# # Copyright (C) 2017 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # model model = Model() d0 = 1 #2 d1 = 16 #256 d2 = 16 #256 d3 = 1 #2 i0 = Input("input", "TENSOR_QUANT8_ASYMM", "{%d, %d, %d, %d}, .5f, 0" % (d0, d1, d2, d3)) output = Output("output", "TENSOR_QUANT8_ASYMM", "{%d, %d, %d, %d}, 0.00390625f, 0" % (d0, d1, d2, d3)) model = model.Operation("LOGISTIC", i0).To(output) # Example 1. Input in operand 0, rng = d0 * d1 * d2 * d3 input_values = (lambda r = rng: [x % 256 for x in range(r)])() input0 = {i0: input_values} output_values = [ 255 if 1. / (1. + math.exp(-x * .5)) * 256 > 255 else int(round(1. / (1. + math.exp(-x * .5)) * 256)) for x in input_values] output0 = {output: output_values} # Instantiate an example Example((input0, output0))