hintMask = strjoin(bits) line = ' '.join(args + [token, hintMask]) else: line = ' '.join(args + [token]) xmlWriter.write(line) xmlWriter.newline() args = [] else: args.append(token) def fromXML(self, name, attrs, content): from fontTools.misc.textTools import binary2num, readHex if attrs.get("raw"): self.setBytecode(readHex(content)) return content = strjoin(content) content = content.split() program = [] end = len(content) i = 0 while i < end: token = content[i] i = i + 1 try: token = int(token) except ValueError: try: token = float(token) except ValueError: program.append(token) if token in ('hintmask', 'cntrmask'): mask = content[i] maskBytes = b"" for j in range(0, len(mask), 8): maskBytes = maskBytes + bytechr(binary2num(mask[j:j+8])) program.append(maskBytes) i = i + 1 else: program.append(token) else: program.append(token) self.setProgram(program) t1Operators = [ # opcode name (1, 'hstem'), (3, 'vstem'), (4, 'vmoveto'), (5, 'rlineto'), (6, 'hlineto'), (7, 'vlineto'), (8, 'rrcurveto'), (9, 'closepath'), (10, 'callsubr'), (11, 'return'), (13, 'hsbw'), (14, 'endchar'), (21, 'rmoveto'), (22, 'hmoveto'), (30, 'vhcurveto'), (31, 'hvcurveto'), ((12, 0), 'dotsection'), ((12, 1), 'vstem3'), ((12, 2), 'hstem3'), ((12, 6), 'seac'), ((12, 7), 'sbw'), ((12, 12), 'div'), ((12, 16), 'callothersubr'), ((12, 17), 'pop'), ((12, 33), 'setcurrentpoint'), ] class T1CharString(T2CharString): operandEncoding = t1OperandEncoding operators, opcodes = buildOperatorDict(t1Operators) def __init__(self, bytecode=None, program=None, subrs=None): if program is None: program = [] self.bytecode = bytecode self.program = program self.subrs = subrs def getIntEncoder(self): return encodeIntT1 def getFixedEncoder(self): def encodeFixed(value): raise TypeError("Type 1 charstrings don't support floating point operands") def decompile(self): if self.bytecode is None: return program = [] index = 0 while True: token, isOperator, index = self.getToken(index) if token is None: break program.append(token) self.setProgram(program) def draw(self, pen): extractor = T1OutlineExtractor(pen, self.subrs) extractor.execute(self) self.width = extractor.width class SimpleT2Decompiler(object): def __init__(self, localSubrs, globalSubrs): self.localSubrs = localSubrs self.localBias = calcSubrBias(localSubrs) self.globalSubrs = globalSubrs self.globalBias = calcSubrBias(globalSubrs) self.reset() def reset(self): self.callingStack = [] self.operandStack = [] self.hintCount = 0 self.hintMaskBytes = 0 def execute(self, charString): self.callingStack.append(charString) needsDecompilation = charString.needsDecompilation() if needsDecompilation: program = [] pushToProgram = program.append else: pushToProgram = lambda x: None pushToStack = self.operandStack.append index = 0 while True: token, isOperator, index = charString.getToken(index) if token is None: break # we're done! pushToProgram(token) if isOperator: handlerName = "op_" + token if hasattr(self, handlerName): handler = getattr(self, handlerName) rv = handler(index) if rv: hintMaskBytes, index = rv pushToProgram(hintMaskBytes) else: self.popall() else: pushToStack(token) if needsDecompilation: assert program, "illegal CharString: decompiled to empty program" assert program[-1] in ("endchar", "return", "callsubr", "callgsubr", "seac"), "illegal CharString" charString.setProgram(program) del self.callingStack[-1] def pop(self): value = self.operandStack[-1] del self.operandStack[-1] return value def popall(self): stack = self.operandStack[:] self.operandStack[:] = [] return stack def push(self, value): self.operandStack.append(value) def op_return(self, index): if self.operandStack: pass def op_endchar(self, index): pass def op_ignore(self, index): pass def op_callsubr(self, index): subrIndex = self.pop() subr = self.localSubrs[subrIndex+self.localBias] self.execute(subr) def op_callgsubr(self, index): subrIndex = self.pop() subr = self.globalSubrs[subrIndex+self.globalBias] self.execute(subr) def op_hstem(self, index): self.countHints() def op_vstem(self, index): self.countHints() def op_hstemhm(self, index): self.countHints() def op_vstemhm(self, index): self.countHints() def op_hintmask(self, index): if not self.hintMaskBytes: self.countHints() self.hintMaskBytes = (self.hintCount + 7) // 8 hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes) return hintMaskBytes, index op_cntrmask = op_hintmask def countHints(self): args = self.popall() self.hintCount = self.hintCount + len(args) // 2 # misc def op_and(self, index): raise NotImplementedError def op_or(self, index): raise NotImplementedError def op_not(self, index): raise NotImplementedError def op_store(self, index): raise NotImplementedError def op_abs(self, index): raise NotImplementedError def op_add(self, index): raise NotImplementedError def op_sub(self, index): raise NotImplementedError def op_div(self, index): raise NotImplementedError def op_load(self, index): raise NotImplementedError def op_neg(self, index): raise NotImplementedError def op_eq(self, index): raise NotImplementedError def op_drop(self, index): raise NotImplementedError def op_put(self, index): raise NotImplementedError def op_get(self, index): raise NotImplementedError def op_ifelse(self, index): raise NotImplementedError def op_random(self, index): raise NotImplementedError def op_mul(self, index): raise NotImplementedError def op_sqrt(self, index): raise NotImplementedError def op_dup(self, index): raise NotImplementedError def op_exch(self, index): raise NotImplementedError def op_index(self, index): raise NotImplementedError def op_roll(self, index): raise NotImplementedError class T2OutlineExtractor(SimpleT2Decompiler): def __init__(self, pen, localSubrs, globalSubrs, nominalWidthX, defaultWidthX): SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs) self.pen = pen self.nominalWidthX = nominalWidthX self.defaultWidthX = defaultWidthX def reset(self): SimpleT2Decompiler.reset(self) self.hints = [] self.gotWidth = 0 self.width = 0 self.currentPoint = (0, 0) self.sawMoveTo = 0 def _nextPoint(self, point): x, y = self.currentPoint point = x + point[0], y + point[1] self.currentPoint = point return point def rMoveTo(self, point): self.pen.moveTo(self._nextPoint(point)) self.sawMoveTo = 1 def rLineTo(self, point): if not self.sawMoveTo: self.rMoveTo((0, 0)) self.pen.lineTo(self._nextPoint(point)) def rCurveTo(self, pt1, pt2, pt3): if not self.sawMoveTo: self.rMoveTo((0, 0)) nextPoint = self._nextPoint self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3)) def closePath(self): if self.sawMoveTo: self.pen.closePath() self.sawMoveTo = 0 def endPath(self): # In T2 there are no open paths, so always do a closePath when # finishing a sub path. self.closePath() def popallWidth(self, evenOdd=0): args = self.popall() if not self.gotWidth: if evenOdd ^ (len(args) % 2): self.width = self.nominalWidthX + args[0] args = args[1:] else: self.width = self.defaultWidthX self.gotWidth = 1 return args def countHints(self): args = self.popallWidth() self.hintCount = self.hintCount + len(args) // 2 # # hint operators # #def op_hstem(self, index): # self.countHints() #def op_vstem(self, index): # self.countHints() #def op_hstemhm(self, index): # self.countHints() #def op_vstemhm(self, index): # self.countHints() #def op_hintmask(self, index): # self.countHints() #def op_cntrmask(self, index): # self.countHints() # # path constructors, moveto # def op_rmoveto(self, index): self.endPath() self.rMoveTo(self.popallWidth()) def op_hmoveto(self, index): self.endPath() self.rMoveTo((self.popallWidth(1)[0], 0)) def op_vmoveto(self, index): self.endPath() self.rMoveTo((0, self.popallWidth(1)[0])) def op_endchar(self, index): self.endPath() args = self.popallWidth() if args: from fontTools.encodings.StandardEncoding import StandardEncoding # endchar can do seac accent bulding; The T2 spec says it's deprecated, # but recent software that shall remain nameless does output it. adx, ady, bchar, achar = args baseGlyph = StandardEncoding[bchar] self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0)) accentGlyph = StandardEncoding[achar] self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady)) # # path constructors, lines # def op_rlineto(self, index): args = self.popall() for i in range(0, len(args), 2): point = args[i:i+2] self.rLineTo(point) def op_hlineto(self, index): self.alternatingLineto(1) def op_vlineto(self, index): self.alternatingLineto(0) # # path constructors, curves # def op_rrcurveto(self, index): """{dxa dya dxb dyb dxc dyc}+ rrcurveto""" args = self.popall() for i in range(0, len(args), 6): dxa, dya, dxb, dyb, dxc, dyc, = args[i:i+6] self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc)) def op_rcurveline(self, index): """{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline""" args = self.popall() for i in range(0, len(args)-2, 6): dxb, dyb, dxc, dyc, dxd, dyd = args[i:i+6] self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd)) self.rLineTo(args[-2:]) def op_rlinecurve(self, index): """{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve""" args = self.popall() lineArgs = args[:-6] for i in range(0, len(lineArgs), 2): self.rLineTo(lineArgs[i:i+2]) dxb, dyb, dxc, dyc, dxd, dyd = args[-6:] self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd)) def op_vvcurveto(self, index): "dx1? {dya dxb dyb dyc}+ vvcurveto" args = self.popall() if len(args) % 2: dx1 = args[0] args = args[1:] else: dx1 = 0 for i in range(0, len(args), 4): dya, dxb, dyb, dyc = args[i:i+4] self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc)) dx1 = 0 def op_hhcurveto(self, index): """dy1? {dxa dxb dyb dxc}+ hhcurveto""" args = self.popall() if len(args) % 2: dy1 = args[0] args = args[1:] else: dy1 = 0 for i in range(0, len(args), 4): dxa, dxb, dyb, dxc = args[i:i+4] self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0)) dy1 = 0 def op_vhcurveto(self, index): """dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30) {dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto """ args = self.popall() while args: args = self.vcurveto(args) if args: args = self.hcurveto(args) def op_hvcurveto(self, index): """dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf? {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf? """ args = self.popall() while args: args = self.hcurveto(args) if args: args = self.vcurveto(args) # # path constructors, flex # def op_hflex(self, index): dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall() dy1 = dy3 = dy4 = dy6 = 0 dy5 = -dy2 self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) def op_flex(self, index): dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall() self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) def op_hflex1(self, index): dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall() dy3 = dy4 = 0 dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5) self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) def op_flex1(self, index): dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall() dx = dx1 + dx2 + dx3 + dx4 + dx5 dy = dy1 + dy2 + dy3 + dy4 + dy5 if abs(dx) > abs(dy): dx6 = d6 dy6 = -dy else: dx6 = -dx dy6 = d6 self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3)) self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6)) # # MultipleMaster. Well... # def op_blend(self, index): self.popall() # misc def op_and(self, index): raise NotImplementedError def op_or(self, index): raise NotImplementedError def op_not(self, index): raise NotImplementedError def op_store(self, index): raise NotImplementedError def op_abs(self, index): raise NotImplementedError def op_add(self, index): raise NotImplementedError def op_sub(self, index): raise NotImplementedError def op_div(self, index): num2 = self.pop() num1 = self.pop() d1 = num1//num2 d2 = num1/num2 if d1 == d2: self.push(d1) else: self.push(d2) def op_load(self, index): raise NotImplementedError def op_neg(self, index): raise NotImplementedError def op_eq(self, index): raise NotImplementedError def op_drop(self, index): raise NotImplementedError def op_put(self, index): raise NotImplementedError def op_get(self, index): raise NotImplementedError def op_ifelse(self, index): raise NotImplementedError def op_random(self, index): raise NotImplementedError def op_mul(self, index): raise NotImplementedError def op_sqrt(self, index): raise NotImplementedError def op_dup(self, index): raise NotImplementedError def op_exch(self, index): raise NotImplementedError def op_index(self, index): raise NotImplementedError def op_roll(self, index): raise NotImplementedError # # miscellaneous helpers # def alternatingLineto(self, isHorizontal): args = self.popall() for arg in args: if isHorizontal: point = (arg, 0) else: point = (0, arg) self.rLineTo(point) isHorizontal = not isHorizontal def vcurveto(self, args): dya, dxb, dyb, dxc = args[:4] args = args[4:] if len(args) == 1: dyc = args[0] args = [] else: dyc = 0 self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc)) return args def hcurveto(self, args): dxa, dxb, dyb, dyc = args[:4] args = args[4:] if len(args) == 1: dxc = args[0] args = [] else: dxc = 0 self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc)) return args class T1OutlineExtractor(T2OutlineExtractor): def __init__(self, pen, subrs): self.pen = pen self.subrs = subrs self.reset() def reset(self): self.flexing = 0 self.width = 0 self.sbx = 0 T2OutlineExtractor.reset(self) def endPath(self): if self.sawMoveTo: self.pen.endPath() self.sawMoveTo = 0 def popallWidth(self, evenOdd=0): return self.popall() def exch(self): stack = self.operandStack stack[-1], stack[-2] = stack[-2], stack[-1] # # path constructors # def op_rmoveto(self, index): if self.flexing: return self.endPath() self.rMoveTo(self.popall()) def op_hmoveto(self, index): if self.flexing: # We must add a parameter to the stack if we are flexing self.push(0) return self.endPath() self.rMoveTo((self.popall()[0], 0)) def op_vmoveto(self, index): if self.flexing: # We must add a parameter to the stack if we are flexing self.push(0) self.exch() return self.endPath() self.rMoveTo((0, self.popall()[0])) def op_closepath(self, index): self.closePath() def op_setcurrentpoint(self, index): args = self.popall() x, y = args self.currentPoint = x, y def op_endchar(self, index): self.endPath() def op_hsbw(self, index): sbx, wx = self.popall() self.width = wx self.sbx = sbx self.currentPoint = sbx, self.currentPoint[1] def op_sbw(self, index): self.popall() # XXX # def op_callsubr(self, index): subrIndex = self.pop() subr = self.subrs[subrIndex] self.execute(subr) def op_callothersubr(self, index): subrIndex = self.pop() nArgs = self.pop() #print nArgs, subrIndex, "callothersubr" if subrIndex == 0 and nArgs == 3: self.doFlex() self.flexing = 0 elif subrIndex == 1 and nArgs == 0: self.flexing = 1 # ignore... def op_pop(self, index): pass # ignore... def doFlex(self): finaly = self.pop() finalx = self.pop() self.pop() # flex height is unused p3y = self.pop() p3x = self.pop() bcp4y = self.pop() bcp4x = self.pop() bcp3y = self.pop() bcp3x = self.pop() p2y = self.pop() p2x = self.pop() bcp2y = self.pop() bcp2x = self.pop() bcp1y = self.pop() bcp1x = self.pop() rpy = self.pop() rpx = self.pop() # call rrcurveto self.push(bcp1x+rpx) self.push(bcp1y+rpy) self.push(bcp2x) self.push(bcp2y) self.push(p2x) self.push(p2y) self.op_rrcurveto(None) # call rrcurveto self.push(bcp3x) self.push(bcp3y) self.push(bcp4x) self.push(bcp4y) self.push(p3x) self.push(p3y) self.op_rrcurveto(None) # Push back final coords so subr 0 can find them self.push(finalx) self.push(finaly) def op_dotsection(self, index): self.popall() # XXX def op_hstem3(self, index): self.popall() # XXX def op_seac(self, index): "asb adx ady bchar achar seac" from fontTools.encodings.StandardEncoding import StandardEncoding asb, adx, ady, bchar, achar = self.popall() baseGlyph = StandardEncoding[bchar] self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0)) accentGlyph = StandardEncoding[achar] adx = adx + self.sbx - asb # seac weirdness self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady)) def op_vstem3(self, index): self.popall() # XXX class DictDecompiler(ByteCodeBase): operandEncoding = cffDictOperandEncoding def __init__(self, strings): self.stack = [] self.strings = strings self.dict = {} def getDict(self): assert len(self.stack) == 0, "non-empty stack" return self.dict def decompile(self, data): index = 0 lenData = len(data) push = self.stack.append while index < lenData: b0 = byteord(data[index]) index = index + 1 code = self.operandEncoding[b0] handler = getattr(self, code) value, index = handler(b0, data, index) if value is not None: push(value) def pop(self): value = self.stack[-1] del self.stack[-1] return value def popall(self): args = self.stack[:] del self.stack[:] return args def do_operator(self, b0, data, index): if b0 == 12: op = (b0, byteord(data[index])) index = index+1 else: op = b0 operator, argType = self.operators[op] self.handle_operator(operator, argType) return None, index def handle_operator(self, operator, argType): if isinstance(argType, type(())): value = () for i in range(len(argType)-1, -1, -1): arg = argType[i] arghandler = getattr(self, "arg_" + arg) value = (arghandler(operator),) + value else: arghandler = getattr(self, "arg_" + argType) value = arghandler(operator) self.dict[operator] = value def arg_number(self, name): return self.pop() def arg_SID(self, name): return self.strings[self.pop()] def arg_array(self, name): return self.popall() def arg_delta(self, name): out = [] current = 0 for v in self.popall(): current = current + v out.append(current) return out def calcSubrBias(subrs): nSubrs = len(subrs) if nSubrs < 1240: bias = 107 elif nSubrs < 33900: bias = 1131 else: bias = 32768 return bias